A comparison between classical DES and DDES using the in-house computational code

Size: px
Start display at page:

Download "A comparison between classical DES and DDES using the in-house computational code"

Transcription

1 A comparison between classical DES and DDES using the in-house computational code KAREL FRAŇA AND VIT HONZEJK Department of Power Engineering Equipment Technical University of Liberec Studentská 2, Liberec CZECH REPUBLIC Abstract: - The comprehensive three-dimensional turbulent flow study was performed using the in-house computational code. The simulation of the turbulent effect on the incompressible flows was carried out by the turbulent hybrid model. In general, turbulent flow simulation belongs to the time consuming calculations and requires mostly finer grid resolutions at boundaries. To find appropriate computational conditions, the numerical methods, code compilation and code calculations were investigated. Using optimal compilation options and grid construction, the computational performance can be increased and therefore, higher grid resolutions can be achieved and total required computational time can be reduced. Furthermore, the aspect of the two turbulent flow approaches represented by Delayed-Detached Eddy Simulation (DDES) and classical Detached Eddy Simulation was studied on the benchmarks of the turbulent flow past a cylinder at Reynolds number Key-Words: - simulations, turbulent flows, code compilation, numerical methods 1 Introduction The theoretical numerical investigation of the turbulent flows belongs to the important and useful part of the fluid mechanics and thermodynamics. In general, applied numerical methods opened a new possibility to achieve a wide range of the results describing significant as well as negligible flow effects in particular time and space. Simultaneously, the turbulent flow simulation is a complex problem required a huge computational capacity and knowledge of physics and mathematical backgrounds. Fortunately, there are various known approaches nowadays adopted more or less successfully for turbulent flow investigation [4]. To decide, which approach is the most suitable method for particular turbulent flow patterns, the non-dimensional Reynolds number of the flow is applied. At lower or moderate Reynolds number, a direct numerical simulation is preferred in term of accuracy and easier implementation. However, at higher Reynolds number, spatial scales in flows become to be too small to be resolved by the normal grid spacing and more powerful turbulent approaches have to be applied. The one of them is a hybrid URANS/LES model which combines advantages of different approaches to achieve time effective and sufficiently accurately methods for a simulation of a complex mostly threedimensional turbulent flow. The most popular approach of this particular group is Detached Eddy Simulation originally proposed by Spalart et. al. [2] hereafter referred to as DES97 or easily DES. An advantage of DES is the easy of programming and applications for a complexgeometry. The brief summary about DES applications in various flow problems can be found in [2]. However, the classical DES approach suffers from various deficiencies e.g. early separation caused a premature switch between LES and URANS especially in the region of the flow, where the local Reynolds number is sufficiently low. To depress this weakness the new standard version of DES so called Delayed Detached Eddy Simulation (DDES) has been proposed [10] and [11]. In this new concept, the limiter for the switch between LES and RANS depends not only on the grid size but as well on the solution [5]. The paper is organized as follows: In Section 2, the objective of the flow study including the basic equation system represented by Navier-Stokes equation and by turbulent approach is introduced. Details about numerical method and its application in the in-house computational code are presented in Section 3. Section 4 summarized important numerical results and compare with experimental data and other previous numerical results. Finally, in section 5, the significant conclusion is reported. ISSN: X 84 ISBN:

