Example. Mathematics 255: Lecture 17. Example. Example (cont d) Consider the equation. d 2 y dt 2 + dy

Size: px
Start display at page:

Download "Example. Mathematics 255: Lecture 17. Example. Example (cont d) Consider the equation. d 2 y dt 2 + dy"

Transcription

1 Mathematics 255: Lecture 17 Undetermined Coefficients Dan Sloughter Furman University October 10, y = 5e 4t. so the general solution of 0 = r 2 + r 6 = (r + 3)(r 2), 6y = 0 y(t) = c 1 e 3t + c 2 e 2t. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 For a particular solution of the nonhomogeneous equation, we will guess ψ(t) = Ae 4t for some constant A. ψ (t) = 4Ae 4t ψ (t) = 16e 4t, so we want to find A such that 5e 4t = 16Ae 4t 4Ae 4t 6Ae 4t = 6Ae 4t. Hence A = 5 6, so ψ(t) = 5 6 e 4t. So the general solution of the nonhomogeneous equation y(t) = c 1 e 3t + c 2 e 2t e 4t. 6y = e 3t. In th case, ψ(t) = Ae 3t a solution of the homogeneous equation 6y = 0, so would not work as a guess for a particular solution to the nonhomogeneous equation. Instead, we will guess ψ(t) = Ate 3t for some constant A. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20

2 Theorem ψ (t) = 3Ate 3t + Ae 3t = (1 3t)Ae 3t ψ (t) = 3(1 3t)Ae 3t 3Ae 3t = (9t 6)Ae 3t. Suppose ψ 1 (t) a solution of the second-order linear equation 2 + p(t)dy + q(t)y = g(t) ψ 2 (t) a solution of the second-order linear equation So we want e 3t = (9t 6)Ae 3t + (1 3t)Ae 3t 6Ate 3t = 5Ae 3t. Hence A = 1 5, so the general solution of the nonhomogeneous equation y(t) = c 1 e 3t + c 2 e 2t 1 5 te 3t 2 + p(t)dy + q(t)y = f (t). ψ(t) = ψ 1 (t) + ψ 2 (t) a solution of 2 + p(t)dy Th the principle of superposition + q(t)y = g(t) + f (t). Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Proof Let L[y](t) = 2 + p(t)dy + q(t)y. L[ψ 1 + ψ 2 ](t) = L[ψ 1 ](t) + L[ψ 2 ](t) = g(t) + f (t). The general solution of 6y = 5e 4t + e 3t y(t) = c 1 e 3t + c 2 e 2t e 4t 1 5 te 3t. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20

3 Undetermined coefficients Undetermined coefficients (cont d) Consider the second-order, linear, constant-coefficient, nonhomogeneous equation a 2 + b dy + cy = g(t), with corresponding homogeneous equation a 2 + b dy Judicious guesses - g(t) = e αt : + cy = 0. If α not a root of the charactertic equation, let ψ(t) = Ae αt. If α a root of the charactertic equation, but not a double root, let ψ(t) = Ate αt. If α a double root of the charactertic equation, let ψ(t) = At 2 e αt. Judicious guesses - g(t) = cos(ωt) or g(t) = sin(ωt): If cos(ωt) sin(ωt) are not solutions of the homogeneous equation, let ψ(t) = A cos(ωt) + B sin(ωt). If cos(ωt) sin(ωt) are solutions of the homogeneous equation, let ψ(t) = At cos(ωt) + Bt sin(ωt). Judicious guesses - g(t) an nth degree polynomial: If c 0, let If c = 0, let ψ(t) = A 0 + A 1 t + + A n t n. ψ(t) = A 1 t + A 2 t A n+1 t n+1. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 2 dy 2y = 4t2. 2 dy 2y = 0 0 = r 2 r 2 = (r 2)(r + 1). y(t) = c 1 e 2t + c 2 e t. For a particular solution to the nonhomogeneous equation, we guess ψ(t) = A + Bt + Ct 2. ψ (t) = B + 2Ct ψ (t) = 2C, so we want 4t 2 = 2C (B + 2Ct) 2(A + Bt + Ct 2 ) = (2C B 2A) (2B + 2C)t 2Ct 2. Thus, equating coefficients, we need 4 = 2C 0 = 2B + 2C 0 = 2A B + 2C. It follows that A = 3, B = 2, C = 2. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20

