a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

Size: px
Start display at page:

Download "a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h"

Transcription

1 IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to 4π R find arad =. T SET UP: T = 4 h. 6 4 π ( m) 3 EXECUTE: (a) arad =.034 m/s = g. ((4 h)(3600 s/h)) (b) Soling Eq. (3.30) for the period T with arad EVALUATE: arad is proportional to that T be multiplied b a factor of 6 4 π ( m) = g, T = = 5070 s =.4 h m/s a b a factor of = 94 requires h.4 h 94 =. /T, so to increase rad IDENTIFY: Relatie elocit problem in two dimensions. His motion relatie to the earth (time displacement) depends on his elocit relatie to the earth so we must sole for this elocit. (a) SET UP: View the motion from aboe. a The elocit ectors in the problem are: r, M/E the elocit of the man relatie to the earth r, the elocit of the water relatie to the earth r, the elocit of the man relatie to the water The rule for adding these elocities is r r r = + M/E The problem tells us that r has magnitude.0 m/s and direction due south. It also tells us that r has magnitude 4. m/s and direction due east. The ector addition diagram is then as shown in Figure b b This diagram shows the ector addition r r r M/E = + and also has r and r in their specified directions. Note that the ector diagram forms a right triangle. (a) To cross the rier the man must trel 800 m due east relatie to the earth. The man s elocit relatie to the earth is r. M/E But, from the ector addition diagram the eastward component of M/E equals = 4. m/s m Thus t = = = 90 s. 4. m/s (b) The southward component of r M/E equals =.0 m/s. Therefore, in the 90 s it takes him to cross the rier the distance south the man trels relatie to the earth is 0 = t = (.0 m/s)(90 s) = 380 m. EVALUATE: If there were no current he would cross in the same time, (800 m)/(4. m/s) 90 s. = The current carries him downstream but doesn t affect his motion in the perpendicular direction, from bank to bank. 3 Bullet strikes tree, soled in class.

2 4 IDENTIFY: The reaction forces in Newton s third law are alwas between a pair of objects. In Newton s second law all the forces act on a single object. SET UP: Let + be downward. m = w/ g. EXECUTE: The reaction to the upward normal force on the passenger is the downward normal force, also of magnitude 60 N, that the passenger eerts on the floor. The reaction to the passenger s weight is the gritational force that the passenger eerts on the earth, upward and also of magnitude 650 N. F m = a 650 N 60 N gies a =.45 m/s. The passenger s acceleration is 0.45 m /s, (650 N)/(9.80 m/s ) downward. EVALUATE: There is a net downward force on the passenger and the passenger has a downward acceleration. 5 IDENTIFY: Here we appl conseration of energ and use kinematics to find the acceleration. We can use Newton s second law to relate the forces and acceleration. (a) SET UP: First use the information gien about the height of the jump to calculate the speed he has at the instant his feet lee the ground using energ conseration, mgh = /m and find = 4.85m/s. (b) SET UP: Now consider the acceleration phase, from when he starts to jump until when his feet lee the ground. EXECUTE: Calculate the erage acceleration: 4.89 m/s 0 ( a ) = = = 6. m/s t s 0 (c) SET UP: Finall, find the erage upward force that the ground must eert on him to produce this erage upward acceleration. (Don t forget about the downward force of grit.) The forces are sketched. EXECUTE: 890 N m = w/ g = = 90.8 kg 9.80 m/s F = ma F mg = m( a) F = m( g + ( a ) ) F = 90.8 kg(9.80 m/s + 6. m/s ) F = 360 N This is the erage force eerted on him b the ground. But b Newton s 3rd law, the erage force he eerts on the ground is equal and opposite, so is 360 N, downward. EVALUATE: In order for him to accelerate upward, the ground must eert an upward force greater than his weight. 6 The change in the car s kinetic energ is the same as the work done on the car b its brakes, -/m = -Fd. F = N. EVALUATE: A er large force is required to stop such a massie object in such a short distance. 7. IDENTIFY: Appl Newton s second law to calculate a. (a) SET UP: The free-bod diagram for the bucket is sketched.