2 2 Problem formulations An incompressible turbulent fluid flow with the constant material properties molecular kinematical viscosity ν and density ρ past a cylinder at Reynolds number 3900 (based on the diameter of the cylinder D) and it was investigated using DES and DDES approach. The sketch of the flow problem is illustrated in Fig. 1. D ν Dt 2 { [( ν + ν ) ν] + c ( ν) } = cb 1S + b2 ( c f ) w1 w 1 ν σ 2 ν d (5) where the right-hand side includes the production term, the diffusion term and the destruction term for the reduction of the stresses in the vicinity near the solid walls. The production term includes further the scalar quantity S which is expressed by a magnitude of vorticity S plus a near-wall correction and it can be modeled as in the original Spalart-Allmaras model [1] leading to the form ν S + κ d = S f 2 2 υ 2 (6) Fig.1. The sketch of the flow problems The computational grid is consisted by 1.7 mil. tetrahedral elements and the smooth grid resolution was applied at the wall. Basically, this turbulent flow is governed by Navier- Stokes and continuity equations taking the form u + uu= p+ [ ( ν t + v) ( u) ] (1) t u = 0 (2) with Dirichlet and Neumann type boundary conditions u=g [ p+ ( + ν ( u) ] h (3) n ( ν t ) = (4) where u is the velocity, t time, p pressure divided by a density and ν t is a turbulent eddy viscosity, respectively. The effect of turbulence on the flow behavior is involved into a turbulent eddy viscosity calculated using the appropriate turbulent model. For instance, considering the DES model, the calculation of the turbulent eddy viscosity is based on a modified eddy viscosity in the Spalart-Allmaras model [1] and is calculated using the transport equation in the form as follows Equation 5 must be closed with the auxiliary relations and constant that can be found e.g. in [1]. The desired turbulent eddy viscosity ν t is calculated by the modified turbulent viscosity using the relation taking the form of ν =ν (7) t f v 1 In case of the DES model, the wall distance is given by a characteristic length scale d proportional to so that d = min( d, CDES ), max( x, y, z) (8) The recommended value for the adjustable parameter C DES is In practise, the criterion is based on the maximal value of the local grid distance and was originally proposed by Nikitin [3] as an appropriate choice for homogenous grids, especially. The weakness of the classical DES formulation is an unphysical behavior in the attached boundary layers relating to so called grey zone. To suppress the negative effect, various modifications of the DES formulation were proposed, for instance, DDES model. Particularly, a new function f d was additionally appended to the definition of the characteristic length scale d so that the dissipation length scale is now in a form d = d fd max ; DES where { 0 d C } (9) ISSN: X 85 ISBN:

3 f 3 = 1 tanh[(8 ) ] (10) d r d and ν + ν t ν rd = = x u x u κ d Sκ d (11) j i i j In practice, the main objective of this modification is to prevent earlier switch from URANS approach occurring in the attached boundary layer to LES model. 3 Code compilations The computational code was implemented on the top of the MG (Multigrid) library [6]. The both parts of the in-house code were written in programming language FORTRAN 95 and compiled using the Intel Compiler 11.1 for the 64 bit architecture. The MG library itself supports a parallel calculation and applied methods of the grid handling and processor communications were optimized in order to reach the best parallel performance effectiveness. To find more about test performance in respect to the parallel calculations, we refer to [6]. The mesh is decomposed into a specific number of grid partitions and this partitioning process is fully provided by the METIS library. The parallel code running is performed using MPICH 2, version which was compiled at the computational station with the same compiler as used for the computational source code. In general, the Intel compiler provides a wide range of the options that can be used for source code compilation to reach the optimized executable file. There are many aspects that can be taken into account for optimized compilation e.g. the size of the final executable file or more important, the speed optimization of the calculation processes. Table 1 summarizes a computational speed test carried out for a compilation option represented by O0,-O1, -O2, - O3 and Os. The option -O0 represents a compilation without any optimization, the option -O1, -O2, -O3 and -Os optimize a code for maximum speed, but it may cause an increase of the code size. The computational test of the various options was performed on the DELL Blade Server equipped by four cores processors Intel Xeon E5410/ 2,33 GHz with 32 GB memory. Furthermore, the calculated example represented a turbulent unsteady flow past a circular cylinder and the grid consists of tetrahedral elements. The computational domain was bounded by the inlet and outlet type boundary condition, periodic conditions and walls. The total solving times required for the calculation of the 1000 time steps are summarized in Table 1. The average value of the total time was calculated as an arithmetical averaging of the five fully identical computational patterns. option cal. 1 cal. 2 cal. 3 cal. 4 -O O O O Os < T > [s/ts] option cal. 5 avg speed -O O O O Os Tab.1. The total solving time in respect to the option of the compilation process < T > [s/ts] The last column indicates a speed of the calculation process. The code compiled with option -O1 had about 11,4 % lower performance then the code with option - O2. However, the compilation with option -O2 or -O3 did not prove a significant improvement of the computational speed and, in practice, a difference in the solving time between these two options is negligible. This particular conclusion is limited to inhouse developed computational code. In generally, the compilation with option Ox has a significant influence on the total size of the executable file, as well. This fact is demonstrated well in Table 2. option size of the file difference [byte] [ - ] -O O O O Os Tab.2. The size of the executable files compiled using different options. Using option -O1, the size of the executable file can be reduced significantly; however, the computational speed decreases simultaneously as demonstrated in the test above. The option -O0 represents a compilation without any code optimization that, in practice, leads to increase of the size of the executable file about 27 % in comparison to the best compilation with option - O1. The other options were leading to the increase of the code size as well, however, sizes vary between ISSN: X 86 ISBN:

4 these two mentioned thresholds, -O1 and -O0, respectively. Taking into account a time consuming computation of the unsteady turbulent flow, the code optimize in respect to the decrease of the solving time is an essential point of any code optimization. Using an appropriate choice of the compile options the total computational time can be effectively reduced and consequently the higher grid resolution can be used for numerical flow simulations Pressure coefficient Figure 2 illustrates the distribution of the pressure coefficient along the cylinder calculated for DDES. The results where compared with experimental results from Norberg [12]. 4 Results 4.1. Mean velocity field Figure 2 shows a comparison of the time-averaged velocity field at various positions in the flow wake calculated using the DES a DDES approaches and results were confronted by an experiments provided by Lourenco and Shih [8] and by other numerical simulations [4]. In the wake close to the wall of the cylinder, no significant differences were observed. However, far from the cylinder, the obvious deviation between both turbulent approaches DES and DDES is clearly detected. In general, the time-averaged velocity profile calculated using the DDES approach corresponds well to the other calculation based on the LES techniques and as well to experiment. The simulation using DES approach overestimated results especially in the wake region e.g. at positions x/d=1.54 or Fig.3: The angle dependence of pressure coefficient 4.3. Reynolds stress tensor and power energy spectra Figure 4 shows a distribution of the resolved part of the normal Reynolds stress tensors. The difference between distributions of the Reynolds tress tensor is obvious in the whole region of the wake of the flow. The maximal intensity of the streamwise normal Reynolds stress tensor is in both calculations at the same level. Fig.4: The resolved part <u x u x > of the Reynolds stress tensor. Fig.2: The time-averaged velocity field at positions: x/d=1.06,1.54 and ISSN: X 87 ISBN:

5 Figure 7 and 8 discuss the power energy spectra calculated from the kinetic energy at the particular positions. The both turbulent approaches revealed the same energy distribution along the frequency and wave number space. Fig. 5: The resolved part of the Reynolds stress tensors at positions: x/d=1.06,1.54 and 2.02 Figure 5 depicts profiles of the resolved part of the normal <u x u x > Reynolds stress tensor at positions x/d=1.06, 1.54 and The both turbulent approach provided qualitatively satisfactory agreement to the experiments and other numerical results, however, the slight difference can be identified at position far form the cylinder. Generally, DDES approach calculated the distribution of the normal Reynolds stress component more accurately in respect to the experiments. It is obvious as well, the both approaches suffered by the same inaccuracy that caused results deviation from the experimental data. In practice, LES calculation could provide better results; however, these results could be lead only by calculation on the relatively very smooth grid resolution leading further definitely to the timeconsuming calculation conditions. Fig. 6: The resolved part of the turbulent kinetic energy. Fig.7: The frequency spectra at the positions P1 and P2. Fig.8: The wave number spectra at the positions P1 and P2. The wave number and frequency spectra were resolved completely and the slope 5/3 was detected in the intermediate region of the time and space scales. Conclusions Because of the time consuming methods that are used for calculations of the turbulent effect on the flow behavior, the optimalization of the code compilation was carried out. This test performed on the particular FORTRAN compiler and computational station revealed that the best option for the source compilation is option with -O2. Using this option for compilation of the executable file, a reduction about 11 % of the solving time can be reached and even 115 % in case where no option is applied for code compilation. ISSN: X 88 ISBN:

6 The turbulent flow past a cylinder at Reynolds number was investigated using Delayed Detached Eddy Simulation and classical Detached Eddy Simulation and both turbulent approaches were compared with experiments and other numerical simulations. This test study was carried out under same conditions (computational grid, time step, initial and boundary conditions etc.) revealed that the improved variation of the DES approach so called DDES can reach results that were in the better agreement to the experiments and other numerical simulations in respect to the velocity field, Reynolds stress tensors etc.. However, form the point of the view of the wave number spectra and frequency spectra, no significant differences was detected. Acknowledgement This paper was financially supported by the Student Research Grand 2823 at the Technical University of Liberec provided by Ministry of Education of the Czech Republic. References: [1] Spalart, P.R, Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1994; 1, pp [2] Spalart, P.R., Jou, W.H., Strelets, M., and Allmaras, S.R.: Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, First AFOR Int. Conference on DNS/LES, edited by C.Liu and Z. Liu, Greyden, Columbus, OH, 1997 [3] Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations, Phys. Fluids 12, 2000 [4] Fureby Ch., Liefvendahl, M., Svennberg U., Persson L. and Persson T.: Incompressible Wall- Bounded Flows, Implicit Large Eddy Simulation, Computing turbulence fluid dynamics, editor: Grinstein F., F., Margolin L.G. and Rider W.J., Implicit Large Eddy Simulation, Cambridge University Press, 2007 [5] Spalart, Ph.R.: Detached-Eddy simulation, Annual Rev. Fluid. Mech., 41: p , 2009 [6] Stiller J., Nagel W.E.: MG A Toolbox for Parallel Grid Adaptation and Implementing Unstructured Multigrid Solvers. In: E.H. D Hollander et al. (Eds.): Parallel Computing. Fundamentals & Applications, Imperial College Press, 2000 [7] Stiller J., Fraňa K., Grundmann R., Fladrich U., Nagel W.E.: A parallel PSPG Finite Element Method for direct Simulation of Incompressible flow, Euro-Par 2004, Parallel Processing (LNCS 3149), edited by M.Danutello, D.Laforenza and M. Vanneschi, Springer-Verlag, p , 2004 [8] Lourenco L.M., Shih C.: Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study, (data taken from Reference [9]), 1993 [9] Breuer M.: Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects, Int. J. for Numer. Meth. Fluids, 28, , 1998 [10] Spalart P.R., Deck S., Shur M.L., Squires K.D., Strelets M. Kh., Travin A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theor. Comput. Fluid Dyn., 20, p , 2006 [11] Paik J., Sotiropoulos F., Port-Agel F.: Detached eddy simulation of flow around two wallmounted cubes in tandem, Int. Journal of Heat and Fluid Flow, 30, p , 2009 [12] Norberg C.: Effects of Reynolds number and lowintensity free stream turbulence on the flow around a circularcylinder, Publ. No. 87 :2, Department of Applied Thermoscience and Fluid Mech., Chalmers University of Technology, Gothenburg, Sweden, 1987 ISSN: X 89 ISBN:

arxiv: v1 [physics.flu-dyn] 4 Aug 2014

arxiv: v1 [physics.flu-dyn] 4 Aug 2014 A hybrid RANS/LES framework to investigate spatially developing turbulent boundary layers arxiv:1408.1060v1 [physics.flu-dyn] 4 Aug 2014 Sunil K. Arolla a,1, a Sibley School of Mechanical and Aerospace

More information

Available online at ScienceDirect. Procedia Engineering 79 (2014 ) 49 54

Available online at  ScienceDirect. Procedia Engineering 79 (2014 ) 49 54 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 79 (2014 ) 49 54 37th National Conference on Theoretical and Applied Mechanics (37th NCTAM 2013) & The 1st International Conference

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

Hybrid RANS/LES employing Interface Condition with Turbulent Structure

Hybrid RANS/LES employing Interface Condition with Turbulent Structure Turbulence, Heat and Mass Transfer 4, pp. 689696 K. Hanjalić, Y. Nagano and M. Tummers (Editors) c 23 Begell House, Inc. Hybrid RANS/LES employing Interface Condition with Turbulent Structure S. Dahlström