4 Hence ψ(t) = 3 + 2t 2t 2. And so the general solution of the nonhomogeneous equation y(t) = c 1 e 2t + c 2 e t 3 + 2t 2t y = sin(t). 0 = r y = 0 y(t) = c 1 cos(t) + c 2 sin(t). Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 For a particular solution of the nonhomogeneous equation, we guess We need to find A B such that ψ(t) = At cos(t) + Bt sin(t). sin(t) = (2A + Bt) sin(t) + (2B At) cos(t) + At cos(t) + Bt sin(t) = 2A sin(t) + 2B cos(t). ψ (t) = At sin(t) + A cos(t) + Bt cos(t) + B sin(t) = ( At + B) sin(t) + (Bt + A) cos(t). ψ (t) = ( At + B) cos(t) A sin(t) (Bt + A) sin(t) + B cos(t) = (2A + Bt) sin(t) + (2B At) cos(t). Equating coefficients, we want 2A = 1 2B = 0; that, A = 1 2 B = 0. Thus ψ(t) = 1 2 t cos(t), the general solution of the nonhomogeneous equation y(t) = c 1 cos(t) + c 2 sin(t) 1 2 t cos(t). Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20

5 2 2dy + y = tet. 0 = r 2 2r + r = (r 1) 2 2 2dy + y = 0 y(t) = c 1 e t + c 2 te t. If r = 1 were not a root of the charactertic equation, we would guess ψ(t) = (A + Bt)e t. If r = 1 were a root, but not a double root, of the charactertic equation, we would guess ψ(t) = t(a + Bt)e t. Since r = 1 a double root of the charactertic equation, we guess ψ(t) = t 2 (A + Bt)e t = (At 2 + Bt 3 )e t. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 ψ (t) = (At 2 +Bt 3 )e t +(2At +3Bt 2 )e t = (2At +(A+3B)t 2 +Bt 3 )e t ψ (t) = (2At + (A + 3B)t 2 + Bt 3 )e t + (2A + 2(A + 3B)t + 3Bt 2 )e t = (2A + (4A + 6B)t + (A + 6B)t 2 + Bt 3 )e t. Hence we want te t = (2A + (4A + 6B)t + (A + 6B)t 2 + Bt 3 )e t 2(2At + (A + 3B)t 2 + Bt 3 )e t + (At 2 + Bt 3 )e t = (2A + 6Bt)e t Equating coefficients, we need 0 = 2A 1 = 6B. Thus B = 1 6, so ψ(t) = 1 6 t3 e t. Thus the general solution of the nonhomogeneous equation y(t) = c 1 e t + c 2 te t t3 e t. Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20 Dan Sloughter (Furman University) Mathematics 255: Lecture 17 October 10, / 20

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS

GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS Given a constant coefficient linear differential equation a + by + cy = g(t), where g is an exponential, a simple sinusoidal function, a polynomial,

More information

1st Order Linear D.E.

1st Order Linear D.E. 1st Order Linear D.E. y + p(t)y = g(t) y(t) = c 1 y 1 where y 1 is obtained from using the integrating factor method. Derivation: Define the integrating factor as: µ = e p(t) Observe that taking the derivative

More information

Today. The geometry of homogeneous and nonhomogeneous matrix equations. Solving nonhomogeneous equations. Method of undetermined coefficients

Today. The geometry of homogeneous and nonhomogeneous matrix equations. Solving nonhomogeneous equations. Method of undetermined coefficients Today The geometry of homogeneous and nonhomogeneous matrix equations Solving nonhomogeneous equations Method of undetermined coefficients 1 Second order, linear, constant coeff, nonhomogeneous (3.5) Our