3 The net force on the bucket is T mg, upward. (b) EXECUTE: F = ma gies T mg = ma T mg a = = = = m 4.80 kg 4.80 kg 75.0 N (4.80 kg)(9.80 m/s ) 75.0 N N 5.8 m/s. EVALUATE: The weight of the bucket is 47.0 N. The upward force eerted b the cord is larger than this, so the bucket accelerates upward. 8. (a) IDENTIFY and SET UP: Find the work done b the positie force. Use the work-energ theorem to find the final kinetic energ, and then K = m gies the final speed. EXECUTE: W = K K, so tot K = Wtot + K K = m = (7.00 kg)(4.00 m/s) = 56.0 J The onl force that does work on the wagon is the 0.0 N force. This force is in the direction of the displacement so the force does positie work, W = Fd = 30.0 J. Then K = Wtot + K = 30.0 J J = 86.0 J. K (86.0 J) K = m ; = = = 4.96 m/s m 7.00 kg r r (b) IDENTIFY: Appl F = ma to the wagon to calculate a. Then use constant acceleration equations to calculate the final speed. The free-bod diagram is gien. SET UP: EXECUTE: F = ma F = ma F 0.0 N.43 m/s a = = = m 7.00 kg EVALUATE: The force in the direction of the motion does positie work and the kinetic energ and speed increase. In part (b), the equialent statement is that the force produces an acceleration in the direction of the elocit and this causes the magnitude of the elocit to increase. 9. (a) IDENTIFY and SET UP: Appl energ conseration to the motion of the potato. Let point be where the potato is released and point be at the lowest point in its motion, as shown in Figure a. K + U + W = K + U other

4 a =.50 m The tension in the string is at all points in the motion perpendicular to the displacement, so W T The onl force that does work on the potato is grit, so W other. EXECUTE: K, Thus U = K. mg = m K m, = U = mg, U = g = (9.80 m/s )(.50 m) = 7.00 m/s EVALUATE: is the same as if the potato fell through.50 m. r r (b) IDENTIFY: Appl F = ma to the potato. The potato moes in an arc of a circle so its acceleration is ar, rad where a = R and is directed toward the center of the circle. Sole for one of rad / the forces, the tension T in the string. SET UP: The free-bod diagram for the potato as it swings through its lowest point is gien in Figure b. The acceleration a r rad is directed in toward the center of the circular path, so at this point it is upward. b EXECUTE: F = ma T mg = ma rad T = m( g + arad ) = m g +, where the radius R for the circular motion is the length L of the string. R It is instructie to use the algebraic epression for from part (a) rather than just putting in the numerical alue: = g = gl, so = gl gl Then T = m g + = m g + = 3 mg; the tension at this point is three times the weight of the L L potato. T = = = 3mg 3(0.00 kg)(9.80 m/s ).94 N EVALUATE: The tension is greater than the weight; the acceleration is upward so the net force must be upward. 0. IDENTIFY: There is no net eternal force on the sstem of the two skaters and the momentum of the sstem is consered. SET UP: Let object A be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg. Let + be to the right, so A = +.00 m/s and B =.50 m/s. After the collision the two objects are r combined and moe with elocit. Sole for.

5 EXECUTE: P = P. maa + mbb = ( ma + mb). m + m (70.0 kg)(.00 m/s) + (65.0)(.50 m/s) A A B B = = = ma + mb 70.0 kg kg 0.67 m/s. The two skaters moe to the left at 0.67 m/s. EVALUATE: There is a large decrease in kinetic energ. If the duration of the collision is known, the force on each skater is determined b calculating the mass times elocit change diided b the duration.. Weight in Santa Monica s. Mt. Eerest, in class.. IDENTIFY: The sum of the ertical forces on the ingot is zero. ρ = m/ V. The buoant force is B = ρ V g. water obj SET UP: The densit of aluminum is.7 0 kg/m. The densit of water is.00 0 kg/m. m 9.08 kg EXECUTE: (a) T = mg = 89 N so m = 9.08 kg. V = = = m = 3.4 L. ρ.7 0 kg/m (b) When the ingot is totall immersed in the water while suspended, T + B mg. B = ρ V g = =. water obj (.00 0 kg/m )( m )(9.80 m/s ) 3.9 N T = mg B = 89 N 3.9 N = 56 N. EVALUATE: The buoant force is equal to the difference between the apparent weight when the object is submerged in the fluid and the actual grit force on the object. 3. IDENTIFY: The ertical forces on the rock sum to zero. The buoant force equals the weight of liquid displaced b the rock. SET UP: The densit of water is.00 0 kg/m. EXECUTE: The rock displaces a olume of water whose weight is 39. N 8.4 N.8 N. The mass of this much water is thus.0 kg.00 0 kg/m 0.8 N/(9.80 m/s ) =.0 kg and its olume, equal to the rock s olume, is =.0 0 m. The weight of unknown liquid displaced is 39. N 8.6 N.6 N, and its mass is.0 kg/(.0 0 m ) =.9 0 kg/m. 0.6 N/(9.80 m/s ) =.0 kg. The liquid s densit is thus EVALUATE: The densit of the unknown liquid is roughl twice the densit of water.

