Sampling Distribution: Week 6

Size: px
Start display at page:

Download "Sampling Distribution: Week 6"

Transcription

1 Sampling Distribution: Week 6 Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu February 27, 2015 Kwonsang Lee STAT111 February 27, / 16

2 Sampling Distribution: Sample Mean If X 1, X 2,..., X n are from the population distribution with mean µ and SD σ, then we know X = X 1+ +X n n has mean( X ) = µ, SD( X ) = σ n Further, from Central Limit Theorem (CLT), we know X approximately N(µ, σ n ) Question: When can we use this CLT about sample mean? Kwonsang Lee STAT111 February 27, / 16

3 Sampling Distribution: Sample Mean (Example) If we know both population mean and population standard deviation, then we can compute probabilities like Pr( X > k) (k: any value) Example 1. Assume that population distribution of IQ score has mean 130 and SD 30. We have a sample of size 100. What is the probability that the sample mean X is over 105? Answer: From CLT, we know mean( X ) = µ = 100 and SD( X ) = σ n = = 3; X N(100, 3). Therefore, ) Pr( X > 105) = Pr( (X > ) 3 3 = Pr(Z > 1.67) = = Note: We should know population mean µ and SD σ Kwonsang Lee STAT111 February 27, / 16

4 Sampling Distribution: Count and Proportion Y i can have two possible outcome values. Y i = 1 if Success and Y i = 0 if Failure. Y = Y Y n. Y is the total number of Success in a sample of size n. We are interested in count Y or proportion Y /n = ˆp If the population proportion p is known, what is the distribution of Y? - Binomial Distribution! Pr(Y = k) = ( n k) p k (1 p) n k for 0 k n. Kwonsang Lee STAT111 February 27, / 16

5 Sampling Distribution: Count (Simple Example) Example 2. We have a fair coin and toss it 5 times. Let s say Y is the total number of Success ( Success = getting a head ). 1 Distribution of Y Y Prob 1/32 5/32 10/32 10/32 5/32 1/32 ex) Pr(Y = 2) = ( 5 2) (1/2) 2 (1/2) 3 = 10 1/32 2 Pr(Y 1)? Pr(Y 1) = Pr(Y = 0) + Pr(Y = 1) = 1/32 + 5/32 = 6/32 Kwonsang Lee STAT111 February 27, / 16

6 Sampling Distribution Example 3. We have a fair coin and toss it 100 times. Let s say Y is the total number of heads. What is Pr(Y 30)? Naive approach: Pr(Y 30) = Pr(Y = 0)+Pr(Y = 1)+ Pr(Y = 29)+Pr(Y = 30) Much better approach: Use Normal Approximation! (CLT) Kwonsang Lee STAT111 February 27, / 16

7 Normal Approximation Sample count Y approximately follows a Normal distribution with mean(y ) = np, SD(Y ) = np(1 p) The sample proportion ˆp approximately follows a Normal distribution with p(1 p) mean(ˆp) = p, SD(ˆp) = n Kwonsang Lee STAT111 February 27, / 16

8 Normal Approximation Example Example 3. We have a fair coin and toss it 100 times. Let s say Y is the total number of heads. What is Pr(Y 30)? Answer: Here, n = 100 and p = 1/2 because a coin is fair. Since we know Y approximately follows the normal distribution N(np, np(1 p)) = N(50, 5), we can compute Pr(Y 30) = Pr( Y ) 5 5 = Pr(Z 4) 0 Kwonsang Lee STAT111 February 27, / 16

9 Question 1 Question 1. (IPS 5.25, page 319) Sheila s glucose level N(125, 10). Above 140 means having gestational diabetes. a. Single measurement X : Pr(X > 140) = Pr( X > ) = Pr(Z > 1.5) = = b. Mean of three measurements X : mean( X ) = 125, SD( X ) = 10 3 = 5.77 Pr( X > 140) = Pr( X > ) Pr(Z > 2.60) = = Kwonsang Lee STAT111 February 27, / 16