More information

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det Math D Final Exam 8 December 9. ( points) Show that the matrix 4 has eigenvalues 3, 3, and find the eigenvectors associated with 3. 4 λ det λ λ λ = (4 λ) det λ ( ) det + det λ = (4 λ)(( λ) 4) + ( λ + )

More information

Second Order Linear ODEs, Part II

Second Order Linear ODEs, Part II Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Non-homogeneous Linear Equations 1 Non-homogeneous Linear Equations

More information

Selected Solutions: 3.5 (Undetermined Coefficients)

Selected Solutions: 3.5 (Undetermined Coefficients) Selected Solutions: 3.5 (Undetermined Coefficients) In Exercises 1-10, we want to apply the ideas from the table to specific DEs, and solve for the coefficients as well. If you prefer, you might start

More information

Mathematics 22: Lecture 7

Mathematics 22: Lecture 7 Mathematics 22: Lecture 7 Separation of Variables Dan Sloughter Furman University January 15, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 7 January 15, 2008 1 / 8 Separable equations

More information

Lecture 17: Nonhomogeneous equations. 1 Undetermined coefficients method to find a particular

Lecture 17: Nonhomogeneous equations. 1 Undetermined coefficients method to find a particular Lecture 17: Nonhomogeneous equations 1 Undetermined coefficients method to find a particular solution The method of undetermined coefficients (sometimes referred to as the method of justicious guessing)

More information

The Method of Undetermined Coefficients.

The Method of Undetermined Coefficients. The Method of Undetermined Coefficients. James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 24, 2017 Outline 1 Annihilators 2 Finding The

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page Questions Example (3.6.) Find a particular solution of the differential equation y 5y + 6y = 2e

More information

Chapter 4: Higher Order Linear Equations

Chapter 4: Higher Order Linear Equations Chapter 4: Higher Order Linear Equations MATH 351 California State University, Northridge April 7, 2014 MATH 351 (Differential Equations) Ch 4 April 7, 2014 1 / 11 Sec. 4.1: General Theory of nth Order

More information

Mathematics 13: Lecture 4

Mathematics 13: Lecture 4 Mathematics 13: Lecture Planes Dan Sloughter Furman University January 10, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture January 10, 2008 1 / 10 Planes in R n Suppose v and w are nonzero

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

Answers and Hints to Review Questions for Test (a) Find the general solution to the linear system of differential equations Y = 2 ± 3i.

Answers and Hints to Review Questions for Test (a) Find the general solution to the linear system of differential equations Y = 2 ± 3i. Answers and Hints to Review Questions for Test 3 (a) Find the general solution to the linear system of differential equations [ dy 3 Y 3 [ (b) Find the specific solution that satisfies Y (0) = (c) What

More information

The Chain Rule. Mathematics 11: Lecture 18. Dan Sloughter. Furman University. October 10, 2007

The Chain Rule. Mathematics 11: Lecture 18. Dan Sloughter. Furman University. October 10, 2007 The Chain Rule Mathematics 11: Lecture 18 Dan Sloughter Furman University October 10, 2007 Dan Sloughter (Furman University) The Chain Rule October 10, 2007 1 / 15 Example Suppose that a pebble is dropped

More information

Study guide - Math 220

Study guide - Math 220 Study guide - Math 220 November 28, 2012 1 Exam I 1.1 Linear Equations An equation is linear, if in the form y + p(t)y = q(t). Introducing the integrating factor µ(t) = e p(t)dt the solutions is then in

More information

93 Analytical solution of differential equations

93 Analytical solution of differential equations 1 93 Analytical solution of differential equations 1. Nonlinear differential equation The only kind of nonlinear differential equations that we solve analytically is the so-called separable differential

More information

Nonhomogeneous Linear Equations: Variation of Parameters Professor David Levermore 17 October 2004 We now return to the discussion of the general case

