Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Size: px
Start display at page:

Download "Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC"

Transcription

1 Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

2 First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate integrating factor, φ = e pdx, Multiply equation with φ, Combine first two terms using product rule Integrate both sides Calculate constant from initial condition Separable Equations Verify if x and y terms can be separated. If yes, Separate x and y terms, f (x)dx = g(y)dy, Integrate both sides Exact Equations M(x, y)dx + N(x, y)dy = 0. Write the equation in the standard form, Verify whether M y = N x Define a function which satisfies ψ ψ x = M and y = N. Integrate the first relation and obtain ψ along with an integration constant h(y) Substitute ψ into the second relation to get h(y) Put everything together. Now ψ=constant is the solution.

3 Second Order Equations - Homogeneous equations ay + by + cy = 0 Put y = e rt ar 2 + br + c = 0 Real & distinct roots If two roots are r 1 and r 2, then Fundamental solutions: y 1 = e r1t, y 2 = e r2t. General solution: y(t) = c 1 y 1 + c 2 y 2. Complex roots If r = λ ± iµ, then Fundamental solutions: y 1 = e λt cos(µt), y 2 = e λt sin(µt). General solution: y(t) = c 1 y 1 + c 2 y 2. Real & equal roots If r 1 = r 2 = r, then we have only one solution. First solution: y 1 = e rt. Using reduction of order, we try a second solution in the form y 2 = v(t)y 1. Obtain an equation for the variable v (t). Solve for v(t), and this gives y 2 (t). General solution: y(t) = c 1 y 1 + c 2 y 2.

4 Method of Undetermined coefficients - finding particular solution ay + by + cy = g(t) g(t) differs from y H (t) g(t) same as y H (t) Case I: If g(t) = e αt, then try y p = Ae αt, substitute y p and compare e αt terms on both sides to find A. Case II: If g(t) = cos αt, sin(αt) or a combination of the two, then try y p = A cos αt + B sin(αt), substitute y p and compare sin and cos terms on both sides to find A and B. Case III: If g(t) = t n - a polynomial, then try y p = At n + Bt n , substitute y p and compare similar terms on both sides to find the constants. Case I: If g(t) = e αt, then try y p = Ate αt, substitute y p and compare e αt and te αt terms on both sides to find A. Case II: If g(t) = cos αt, sin(αt) or a combination of the two, then try y p = t(a cos αt + B sin(αt)), substitute y p and compare sin, cos, t sin and t cos terms on both sides to find A and B. Case III: If g(t) = t n - a polynomial, then try y p = t(at n + Bt n ), substitute y p and compare similar terms on both sides to find the constants.

5 Variation of parameters - finding particular solution y + p(t)y + q(t)y = g(t) If y 1 and y 2 are homogeneous solutions, then y H (t) = c 1 y 1 (t) + c 2 y 2 (t) Particular solution: Put y = u 1 (t)y 1 + u 2 (t)y 2. Obtain y, set u 1 y 1 + u 2 y 2 = 0 - Eq (1). From the simplified y, calculate y to obtain a second equation between u 1 and u 2 - Eq (2). Solve for the variables u 1 and u 2. Integrate these to get u 1 and u 2. Put everything together to get the particular solution.

6 Laplace Transforms ay + by + cy = g(t) Useful things to remember: F (s) = L{f (t)} = 0 e st f (t)dt. If L{y(t)} = Y (s), then L{y (t)} = sy (s) y(t = 0) and L{y (t)} = s 2 Y (s) sy(t = 0) y (t = 0). Never mix up variables s and t in the same equation. Unit step function: { 0 0 t < c, u c (t) = 1 t c. If f (t) = L 1 {F (s)}, then L 1 {e cs F (s)} = u c (t)f (t c). This is available in the table. Where ever required, express g(t) in terms of u c (t) and then modify the expression to get it in the form u c (t)g(t c). Always check to make sure your expression for g(t) is correct.

7 Homogeneous Linear Equations X = AX Put X = ξe λt (A λi)ξ = 0 λ s: real & distinct Real & distinct eigenvalues Write two fundamental solutions as X (1) = ξ (1) e λ1t and X (2) = ξ (2) e λ2t General solution is X = c 1 X (1) + c 2 X (2). Eigenvalues: A λi = 0 Complex eigenvalues λ s: complex Write X (1) = ξ (1) e λ+t Take real and imaginary part of X (1) If U = Re{X (1) } and V = Im{X (1) }, then general solution is X = c 1 U + c 2 V. λ s: repeated Repeated eigenvalues First solution: X (1) = ξ (1) e λt Second solution: Put X = ξte λt + ηe λt Substitute to obtain (A λi)η = ξ and find η. Put everything together to get X (2). General solution is X = c 1 X (1) + c 2 X (2).