10 Question 2 Question 2. (IPS 5.51, page 345) 20% of U.S high school students stole something from a store in the past year. We take a sample of size 10. a. The distribution of those who say they have stolen something is Binomial(10, 0.2). The distribution of those who do not say they have stolen something is B(10, 0.8). b. Pr(Y 4)? Pr(Y 4) = 1 Pr(Y 3) = 1 (Pr(Y = 0) + Pr(Y = 1) + Pr(Y = 2) + Pr(Y = 3)) Kwonsang Lee STAT111 February 27, / 16

11 Question 2 (Continued) There are three ways to compute the probability. 1. Direct calculation. Pr(Y = 0) = ( ) 10 0 (0.2) 0 (0.8) 10 = Pr(Y = 1) = ( ) 10 1 (0.2) 1 (0.8) 9 = Pr(Y = 2) = ( ) 10 2 (0.2) 2 (0.8) 8 = Pr(Y = 3) = ( ) 10 3 (0.2) 3 (0.8) 7 = Therefore, Pr(Y 4) = 1 ( ) = Kwonsang Lee STAT111 February 27, / 16

12 Question 2 (Continued) 2. Use Binomial Probabilities table. Pr(Y = 0) = Pr(Y = 1) = Pr(Y = 2) = Pr(Y = 3) = Therefore, Pr(Y 4) = 1 ( ) = functions/ips6e/ips6e_table-c.pdf Kwonsang Lee STAT111 February 27, / 16

13 Question 2 (Continued) 3. Normal Approximation (Not a good idea in this case, n is too small) mean(y ) = = 2, SD(Y ) = = Pr(Y 4) = Pr( Y ) = Pr(Z 1.58) = = Kwonsang Lee STAT111 February 27, / 16

14 Question 3 Question 3. (IPS 5.69, page 347) Count of Success: Y B(900, 0.2) a. mean(y ) = = 180 and SD(Y ) = = 12. b. Sample proportion ˆp has mean(ˆp) = 0.2 and SD(ˆp) = 900 = c. Normal Approximation! (n=900) ˆp Pr(ˆp > 0.24) = Pr( > ) = Pr(Z > 3) = = Kwonsang Lee STAT111 February 27, / 16

15 Quick Review: Ch1 and Ch2 Chapter 1. Mean vs. Median; Impact of outliers on mean and median. Quartiles, IQR=Q3-Q1. Interpretation of Boxplot Chapter 2. Interpretation of Scatterplot ; Identifying positive association or negative association. Correlation formula. Regression; how to interpret regression line and how to predict using the line Equation of the least-square regression line. ŷ = b 0 + b 1 x, b 1 = r S y S x, b 0 = ȳ b 1 x Kwonsang Lee STAT111 February 27, / 16

16 Quick Review: Ch3 and Ch4 Chapter 3. Hard to summarize... Need to know keywords. Sample, Population, Bias, Randomization, Experiments, Observational studies, Simple Random Sample (SRS), Nonresponse, Nonresponse rate. Chapter 4. Disjoint and Independence events, Conditional Probability at least one Problem Formulas for mean and variance of random variable(rv). Properties of RV Standardization, z-score Kwonsang Lee STAT111 February 27, / 16

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions

ACMS Statistics for Life Sciences. Chapter 13: Sampling Distributions ACMS 20340 Statistics for Life Sciences Chapter 13: Sampling Distributions Sampling We use information from a sample to infer something about a population. When using random samples and randomized experiments,

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10 Chapter 18 Sampling Distribution Models Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 10 Population VS Sample Example 18.1 Suppose a total of 10,000 patients in a hospital and

More information

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions.