Nonhomogeneous Linear Equations: Variation of Parameters Professor David Levermore 17 October 2004 We now return to the discussion of the general case Nonhomogeneous Linear Equations: Variation of Parameters Professor David Levermore 17 October 2004 We now return to the discussion of the general case L(t)y = a 0 (t)y + a 1 (t)y + a 2 (t)y = b(t). (1.1)

More information

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

Second Order Differential Equations Lecture 6

Second Order Differential Equations Lecture 6 Second Order Differential Equations Lecture 6 Dibyajyoti Deb 6.1. Outline of Lecture Repeated Roots; Reduction of Order Nonhomogeneous Equations; Method of Undetermined Coefficients Variation of Parameters

More information

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 6 JoungDong Kim Set 6: Section 3.3, 3.4, 3.5, 3.6 Section 3.3 Complex Roots of the Characteristic Equation Recall that a second order ODE with constant

More information

3.5 Undetermined Coefficients

3.5 Undetermined Coefficients 3.5. UNDETERMINED COEFFICIENTS 153 11. t 2 y + ty + 4y = 0, y(1) = 3, y (1) = 4 12. t 2 y 4ty + 6y = 0, y(0) = 1, y (0) = 1 3.5 Undetermined Coefficients In this section and the next we consider the nonhomogeneous

More information

A First Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved A First Course in Elementary Differential Equations: Problems and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 4 The Method of Variation of Parameters Problem 4.1 Solve y

More information

Mathematics 22: Lecture 12

Mathematics 22: Lecture 12 Mathematics 22: Lecture 12 Second-order Linear Equations Dan Sloughter Furman University January 28, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 12 January 28, 2008 1 / 14 Definition

More information

Euler-Cauchy Using Undetermined Coefficients

Euler-Cauchy Using Undetermined Coefficients Euler-Cauchy Using Undetermined Coefficients Department of Mathematics California State University, Fresno doreendl@csufresno.edu Joint Mathematics Meetings January 14, 2010 Outline 1 2 3 Second Order

More information

Homework 9 - Solutions. Math 2177, Lecturer: Alena Erchenko

Homework 9 - Solutions. Math 2177, Lecturer: Alena Erchenko Homework 9 - Solutions Math 2177, Lecturer: Alena Erchenko 1. Classify the following differential equations (order, determine if it is linear or nonlinear, if it is linear, then determine if it is homogeneous

More information

Chapter 3: Second Order Equations

Chapter 3: Second Order Equations Exam 2 Review This review sheet contains this cover page (a checklist of topics from Chapters 3). Following by all the review material posted pertaining to chapter 3 (all combined into one file). Chapter

More information

Mathematics 22: Lecture 19

Mathematics 22: Lecture 19 Mathematics 22: Lecture 19 Legendre s Equation Dan Sloughter Furman University February 5, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 19 February 5, 2008 1 / 11 Example: Legendre s

More information

Higher-order differential equations

Higher-order differential equations Higher-order differential equations Peyam Tabrizian Wednesday, November 16th, 2011 This handout is meant to give you a couple more example of all the techniques discussed in chapter 6, to counterbalance

More information

1 Differential Equations

1 Differential Equations Reading [Simon], Chapter 24, p. 633-657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its

More information

First and Second Order Differential Equations Lecture 4

First and Second Order Differential Equations Lecture 4 First and Second Order Differential Equations Lecture 4 Dibyajyoti Deb 4.1. Outline of Lecture The Existence and the Uniqueness Theorem Homogeneous Equations with Constant Coefficients 4.2. The Existence

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information

Math 201 Lecture 09: Undetermined Coefficient Cont.