8 Homogeneous Linear Equations: Classification of critical point X = AX (0, 0) is a critical/equilibrium point Steps: Put X = ξe λt. Substitute to get (A λi)ξ = 0. Compute eigenvalues and eigenvectors of the matrix A. If λ 1 and λ 2 are real and of same sign - Node. If λ1 and λ 2 are real and of opposite sign - Saddle. If λ1 and λ 2 are complex conjugates - Spiral. The real part of λ 1,2 controls the growth/decay of spiral. If λ1 and λ 2 are purely imaginary, i.e. no real part - Center. If Re{λ 1,2 } > 0, then the critical point is unstable. Two solutions: X (1) = ξ (1) e λ1t and X (2) = ξ (2) e λ2t

9 Nonlinear system of equations x = F (x, y), y = G(x, y). Find critical points F (x, y) = 0, G(x, y) = 0 at (x 0, y 0 ) J = Construct Jacobian ( ) Fx F y G x G y Real eigenvalues λ s: real Nodes and Saddles Near each (x 0, y 0 ) Solve U = JU λ s: imaginary Purely imaginary eigenvalues Centers λ s: complex conjugates Complex eigenvalues Spirals Global phase portrait: Putting everything together Draw all the local phase portraits separately Use common sense to connect all the arrows

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers.

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers. Turn off and put away your cell phone. No electronic devices during the exam. No books or other assistance during the exam. Show all of your work. No credit will be given for unsupported answers. Write

More information

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients?

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? 1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients? Let y = ay b with y(0) = y 0 We can solve this as follows y =

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Study guide - Math 220

Study guide - Math 220 Study guide - Math 220 November 28, 2012 1 Exam I 1.1 Linear Equations An equation is linear, if in the form y + p(t)y = q(t). Introducing the integrating factor µ(t) = e p(t)dt the solutions is then in

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

REVIEW NOTES FOR MATH 266

REVIEW NOTES FOR MATH 266 REVIEW NOTES FOR MATH 266 MELVIN LEOK 1.1: Some Basic Mathematical Models; Direction Fields 1. You should be able to match direction fields to differential equations. (see, for example, Problems 15-20).

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 6 JoungDong Kim Set 6: Section 3.3, 3.4, 3.5, 3.6 Section 3.3 Complex Roots of the Characteristic Equation Recall that a second order ODE with constant

More information

Second Order Differential Equations Lecture 6

Second Order Differential Equations Lecture 6 Second Order Differential Equations Lecture 6 Dibyajyoti Deb 6.1. Outline of Lecture Repeated Roots; Reduction of Order Nonhomogeneous Equations; Method of Undetermined Coefficients Variation of Parameters

More information

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition MATH 3860 REVIEW FOR FINAL EXAM The final exam will be comprehensive. It will cover materials from the following sections: 1.1-1.3; 2.1-2.2;2.4-2.6;3.1-3.7; 4.1-4.3;6.1-6.6; 7.1; 7.4-7.6; 7.8. The following

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

20D - Homework Assignment 5

20D - Homework Assignment 5 Brian Bowers TA for Hui Sun MATH D Homework Assignment 5 November 8, 3 D - Homework Assignment 5 First, I present the list of all matrix row operations. We use combinations of these steps to row reduce

More information

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math 331 Homework Assignment Chapter 7 Page 1 of 9 Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

More information

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22]

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] HW2 Solutions MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, 2013 Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] Section 3.1: 1, 2, 3, 9, 16, 18, 20, 23 Section 3.2: 1, 2,

More information

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide GENERAL INFORMATION AND FINAL EXAM RULES The exam will have a duration of 3 hours. No extra time will be given. Failing to submit your solutions

More information

Applied Differential Equation. November 30, 2012

Applied Differential Equation. November 30, 2012 Applied Differential Equation November 3, Contents 5 System of First Order Linear Equations 5 Introduction and Review of matrices 5 Systems of Linear Algebraic Equations, Linear Independence, Eigenvalues,

More information

Chapter 4: Higher Order Linear Equations

Chapter 4: Higher Order Linear Equations Chapter 4: Higher Order Linear Equations MATH 351 California State University, Northridge April 7, 2014 MATH 351 (Differential Equations) Ch 4 April 7, 2014 1 / 11 Sec. 4.1: General Theory of nth Order