PH211 Chapter 4 Solutions

PH211 Chapter 4 Solutions PH211 Chapter 4 Solutions 4.3.IDENTIFY: We know the resultant of two vectors of equal magnitude and want to find their magnitudes. They make the same angle with the vertical. Figure 4.3 SET UP: Take to

More information

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and 58 IDENTIY: ppl Newton s 1st law to the wrecing ball Each cable eerts a force on the ball, directed along the cable SET UP: The force diagram for the wrecing ball is setched in igure 58 (a) T cos 40 mg

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

APPLYING NEWTON S LAWS

APPLYING NEWTON S LAWS APPLYING NEWTON S LAWS 5 igible mass. Let T r be the tension in the rope and let T c be the tension in the chain. EXECUTE: (a) The free-bod diagram for each weight is the same and is given in Figure 5.1a.

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE ONLINE: MAHEMAICS EXENSION opic 6 MECHANICS 6.6 MOION IN A CICLE When a particle moes along a circular path (or cured path) its elocity must change een if its speed is constant, hence the particle must

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

Lecture 12! Center of mass! Uniform circular motion!

Lecture 12! Center of mass! Uniform circular motion! Lecture 1 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures Define the center of mass The center of mass is a

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 76/ MATHEMATICS (MEI Mechanics MONDAY MAY 7 Additional materials: Answer booklet (8 pages Graph paper MEI Examination Formulae and Tables (MF Morning Time: hour minutes INSTRUCTIONS TO

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Conservation of Linear Momentum, Collisions

Conservation of Linear Momentum, Collisions Conseration of Linear Momentum, Collisions 1. 3 kg mass is moing with an initial elocity i. The mass collides with a 5 kg mass m, which is initially at rest. Find the final elocity of the masses after

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Physics 204A FINAL EXAM Chapters 1-14 Fall 2005

Physics 204A FINAL EXAM Chapters 1-14 Fall 2005 Name: Solve the following problems in the space provided Use the back of the page if needed Each problem is worth 10 points You must show our work in a logical fashion starting with the correctl applied

More information

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the Reiew 3 Final Exam A common final exam time is scheduled d for all sections of Phsics 31 Time: Wednesda December 14, from 8-10 pm. Location for section 00 : BPS 1410 (our regular lecture room). This information

More information

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m. PH Chapter 7 Solutions 7.4. IDENTIFY: The energy from the food goes into the increased gravitational potential energy of the hiker. We must convert food calories to joules. SET P: The change in gravitational

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

SPH4UIW The Circle Centripetal Acceleration and Circular Motion Round Round

SPH4UIW The Circle Centripetal Acceleration and Circular Motion Round Round SPH4UIW Centripetal Acceleration and Circular Motion The Circle Bablonian Numbers And ou thought our homework was difficult SPH4UIW: Circular Motion, Pg 1 SPH4UIW: Circular Motion, Pg ound ound SPH4UIW:

More information

Version A (01) Question. Points

Version A (01) Question. Points Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ 1. A ball is thrown vertically upward from the Earth s surface and falls back to Earth. Which of the graphs below best symbolizes its speed v(t) as a function of time, neglecting air resistance: The answer