Bernoulli and Binomial Distributions. Notes. Bernoulli Trials. Bernoulli/Binomial Random Variables Bernoulli and Binomial Distributions. Lecture 11 Text: A Course in Probability by Weiss 5.3 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 11.1 Agenda 1 2 11.2 Bernoulli trials Many problems in

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing. Road Map Sampling Distributions, Confidence Intervals & Hypothesis Testing

Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing. Road Map Sampling Distributions, Confidence Intervals & Hypothesis Testing Topic 3: Sampling Distributions, Confidence Intervals & Hypothesis Testing ECO22Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

Point and Interval Estimation II Bios 662

Point and Interval Estimation II Bios 662 Point and Interval Estimation II Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2006-09-13 17:17 BIOS 662 1 Point and Interval Estimation II Nonparametric CI

More information

STAT 224 Exam 1, Version 1 Discussion (check one): Show your work for partial credit.

STAT 224 Exam 1, Version 1 Discussion (check one): Show your work for partial credit. Last name: STAT 224 Exam 1, Version 1 Discussion (check one): Show your work for partial credit. First: 1. The four sides of a rectangluar blower enclosure consist of two short pieces chosen randomly from

More information

MATH 3670 First Midterm February 17, No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer.

MATH 3670 First Midterm February 17, No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer. No books or notes. No cellphone or wireless devices. Write clearly and show your work for every answer. Name: Question: 1 2 3 4 Total Points: 30 20 20 40 110 Score: 1. The following numbers x i, i = 1,...,

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV)

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) CS5314 Randomized Algorithms Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) Objectives Introduce Geometric RV We then introduce Conditional Expectation Application:

More information

Notation: X = random variable; x = particular value; P(X = x) denotes probability that X equals the value x.

Notation: X = random variable; x = particular value; P(X = x) denotes probability that X equals the value x. Ch. 16 Random Variables Def n: A random variable is a numerical measurement of the outcome of a random phenomenon. A discrete random variable is a random variable that assumes separate values. # of people

More information

Sociology 6Z03 Review I

Sociology 6Z03 Review I Sociology 6Z03 Review I John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review I Fall 2016 1 / 19 Outline: Review I Introduction Displaying Distributions Describing

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Applied Statistics I

Applied Statistics I Applied Statistics I (IMT224β/AMT224β) Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Department of Mathematics University of Ruhuna Applied Statistics I(IMT224β/AMT224β) 1/158 Chapter

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

AP STATISTICS: Summer Math Packet

AP STATISTICS: Summer Math Packet Name AP STATISTICS: Summer Math Packet DIRECTIONS: Complete all problems on this packet. Packet due by the end of the first week of classes. Attach additional paper if needed. Calculator may be used. 1.

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables We have a probability space (S, Pr). A random variable is a function X : S V (X ) for some set V (X ). In this discussion, we must have V (X ) is the real numbers X induces a

More information

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3).

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). First of all, we note that µ = 2 and σ = 2. (a) Since X 3 is equivalent

More information

Expected Value - Revisited

Expected Value - Revisited Expected Value - Revisited An experiment is a Bernoulli Trial if: there are two outcomes (success and failure), the probability of success, p, is always the same, the trials are independent. Expected Value

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

Lecture 8 Sampling Theory

Lecture 8 Sampling Theory Lecture 8 Sampling Theory Thais Paiva STA 111 - Summer 2013 Term II July 11, 2013 1 / 25 Thais Paiva STA 111 - Summer 2013 Term II Lecture 8, 07/11/2013 Lecture Plan 1 Sampling Distributions 2 Law of Large

More information

Exam Empirical Methods VU University Amsterdam, Faculty of Exact Sciences h, February 12, 2015

Exam Empirical Methods VU University Amsterdam, Faculty of Exact Sciences h, February 12, 2015 Exam Empirical Methods VU University Amsterdam, Faculty of Exact Sciences 18.30 21.15h, February 12, 2015 Question 1 is on this page. Always motivate your answers. Write your answers in English. Only the

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Chapter 18 Sampling Distribution Models

Chapter 18 Sampling Distribution Models Chapter 18 Sampling Distribution Models The histogram above is a simulation of what we'd get if we could see all the proportions from all possible samples. The distribution has a special name. It's called

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution Lecture 12: Small Sample Intervals Based on a Normal Population MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 24 In this lecture, we will discuss (i)