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Spring 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 14 pages (including this title page) for a total of 150 points. The exam has a multiple choice part, and partial

More information

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM

ODE classification. February 7, Nasser M. Abbasi. compiled on Wednesday February 07, 2018 at 11:18 PM ODE classification Nasser M. Abbasi February 7, 2018 compiled on Wednesday February 07, 2018 at 11:18 PM 1 2 first order b(x)y + c(x)y = f(x) Integrating factor or separable (see detailed flow chart for

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

6. Linear Differential Equations of the Second Order

6. Linear Differential Equations of the Second Order September 26, 2012 6-1 6. Linear Differential Equations of the Second Order A differential equation of the form L(y) = g is called linear if L is a linear operator and g = g(t) is continuous. The most

More information

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det Math D Final Exam 8 December 9. ( points) Show that the matrix 4 has eigenvalues 3, 3, and find the eigenvectors associated with 3. 4 λ det λ λ λ = (4 λ) det λ ( ) det + det λ = (4 λ)(( λ) 4) + ( λ + )

More information

Example. Mathematics 255: Lecture 17. Example. Example (cont d) Consider the equation. d 2 y dt 2 + dy

Example. Mathematics 255: Lecture 17. Example. Example (cont d) Consider the equation. d 2 y dt 2 + dy Mathematics 255: Lecture 17 Undetermined Coefficients Dan Sloughter Furman University October 10, 2008 6y = 5e 4t. so the general solution of 0 = r 2 + r 6 = (r + 3)(r 2), 6y = 0 y(t) = c 1 e 3t + c 2

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

Lecture 2. Classification of Differential Equations and Method of Integrating Factors

Lecture 2. Classification of Differential Equations and Method of Integrating Factors Math 245 - Mathematics of Physics and Engineering I Lecture 2. Classification of Differential Equations and Method of Integrating Factors January 11, 2012 Konstantin Zuev (USC) Math 245, Lecture 2 January

More information

1st Order Linear D.E.

1st Order Linear D.E. 1st Order Linear D.E. y + p(t)y = g(t) y(t) = c 1 y 1 where y 1 is obtained from using the integrating factor method. Derivation: Define the integrating factor as: µ = e p(t) Observe that taking the derivative

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Fall 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 13 pages (including this title page) for a total of 150 points. There are 10 multiple-choice problems and 7 partial

More information

3.5 Undetermined Coefficients

3.5 Undetermined Coefficients 3.5. UNDETERMINED COEFFICIENTS 153 11. t 2 y + ty + 4y = 0, y(1) = 3, y (1) = 4 12. t 2 y 4ty + 6y = 0, y(0) = 1, y (0) = 1 3.5 Undetermined Coefficients In this section and the next we consider the nonhomogeneous

More information

Calculus and Differential Equations II

Calculus and Differential Equations II MATH 250 B Second order autonomous linear systems We are mostly interested with 2 2 first order autonomous systems of the form { x = a x + b y y = c x + d y where x and y are functions of t and a, b, c,

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Solutions to Final Exam Sample Problems, Math 246, Spring 2011

Solutions to Final Exam Sample Problems, Math 246, Spring 2011 Solutions to Final Exam Sample Problems, Math 246, Spring 2 () Consider the differential equation dy dt = (9 y2 )y 2 (a) Identify its equilibrium (stationary) points and classify their stability (b) Sketch

More information

Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions

Math 23: Differential Equations (Winter 2017) Midterm Exam Solutions Math 3: Differential Equations (Winter 017) Midterm Exam Solutions 1. [0 points] or FALSE? You do not need to justify your answer. (a) [3 points] Critical points or equilibrium points for a first order

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 27: 7.8 Repeated Eigenvalues

Lecture Notes for Math 251: ODE and PDE. Lecture 27: 7.8 Repeated Eigenvalues Lecture Notes for Math 25: ODE and PDE. Lecture 27: 7.8 Repeated Eigenvalues Shawn D. Ryan Spring 22 Repeated Eigenvalues Last Time: We studied phase portraits and systems of differential equations with

More information

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination II April 4, 2016 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C. Midterm 1 33B-1 015 October 1 Find the exact solution of the initial value problem. Indicate the interval of existence. y = x, y( 1) = 0. 1 + y Solution. We observe that the equation is separable, and

More information

GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS

GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS GUIDELINES FOR THE METHOD OF UNDETERMINED COEFFICIENTS Given a constant coefficient linear differential equation a + by + cy = g(t), where g is an exponential, a simple sinusoidal function, a polynomial,