Math 201 Lecture 09: Undetermined Coefficient Cont. +B Math 201 Lecture 09: Undetermined Coefficient Cont. Jan. 27, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in the UA Custom edition, the second

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Change of Variables: Indefinite Integrals

Change of Variables: Indefinite Integrals Change of Variables: Indefinite Integrals Mathematics 11: Lecture 39 Dan Sloughter Furman University November 29, 2007 Dan Sloughter (Furman University) Change of Variables: Indefinite Integrals November

More information

Math 216 Second Midterm 19 March, 2018

Math 216 Second Midterm 19 March, 2018 Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math K (24564) - Lectures 02

Math K (24564) - Lectures 02 Math 39100 K (24564) - Lectures 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Second Order Linear Equations, B & D Chapter 4 Second Order Linear Homogeneous

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Mathematics 47: Lecture 9 Dan Sloughter Furman University March 16, 2006 Dan Sloughter (Furman University) Sampling Distributions March 16, 2006 1 / 10 Definition We call the probability

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Spring 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 14 pages (including this title page) for a total of 150 points. The exam has a multiple choice part, and partial

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 5 JoungDong Kim Set 5: Section 3.1, 3.2 Chapter 3. Second Order Linear Equations. Section 3.1 Homogeneous Equations with Constant Coefficients. In this

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Solutions to Homework 5, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y 4y = 48t 3.

Solutions to Homework 5, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y 4y = 48t 3. Solutions to Homework 5, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 Problem 1. Find a particular solution to the differential equation 4y = 48t 3. Solution: First we

More information

Nonhomogeneous Equations and Variation of Parameters

Nonhomogeneous Equations and Variation of Parameters Nonhomogeneous Equations Variation of Parameters June 17, 2016 1 Nonhomogeneous Equations 1.1 Review of First Order Equations If we look at a first order homogeneous constant coefficient ordinary differential

More information

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I February 23, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

The Laplace Transform and the IVP (Sect. 6.2).

The Laplace Transform and the IVP (Sect. 6.2). The Laplace Transform and the IVP (Sect..2). Solving differential equations using L ]. Homogeneous IVP. First, second, higher order equations. Non-homogeneous IVP. Recall: Partial fraction decompositions.

More information

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

Lecture 16. Theory of Second Order Linear Homogeneous ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 16. Theory of Second Order Linear Homogeneous ODEs February 17, 2012 Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012 1 / 12 Agenda

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients?

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? 1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? Let y = ay b with y(0) = y 0 We can solve this as follows y =

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Fall 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 13 pages (including this title page) for a total of 150 points. There are 10 multiple-choice problems and 7 partial

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

4. Higher Order Linear DEs

4. Higher Order Linear DEs 4. Higher Order Linear DEs Department of Mathematics & Statistics ASU Outline of Chapter 4 1 General Theory of nth Order Linear Equations 2 Homogeneous Equations with Constant Coecients 3 The Method of

More information

Pivotal Quantities. Mathematics 47: Lecture 16. Dan Sloughter. Furman University. March 30, 2006

Pivotal Quantities. Mathematics 47: Lecture 16. Dan Sloughter. Furman University. March 30, 2006 Pivotal Quantities Mathematics 47: Lecture 16 Dan Sloughter Furman University March 30, 2006 Dan Sloughter (Furman University) Pivotal Quantities March 30, 2006 1 / 10 Pivotal quantities Definition Suppose

More information

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5 Math 24 Final Exam Solution 17 December 1999 1. Find the general solution to the differential equation ty 0 +2y = sin t. Solution: Rewriting the equation in the form (for t 6= 0),we find that y 0 + 2 t

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Math 201 Lecture 08 Undetermined Coefficients

Math 201 Lecture 08 Undetermined Coefficients Math 201 Lecture 08 Undetermined Coefficients Jan. 25, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in the UA Custom edition, the second number

More information

Second order linear equations

Second order linear equations Second order linear equations Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Second order equations Differential

More information

Some Trigonometric Limits

Some Trigonometric Limits Some Trigonometric Limits Mathematics 11: Lecture 7 Dan Sloughter Furman University September 20, 2007 Dan Sloughter (Furman University) Some Trigonometric Limits September 20, 2007 1 / 14 The squeeze

More information

The bifurcation diagram for r = 0.8.