More information

CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203

CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203 1 CHAPTER 18 SAMPLING DISTRIBUTION MODELS STAT 203 Outline 2 Sampling Distribution for Proportions Sample Proportions The mean The standard deviation The Distribution Model Assumptions and Conditions Sampling

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. 1 Counting principles, including permutations and combinations. The binomial theorem: expansion of a + b n, n ε N. THE PRODUCT RULE If there are m different ways of performing an operation and for each

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem Math/Stat 352 Lecture 10 Section 4.11 The Central Limit Theorem 1 Summing random variables Summing random variables Summing random variables Generally summation changes the shape of the distribution: range

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

1 Experiments and Observational Studies

1 Experiments and Observational Studies 1 Experiments and Observational Studies A response variable measures an outcome of a study. An explanatory variable explains or influences changes in a response variable. In a study, the treatment group

More information

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE Course Title: Probability and Statistics (MATH 80) Recommended Textbook(s): Number & Type of Questions: Probability and Statistics for Engineers

More information

Sections 3.4 and 3.5

Sections 3.4 and 3.5 Sections 3.4 and 3.5 Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) Continuous variables So far we ve dealt with

More information

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate:

To find the median, find the 40 th quartile and the 70 th quartile (which are easily found at y=1 and y=2, respectively). Then we interpolate: Joel Anderson ST 37-002 Lecture Summary for 2/5/20 Homework 0 First, the definition of a probability mass function p(x) and a cumulative distribution function F(x) is reviewed: Graphically, the drawings

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

Overview. Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland

Overview. Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland Overview Confidence Intervals Sampling and Opinion Polls Error Correcting Codes Number of Pet Unicorns in Ireland Confidence Intervals When a random variable lies in an interval a X b with a specified

More information

System Identification

System Identification System Identification Arun K. Tangirala Department of Chemical Engineering IIT Madras July 27, 2013 Module 3 Lecture 1 Arun K. Tangirala System Identification July 27, 2013 1 Objectives of this Module

More information

Random Variable. Pr(X = a) = Pr(s)

Random Variable. Pr(X = a) = Pr(s) Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably

More information

review session gov 2000 gov 2000 () review session 1 / 38

review session gov 2000 gov 2000 () review session 1 / 38 review session gov 2000 gov 2000 () review session 1 / 38 Overview Random Variables and Probability Univariate Statistics Bivariate Statistics Multivariate Statistics Causal Inference gov 2000 () review

More information

Introduction to Probability and Statistics Slides 3 Chapter 3

Introduction to Probability and Statistics Slides 3 Chapter 3 Introduction to Probability and Statistics Slides 3 Chapter 3 Ammar M. Sarhan, asarhan@mathstat.dal.ca Department of Mathematics and Statistics, Dalhousie University Fall Semester 2008 Dr. Ammar M. Sarhan

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 203 Vazirani Note 2 Random Variables: Distribution and Expectation We will now return once again to the question of how many heads in a typical sequence

More information

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4]

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4] Evaluating Hypotheses [Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4] Sample error, true error Condence intervals for observed hypothesis error Estimators Binomial distribution, Normal distribution,

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Chapter 2 Class Notes Sample & Population Descriptions Classifying variables

Chapter 2 Class Notes Sample & Population Descriptions Classifying variables Chapter 2 Class Notes Sample & Population Descriptions Classifying variables Random Variables (RVs) are discrete quantitative continuous nominal qualitative ordinal Notation and Definitions: a Sample is

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 202 Vazirani Note 4 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected in, randomly

More information

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 11 - Inference about probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is

More information

7. Do not estimate values for y using x-values outside the limits of the data given. This is called extrapolation and is not reliable.