More information

Lecture 38. Almost Linear Systems

Lecture 38. Almost Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 38. Almost Linear Systems April 20, 2012 Konstantin Zuev (USC) Math 245, Lecture 38 April 20, 2012 1 / 11 Agenda Stability Properties of Linear

More information

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order October 2 6, 2017 Second Order ODEs (cont.) Consider where a, b, and c are real numbers ay +by +cy = 0, (1) Let

More information

Section 9.3 Phase Plane Portraits (for Planar Systems)

Section 9.3 Phase Plane Portraits (for Planar Systems) Section 9.3 Phase Plane Portraits (for Planar Systems) Key Terms: Equilibrium point of planer system yꞌ = Ay o Equilibrium solution Exponential solutions o Half-line solutions Unstable solution Stable

More information

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS MATTHIAS GERDTS A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS Universität der Bundeswehr München Addresse des Autors: Matthias Gerdts Institut für Mathematik und Rechneranwendung Universität

More information

Differential equations and how to solve them. by Marco DS

Differential equations and how to solve them. by Marco DS Differential equations and how to solve them by Marco DS October 28, 205 Introduction: This document provides information on several methods used to solve differential equation. Note that not all topics

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t) Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1 ANSWERS Final Exam Math 50b, Section (Professor J. M. Cushing), 5 May 008 PART. (0 points) A bacterial population x grows exponentially according to the equation x 0 = rx, where r>0is the per unit rate

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

Higher Order Linear Equations Lecture 7

Higher Order Linear Equations Lecture 7 Higher Order Linear Equations Lecture 7 Dibyajyoti Deb 7.1. Outline of Lecture General Theory of nth Order Linear Equations. Homogeneous Equations with Constant Coefficients. 7.2. General Theory of nth

More information

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2.

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2. Math 258 Name: Final Exam Instructor: May 7, 2 Section: Calculators are NOT allowed. Do not remove this answer page you will return the whole exam. You will be allowed 2 hours to do the test. You may leave

More information

Solutions to Final Exam Sample Problems, Math 246, Spring 2018

Solutions to Final Exam Sample Problems, Math 246, Spring 2018 Solutions to Final Exam Sample Problems, Math 46, Spring 08 () Consider the differential equation dy dt = (9 y )y. (a) Find all of its stationary points and classify their stability. (b) Sketch its phase-line

More information

Def. (a, b) is a critical point of the autonomous system. 1 Proper node (stable or unstable) 2 Improper node (stable or unstable)

Def. (a, b) is a critical point of the autonomous system. 1 Proper node (stable or unstable) 2 Improper node (stable or unstable) Types of critical points Def. (a, b) is a critical point of the autonomous system Math 216 Differential Equations Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan November

More information

We shall finally briefly discuss the generalization of the solution methods to a system of n first order differential equations.

We shall finally briefly discuss the generalization of the solution methods to a system of n first order differential equations. George Alogoskoufis, Dynamic Macroeconomic Theory, 2015 Mathematical Annex 1 Ordinary Differential Equations In this mathematical annex, we define and analyze the solution of first and second order linear

More information

Chapter 3: Second Order Equations

Chapter 3: Second Order Equations Exam 2 Review This review sheet contains this cover page (a checklist of topics from Chapters 3). Following by all the review material posted pertaining to chapter 3 (all combined into one file). Chapter

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

MATH 307: Problem Set #3 Solutions

MATH 307: Problem Set #3 Solutions : Problem Set #3 Solutions Due on: May 3, 2015 Problem 1 Autonomous Equations Recall that an equilibrium solution of an autonomous equation is called stable if solutions lying on both sides of it tend

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Find the general solution of the system y = Ay, where

Find the general solution of the system y = Ay, where Math Homework # March, 9..3. Find the general solution of the system y = Ay, where 5 Answer: The matrix A has characteristic polynomial p(λ = λ + 7λ + = λ + 3(λ +. Hence the eigenvalues are λ = 3and λ

More information

MIDTERM REVIEW AND SAMPLE EXAM. Contents

MIDTERM REVIEW AND SAMPLE EXAM. Contents MIDTERM REVIEW AND SAMPLE EXAM Abstract These notes outline the material for the upcoming exam Note that the review is divided into the two main topics we have covered thus far, namely, ordinary differential

More information

Ordinary Differential Equation Theory

Ordinary Differential Equation Theory Part I Ordinary Differential Equation Theory 1 Introductory Theory An n th order ODE for y = y(t) has the form Usually it can be written F (t, y, y,.., y (n) ) = y (n) = f(t, y, y,.., y (n 1) ) (Implicit