The bifurcation diagram for r = 0.8. y 1.8 Linear Equations 71 3 4 4 a 3 The bifurcation diagram for r = 0.8. (d) If r < 0, there is a positive bifurcation value a = a 0. For a < a 0, the phase line has one equilibrium point, a negative sink.

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

Calculus: Area. Mathematics 15: Lecture 22. Dan Sloughter. Furman University. November 12, 2006

Calculus: Area. Mathematics 15: Lecture 22. Dan Sloughter. Furman University. November 12, 2006 Calculus: Area Mathematics 15: Lecture 22 Dan Sloughter Furman University November 12, 2006 Dan Sloughter (Furman University) Calculus: Area November 12, 2006 1 / 7 Area Note: formulas for the areas of

More information

APPM 2360: Midterm exam 3 April 19, 2017

APPM 2360: Midterm exam 3 April 19, 2017 APPM 36: Midterm exam 3 April 19, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your lecture section number and (4) a grading table. Text books, class notes, cell

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

Mathematics 22: Lecture 10

Mathematics 22: Lecture 10 Mathematics 22: Lecture 10 Euler s Method Dan Sloughter Furman University January 22, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 10 January 22, 2008 1 / 14 Euler s method Consider the

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

MATH 24 EXAM 3 SOLUTIONS

MATH 24 EXAM 3 SOLUTIONS MATH 4 EXAM 3 S Consider the equation y + ω y = cosω t (a) Find the general solution of the homogeneous equation (b) Find the particular solution of the non-homogeneous equation using the method of Undetermined

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Theory of Higher-Order Linear Differential Equations

Theory of Higher-Order Linear Differential Equations Chapter 6 Theory of Higher-Order Linear Differential Equations 6.1 Basic Theory A linear differential equation of order n has the form a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x) = b(x), (6.1.1)

More information

Antiderivatives. Mathematics 11: Lecture 30. Dan Sloughter. Furman University. November 7, 2007

Antiderivatives. Mathematics 11: Lecture 30. Dan Sloughter. Furman University. November 7, 2007 Antiderivatives Mathematics 11: Lecture 30 Dan Sloughter Furman University November 7, 2007 Dan Sloughter (Furman University) Antiderivatives November 7, 2007 1 / 9 Definition Recall: Suppose F and f are

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

Mathematics 22: Lecture 5

Mathematics 22: Lecture 5 Mathematics 22: Lecture 5 Autonomous Equations Dan Sloughter Furman University January 11, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 5 January 11, 2008 1 / 11 Solving the logistics

More information

Partial proof: y = ϕ 1 (t) is a solution to y + p(t)y = 0 implies. Thus y = cϕ 1 (t) is a solution to y + p(t)y = 0 since

Partial proof: y = ϕ 1 (t) is a solution to y + p(t)y = 0 implies. Thus y = cϕ 1 (t) is a solution to y + p(t)y = 0 since Existence and Uniqueness for LINEAR DEs. Homogeneous: y (n) + p 1 (t)y (n 1) +...p n 1 (t)y + p n (t)y = 0 Non-homogeneous: g(t) 0 y (n) + p 1 (t)y (n 1) +...p n 1 (t)y + p n (t)y = g(t) 1st order LINEAR

More information

M343 Homework 6. Enrique Areyan May 31, 2013

M343 Homework 6. Enrique Areyan May 31, 2013 M343 Homework 6 Enrique Areyan May 31, 013 Section 3.5. + y + 5y = 3sin(t). The general solution is given by: y h : Characteristic equation: r + r + 5 = 0 r = 1 ± i. The solution in this case is: y h =

More information

A: Brief Review of Ordinary Differential Equations

A: Brief Review of Ordinary Differential Equations A: Brief Review of Ordinary Differential Equations Because of Principle # 1 mentioned in the Opening Remarks section, you should review your notes from your ordinary differential equations (odes) course

More information

REVIEW NOTES FOR MATH 266

REVIEW NOTES FOR MATH 266 REVIEW NOTES FOR MATH 266 MELVIN LEOK 1.1: Some Basic Mathematical Models; Direction Fields 1. You should be able to match direction fields to differential equations. (see, for example, Problems 15-20).