7. Do not estimate values for y using x-values outside the limits of the data given. This is called extrapolation and is not reliable. AP Statistics 15 Inference for Regression I. Regression Review a. r à correlation coefficient or Pearson s coefficient: indicates strength and direction of the relationship between the explanatory variables

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Suppose n tickets are drawn at random with replacement from a box of numbered tickets. The central limit theorem says that when the probability histogram for the sum of the draws

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

REVIEW: Midterm Exam. Spring 2012

REVIEW: Midterm Exam. Spring 2012 REVIEW: Midterm Exam Spring 2012 Introduction Important Definitions: - Data - Statistics - A Population - A census - A sample Types of Data Parameter (Describing a characteristic of the Population) Statistic

More information

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 Random Variables and Expectation Question: The homeworks of 20 students are collected in, randomly shuffled and returned to the students.

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

Week 6, 9/24/12-9/28/12, Notes: Bernoulli, Binomial, Hypergeometric, and Poisson Random Variables

Week 6, 9/24/12-9/28/12, Notes: Bernoulli, Binomial, Hypergeometric, and Poisson Random Variables Week 6, 9/24/12-9/28/12, Notes: Bernoulli, Binomial, Hypergeometric, and Poisson Random Variables 1 Monday 9/24/12 on Bernoulli and Binomial R.V.s We are now discussing discrete random variables that have

More information

Econ 113. Lecture Module 2

Econ 113. Lecture Module 2 Econ 113 Lecture Module 2 Contents 1. Experiments and definitions 2. Events and probabilities 3. Assigning probabilities 4. Probability of complements 5. Conditional probability 6. Statistical independence

More information

Stats + Homework 2 Review. CS100 TAs

Stats + Homework 2 Review. CS100 TAs Stats + Homework 2 Review CS100 TAs What s on Homework 2? Confidence/Confidence intervals (mean, proportion, difference of each [all Z based]) CLT, LOLN Some hypothesis testing (p-values) Statistical significance

More information

Chapter 3: Displaying and summarizing quantitative data p52 The pattern of variation of a variable is called its distribution.

Chapter 3: Displaying and summarizing quantitative data p52 The pattern of variation of a variable is called its distribution. Chapter 3: Displaying and summarizing quantitative data p52 The pattern of variation of a variable is called its distribution. 1 Histograms p53 The breakfast cereal data Study collected data on nutritional

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

Chapter 3. Measuring data

Chapter 3. Measuring data Chapter 3 Measuring data 1 Measuring data versus presenting data We present data to help us draw meaning from it But pictures of data are subjective They re also not susceptible to rigorous inference Measuring

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 16. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 16. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Spring 206 Rao and Walrand Note 6 Random Variables: Distribution and Expectation Example: Coin Flips Recall our setup of a probabilistic experiment as

More information

BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings

BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings Yujin Chung October 4th, 2016 Fall 2016 Yujin Chung Lec6: Statistical hypothesis testings Fall 2016 1/30 Previous Two types of statistical

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

(Re)introduction to Statistics Dan Lizotte

(Re)introduction to Statistics Dan Lizotte (Re)introduction to Statistics Dan Lizotte 2017-01-17 Statistics The systematic collection and arrangement of numerical facts or data of any kind; (also) the branch of science or mathematics concerned

More information

Statistical Concepts. Distributions of Data

Statistical Concepts. Distributions of Data Module : Review of Basic Statistical Concepts. Understanding Probability Distributions, Parameters and Statistics A variable that can take on any value in a range is called a continuous variable. Example:

More information

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc IES 612/STA 4-573/STA 4-576 Winter 2008 Week 1--IES 612-STA 4-573-STA 4-576.doc Review Notes: [OL] = Ott & Longnecker Statistical Methods and Data Analysis, 5 th edition. [Handouts based on notes prepared

More information

Essentials of Statistics and Probability

Essentials of Statistics and Probability May 22, 2007 Department of Statistics, NC State University dbsharma@ncsu.edu SAMSI Undergrad Workshop Overview Practical Statistical Thinking Introduction Data and Distributions Variables and Distributions

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except in problem 1. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except in problem 1. Work neatly. Introduction to Statistics Math 1040 Sample Final Exam - Chapters 1-11 6 Problem Pages Time Limit: 1 hour and 50 minutes Open Textbook Calculator Allowed: Scientific Name: The point value of each problem