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

, remembering that! v i 2

, remembering that! v i 2 Section 53: Collisions Mini Inestigation: Newton s Cradle, page 34 Answers may ary Sample answers: A In Step, releasing one end ball caused the far ball on the other end to swing out at the same speed

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Circular Motion Act. Centripetal Acceleration and. SPH3UW: Circular Motion, Pg 1 -> SPH3UW: Circular Motion, Pg 2. Page 1. Uniform Circular Motion

Circular Motion Act. Centripetal Acceleration and. SPH3UW: Circular Motion, Pg 1 -> SPH3UW: Circular Motion, Pg 2. Page 1. Uniform Circular Motion SPH3UW Centripetal Acceleration and Circular Motion Uniform Circular Motion What does it mean? How do we describe it? What can we learn about it? SPH3UW: Circular Motion, Pg 1 SPH3UW: Circular Motion,

More information

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 CH 4: Uniform Circular Motion The velocity vector is tangent to the path The change in velocity vector is due to the change in direction.

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6 A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given b ( 6.m ) ˆ ( 8.m ) A ˆ i ˆ ˆ j A ˆ i ˆ ˆ j C) A ˆ ( 1 ) ( i ˆ ˆ j) D) Aˆ.6 iˆ+.8 ˆj E) Aˆ.6 iˆ.8 ˆj A) (.6m

More information

PHYSICS (B) v 2 r. v r

PHYSICS (B) v 2 r. v r PHYSICS 1. If Q be the amount of liquid (iscosity ) flowing per second through a capillary tube of radius r and length l under a pressure difference P, then which of the following relation is correct?

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Non-textbook problem #I: The kinetic energy of a body depends on its mass and speed as. K = 1 2 mv2 (1) m 1 v 2 1 = 1 2 m 2v 2 2 (2)

Non-textbook problem #I: The kinetic energy of a body depends on its mass and speed as. K = 1 2 mv2 (1) m 1 v 2 1 = 1 2 m 2v 2 2 (2) PHY 309 K. Solutions for Problem set # 7. Non-textbook problem #I: The kinetic energy of a body depends on its mass and speed as K = 1 mv (1) Therefore, two bodies of respective masses m 1 and m and speeds

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 1 / 96 1 train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 2 / 96 2 bicyclist moves at a constant speed of 6 m/s. How long it will

More information

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Physics 2211 A & B Quiz #4 Solutions Fall 2016 Physics 22 A & B Quiz #4 Solutions Fall 206 I. (6 points) A pendulum bob of mass M is hanging at rest from an ideal string of length L. A bullet of mass m traveling horizontally at speed v 0 strikes it

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

Each of the following questions (1-15) is worth 6 points

Each of the following questions (1-15) is worth 6 points Name: ----------------------------------------------- S. I. D.: ------------------------------------ Physics 0 Final Exam (Version A) Summer 06 HIS EXAM CONAINS 36 QUESIONS. ANSWERS ARE ROUNDED. PICK HE

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

A. 50 N B. 100 N C. 20 N D. 0 N E. 500 N

A. 50 N B. 100 N C. 20 N D. 0 N E. 500 N SQ1: A 0.05-kg tennis ball moving to the right with a speed of 10 m/s is struck by a tennis racket, causing it to move to the left with a speed of 10 m/s. If the ball remains in contact with the racquet

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

Version 001 HW#5 - Magnetism arts (00224) 1

Version 001 HW#5 - Magnetism arts (00224) 1 Version 001 HW#5 - Magnetism arts (004) 1 This print-out should hae 11 questions. Multiple-choice questions may continue on the net column or page find all choices before answering. Charged Particle in

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics 0 Saskatchewan High School Physics Scholarship Competition May 8, 0 Time: 90 minutes This competition is based on the Saskatchewan

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 5

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 5 CHAPTE 5 1. The centripetal acceleration is a = v /r = (500 m/s) /(6.00 10 3 m)(9.80 m/s /g) = 4.5g up.. (a) The centripetal acceleration is a = v /r = (1.35 m/s) /(1.0 m) = 1.5 m/s toward the center.