More information

Math K (24564) - Homework Solutions 02

Math K (24564) - Homework Solutions 02 Math 39100 K (24564) - Homework Solutions 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Reduction of Order, B & D Chapter 3, p. 174 Constant Coefficient

More information

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Consider an nth-order nonhomogeneous linear differential equation with constant coefficients:

More information

c 1 = y 0, c 2 = 1 2 y 1. Therefore the solution to the general initial-value problem is y(t) = y 0 cos(2t)+y sin(2t).

c 1 = y 0, c 2 = 1 2 y 1. Therefore the solution to the general initial-value problem is y(t) = y 0 cos(2t)+y sin(2t). Solutions to Second In-Class Exam Math 246, Professor David Levermore Tuesday, 29 October 2 ( [4] Give the interval of definition for the solution of the initial-value problem u t u + cos(5t 6+t u = et

More information

Lecture 10 - Second order linear differential equations

Lecture 10 - Second order linear differential equations Lecture 10 - Second order linear differential equations In the first part of the course, we studied differential equations of the general form: = f(t, y) In other words, is equal to some expression involving

More information

Lecture 2. Classification of Differential Equations and Method of Integrating Factors

Lecture 2. Classification of Differential Equations and Method of Integrating Factors Math 245 - Mathematics of Physics and Engineering I Lecture 2. Classification of Differential Equations and Method of Integrating Factors January 11, 2012 Konstantin Zuev (USC) Math 245, Lecture 2 January

More information

Forced Mechanical Vibrations

Forced Mechanical Vibrations Forced Mechanical Vibrations Today we use methods for solving nonhomogeneous second order linear differential equations to study the behavior of mechanical systems.. Forcing: Transient and Steady State

More information

Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions

Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions Math 3: Differential Equations (Winter 017) Midterm Exam Solutions 1. [0 points] or FALSE? You do not need to justify your answer. (a) [3 points] Critical points or equilibrium points for a first order

More information

Review of Lecture 9 Existence and Uniqueness

Review of Lecture 9 Existence and Uniqueness Review of Lecture 9 Existence and Uniqueness We consider y = f (x, y) with a given initial condition y(x 0 ) = y 0. There is a solution passing through (x 0, y 0 ). It is defined on some interval (a, b)

More information

Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 2011

Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 2011 Second In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 31 March 211 (1) [6] Give the interval of definition for the solution of the initial-value problem d 4 y dt 4 + 7 1 t 2 dy dt

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

Higher Order Linear Equations

Higher Order Linear Equations C H A P T E R 4 Higher Order Linear Equations 4.1 1. The differential equation is in standard form. Its coefficients, as well as the function g(t) = t, are continuous everywhere. Hence solutions are valid

More information

Higher Order Linear Equations Lecture 7

Higher Order Linear Equations Lecture 7 Higher Order Linear Equations Lecture 7 Dibyajyoti Deb 7.1. Outline of Lecture General Theory of nth Order Linear Equations. Homogeneous Equations with Constant Coefficients. 7.2. General Theory of nth

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

Lecture 8: Ordinary Differential Equations

Lecture 8: Ordinary Differential Equations MIT-WHOI Joint Program Summer Math Review Summer 2015 Lecture 8: Ordinary Differential Equations Lecturer: Isabela Le Bras Date: 31 July 2015 Disclaimer: These notes are for the purposes of this review

More information

Math 216 Second Midterm 16 November, 2017

Math 216 Second Midterm 16 November, 2017 Math 216 Second Midterm 16 November, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order October 2 6, 2017 Second Order ODEs (cont.) Consider where a, b, and c are real numbers ay +by +cy = 0, (1) Let

More information

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations. David Levermore Department of Mathematics University of Maryland

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations. David Levermore Department of Mathematics University of Maryland HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations David Levermore Department of Mathematics University of Maryland 14 March 2012 Because the presentation of this material

More information