More information

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 4 Student Lecture Notes 4-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 4 Using Probability and Probability Distributions Fundamentals of Business Statistics Murali Shanker

More information

Chapter 3 Probability Distributions and Statistics Section 3.1 Random Variables and Histograms

Chapter 3 Probability Distributions and Statistics Section 3.1 Random Variables and Histograms Math 166 (c)2013 Epstein Chapter 3 Page 1 Chapter 3 Probability Distributions and Statistics Section 3.1 Random Variables and Histograms The value of the result of the probability experiment is called

More information

Stat 101 Exam 1 Important Formulas and Concepts 1

Stat 101 Exam 1 Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2. Categorical/Qualitative

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Stat 427/527: Advanced Data Analysis I

Stat 427/527: Advanced Data Analysis I Stat 427/527: Advanced Data Analysis I Review of Chapters 1-4 Sep, 2017 1 / 18 Concepts you need to know/interpret Numerical summaries: measures of center (mean, median, mode) measures of spread (sample

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1 PHP2510: Principles of Biostatistics & Data Analysis Lecture X: Hypothesis testing PHP 2510 Lec 10: Hypothesis testing 1 In previous lectures we have encountered problems of estimating an unknown population

More information

Power and Sample Size Bios 662

Power and Sample Size Bios 662 Power and Sample Size Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-31 14:06 BIOS 662 1 Power and Sample Size Outline Introduction One sample: continuous

More information

Sections 3.4 and 3.5

Sections 3.4 and 3.5 Sections 3.4 and 3.5 Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 20 Continuous variables So far we ve

More information

Exam 1 Review (Notes 1-8)

Exam 1 Review (Notes 1-8) 1 / 17 Exam 1 Review (Notes 1-8) Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) Basic Concepts 2 / 17 Type of studies:

More information

Introductory Probability

Introductory Probability Introductory Probability Bernoulli Trials and Binomial Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 04, 2019 Agenda Bernoulli Trials and Probability

More information

Interpret Standard Deviation. Outlier Rule. Describe the Distribution OR Compare the Distributions. Linear Transformations SOCS. Interpret a z score

Interpret Standard Deviation. Outlier Rule. Describe the Distribution OR Compare the Distributions. Linear Transformations SOCS. Interpret a z score Interpret Standard Deviation Outlier Rule Linear Transformations Describe the Distribution OR Compare the Distributions SOCS Using Normalcdf and Invnorm (Calculator Tips) Interpret a z score What is an

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

ESS011 Mathematical statistics and signal processing

ESS011 Mathematical statistics and signal processing ESS011 Mathematical statistics and signal processing Lecture 9: Gaussian distribution, transformation formula for continuous random variables, and the joint distribution Tuomas A. Rajala Chalmers TU April

More information

Useful material for the course

Useful material for the course Useful material for the course Suggested textbooks: Mood A.M., Graybill F.A., Boes D.C., Introduction to the Theory of Statistics. McGraw-Hill, New York, 1974. [very complete] M.C. Whitlock, D. Schluter,

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

Test 2 VERSION B STAT 3090 Spring 2017

Test 2 VERSION B STAT 3090 Spring 2017 Multiple Choice: (Questions 1 20) Answer the following questions on the scantron provided using a #2 pencil. Bubble the response that best answers the question. Each multiple choice correct response is

More information

Describing Distributions With Numbers

Describing Distributions With Numbers Describing Distributions With Numbers October 24, 2012 What Do We Usually Summarize? Measures of Center. Percentiles. Measures of Spread. A Summary Statement. Choosing Numerical Summaries. 1.0 What Do

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Statistics Handbook. All statistical tables were computed by the author.

Statistics Handbook. All statistical tables were computed by the author. Statistics Handbook Contents Page Wilcoxon rank-sum test (Mann-Whitney equivalent) Wilcoxon matched-pairs test 3 Normal Distribution 4 Z-test Related samples t-test 5 Unrelated samples t-test 6 Variance

More information