More information

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25 1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity

More information

Homework 6. problems: 8.-, 8.38, 8.63

Homework 6. problems: 8.-, 8.38, 8.63 Homework 6 problems: 8.-, 8.38, 8.63 Problem A circus trapeze consists of a bar suspended by two parallel ropes, each of length l. allowing performers to swing in a vertical circular arc. Suppose a performer

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane A roller coaster doing a loop-the-loop is a dramatic example of circular motion. But why doesn t the car fall off the track when it s upside down at the top of

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Basic Physics 29:008 Spring 2005 Exam I

Basic Physics 29:008 Spring 2005 Exam I Exam I solutions Name: Date: 1. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A) the acceleration

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Pan Pearl River Delta Physics Olympiad 2005

Pan Pearl River Delta Physics Olympiad 2005 1 Jan. 29, 25 Morning Session (9 am 12 pm) Q1 (5 Two identical worms of length L are ling on a smooth and horizontal surface. The mass of the worms is evenl distributed along their bod length. The starting

More information

Solutions to Exam #1

Solutions to Exam #1 SBCC 2017Summer2 P 101 Solutions to Exam 01 2017Jul11A Page 1 of 9 Solutions to Exam #1 1. Which of the following natural sciences most directly involves and applies physics? a) Botany (plant biology)

More information

Physics 23 Notes Chapter 5

Physics 23 Notes Chapter 5 Physics 23 Notes Chapter 5 Dr. Alward Circular Motion Example A: An object is moving in a circular path of radius r = 1.2 m, and is completing 0.40 revolutions per second. What is the object s centripetal

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

PHYS1100 Practice problem set, Chapter 8: 5, 9, 14, 20, 22, 25, 28, 30, 34, 35, 40, 44

PHYS1100 Practice problem set, Chapter 8: 5, 9, 14, 20, 22, 25, 28, 30, 34, 35, 40, 44 PHYS00 Practice problem set, Chapter 8: 5, 9, 4, 0,, 5, 8, 30, 34, 35, 40, 44 8.5. Solve: The top figure shows the pulle (P), block A, block B, the surface S of the incline, the rope (R), and the earth

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

Work and Energy Problems

Work and Energy Problems 09//00 Multiple hoice orce o strength 0N acts on an object o ass 3kg as it oes a distance o 4. I is perpendicular to the 4 displaceent, the work done is equal to: Work and Energy Probles a) 0J b) 60J c)

More information

Chapter 6. Force and Motion II

Chapter 6. Force and Motion II Chapter 6 Force and Motion II 6 Force and Motion II 2 Announcement: Sample Answer Key 3 4 6-2 Friction Force Question: If the friction were absent, what would happen? Answer: You could not stop without

More information

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f CHAPTER 7 IMPULSE AND MOMENTUM PROLEMS. REASONING According to the ipulse-oentu theore, the rocket s inal oentu diers ro its initial oentu by an aount equal to the ipulse ( ΣF ) o the net orce eerted on

More information

PHYS 131 MIDTERM October 31 st, 2008

PHYS 131 MIDTERM October 31 st, 2008 PHYS 131 MIDTERM October 31 st, 2008 The exam comprises two parts: 8 short-answer questions, and 4 problems. Calculators are allowed, as well as a formula sheet (one-side of an 8½ x 11 sheet) of your own

More information

Circular Motion Concept Questions

Circular Motion Concept Questions Circular Motion Concept Questions Question 1 A bead is given a small push at the top of a hoop (position A) and is constrained to slide around a frictionless circular wire (in a vertical plane). Circle

More information

Newton s Three Laws. F = ma. Kinematics. Gravitational force Normal force Frictional force Tension More to come. k k N

Newton s Three Laws. F = ma. Kinematics. Gravitational force Normal force Frictional force Tension More to come. k k N Newton s Three Laws F = ma Gravitational force Normal force Frictional force Tension More to come Kinematics f s,max = µ sfn 0 < fs µ sfn k k N f = µ F Rules for the Application of Newton s Laws of Motion

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle CICULA MOTION EXECISE. d = rate of change of angle as they both complete angle in same time.. c m mg N r m N mg r Since r A r B N A N B. a Force is always perpendicular to displacement work done = 0 4.

More information