More information

Nonhomogeneous Equations and Variation of Parameters

Nonhomogeneous Equations and Variation of Parameters Nonhomogeneous Equations Variation of Parameters June 17, 2016 1 Nonhomogeneous Equations 1.1 Review of First Order Equations If we look at a first order homogeneous constant coefficient ordinary differential

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I February 23, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

I have read and understood the instructions regarding academic dishonesty:

I have read and understood the instructions regarding academic dishonesty: Name Final Exam MATH 6600 SPRING 08 MARK TEST 0 ON YOUR SCANTRON! Student ID Section Number (see list below 03 UNIV 03 0:30am TR Alper, Onur 04 REC 3:30pm MWF Luo, Tao 05 UNIV 03 :30pm TR Hora, Raphael

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

Applied Differential Equation. October 22, 2012

Applied Differential Equation. October 22, 2012 Applied Differential Equation October 22, 22 Contents 3 Second Order Linear Equations 2 3. Second Order linear homogeneous equations with constant coefficients.......... 4 3.2 Solutions of Linear Homogeneous

More information

Classification of Phase Portraits at Equilibria for u (t) = f( u(t))

Classification of Phase Portraits at Equilibria for u (t) = f( u(t)) Classification of Phase Portraits at Equilibria for u t = f ut Transfer of Local Linearized Phase Portrait Transfer of Local Linearized Stability How to Classify Linear Equilibria Justification of the

More information

Lecture 10 - Second order linear differential equations

Lecture 10 - Second order linear differential equations Lecture 10 - Second order linear differential equations In the first part of the course, we studied differential equations of the general form: = f(t, y) In other words, is equal to some expression involving

More information

Second order linear equations

Second order linear equations Second order linear equations Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Second order equations Differential

More information

The Corrected Trial Solution in the Method of Undetermined Coefficients

The Corrected Trial Solution in the Method of Undetermined Coefficients Definition of Related Atoms The Basic Trial Solution Method Symbols Superposition Annihilator Polynomial for f(x) Annihilator Equation for f(x) The Corrected Trial Solution in the Method of Undetermined

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y.

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y. FINAL EXAM MATH0 Theory of Ordinary Differential Equations There are 5 problems on 2 pages. Spring 2009. 25 points Consider the linear plane autonomous system x + y x y. Find a fundamental matrix of the

More information

MAT 22B - Lecture Notes

MAT 22B - Lecture Notes MAT 22B - Lecture Notes 4 September 205 Solving Systems of ODE Last time we talked a bit about how systems of ODE arise and why they are nice for visualization. Now we'll talk about the basics of how to

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 54. Selected Solutions for Week 10

Math 54. Selected Solutions for Week 10 Math 54. Selected Solutions for Week 10 Section 4.1 (Page 399) 9. Find a synchronous solution of the form A cos Ωt+B sin Ωt to the given forced oscillator equation using the method of Example 4 to solve

More information

Vectors, matrices, eigenvalues and eigenvectors

Vectors, matrices, eigenvalues and eigenvectors Vectors, matrices, eigenvalues and eigenvectors 1 ( ) ( ) ( ) Scaling a vector: 0.5V 2 0.5 2 1 = 0.5 = = 1 0.5 1 0.5 ( ) ( ) ( ) ( ) Adding two vectors: V + W 2 1 2 + 1 3 = + = = 1 3 1 + 3 4 ( ) ( ) a

More information

Math 2a Prac Lectures on Differential Equations

Math 2a Prac Lectures on Differential Equations Math 2a Prac Lectures on Differential Equations Prof. Dinakar Ramakrishnan 272 Sloan, 253-37 Caltech Office Hours: Fridays 4 5 PM Based on notes taken in class by Stephanie Laga, with a few added comments

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. General framework

LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. General framework Differential Equations Grinshpan LINEAR EQUATIONS OF HIGHER ORDER. EXAMPLES. We consider linear ODE of order n: General framework (1) x (n) (t) + P n 1 (t)x (n 1) (t) + + P 1 (t)x (t) + P 0 (t)x(t) = 0

More information

Nonconstant Coefficients

Nonconstant Coefficients Chapter 7 Nonconstant Coefficients We return to second-order linear ODEs, but with nonconstant coefficients. That is, we consider (7.1) y + p(t)y + q(t)y = 0, with not both p(t) and q(t) constant. The

More information

4 Second-Order Systems

4 Second-Order Systems 4 Second-Order Systems Second-order autonomous systems occupy an important place in the study of nonlinear systems because solution trajectories can be represented in the plane. This allows for easy visualization

More information