More information

INVESTIGATION OF THE FLOW OVER AN OSCILLATING CYLINDER WITH THE VERY LARGE EDDY SIMULATION MODEL

INVESTIGATION OF THE FLOW OVER AN OSCILLATING CYLINDER WITH THE VERY LARGE EDDY SIMULATION MODEL ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Numerical investigation of the flow instabilities in centrifugal fan

Numerical investigation of the flow instabilities in centrifugal fan Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, August 21-23, 26 (pp282-288) Numerical investigation of the flow instabilities in centrifugal

More information

DETACHED-EDDY SIMULATION OF FLOW PAST A BACKWARD-FACING STEP WITH A HARMONIC ACTUATION

DETACHED-EDDY SIMULATION OF FLOW PAST A BACKWARD-FACING STEP WITH A HARMONIC ACTUATION DETACHED-EDDY SIMULATION OF FLOW PAST A BACKWARD-FACING STEP WITH A HARMONIC ACTUATION Liang Wang*, Ruyun Hu*, Liying Li*, Song Fu* *School of Aerospace Engineering, Tsinghua University, Beijing 100084,

More information

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows Center for Turbulence Research Annual Research Briefs 1998 267 On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows By Jeffrey S. Baggett 1. Motivation and objectives

More information

Elliptic Trailing Edge for a High Subsonic Turbine Cascade

Elliptic Trailing Edge for a High Subsonic Turbine Cascade Elliptic Trailing Edge for a High Subsonic Turbine Cascade Mahmoud M. El-Gendi 1, Mohammed K. Ibrahim 2, Koichi Mori 3, and Yoshiaki Nakamura 4 1 Graduate School of Engineering, Nagoya University, Nagoya

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach

Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach Zonal hybrid RANS-LES modeling using a Low-Reynolds-Number k ω approach S. Arvidson 1,2, L. Davidson 1, S.-H. Peng 1,3 1 Chalmers University of Technology 2 SAAB AB, Aeronautics 3 FOI, Swedish Defence

More information

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers International Journal of Fluids Engineering. ISSN 0974-3138 Volume 5, Number 1 (2013), pp. 29-37 International Research Publication House http://www.irphouse.com Numerical Simulation of Flow Around An

More information

ASSESSMENT OF RANS AND DES METHODS FOR THE AHMED BODY

ASSESSMENT OF RANS AND DES METHODS FOR THE AHMED BODY ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

EVALUATION OF THE SST-SAS MODEL: CHANNEL FLOW, ASYMMETRIC DIFFUSER AND AXI-SYMMETRIC HILL

EVALUATION OF THE SST-SAS MODEL: CHANNEL FLOW, ASYMMETRIC DIFFUSER AND AXI-SYMMETRIC HILL st line after Eq. 4 corrected European Conference on Computational Fluid Dynamics ECCOMAS CFD 6 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 6 EVALUATION OF THE SST-SAS MODEL:

More information

A Finite-Element based Navier-Stokes Solver for LES

A Finite-Element based Navier-Stokes Solver for LES A Finite-Element based Navier-Stokes Solver for LES W. Wienken a, J. Stiller b and U. Fladrich c. a Technische Universität Dresden, Institute of Fluid Mechanics (ISM) b Technische Universität Dresden,

More information

Shock/boundary layer interactions

Shock/boundary layer interactions Shock/boundary layer interactions Turbulent compressible channel flows F.S. Godeferd Laboratoire de Mécanique des Fluides et d Acoustique Ecole Centrale de Lyon, France Journée Calcul Intensif en Rhône

More information

Assessing the Ability of the DDES Turbulence Modeling Approach to Simulate the Wake of a Bluff Body

Assessing the Ability of the DDES Turbulence Modeling Approach to Simulate the Wake of a Bluff Body aerospace Article Assessing the Ability of the DDES Turbulence Modeling Approach to Simulate the Wake of a Bluff Body Matthieu Boudreau 1, * ID, Guy Dumas 1 and Jean-Christophe Veilleux 2 ID 1 CFD Laboratory

More information

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. Khali, E. H. and Yao, Y. (2015) Mixing flow characteristics for a transverse sonic jet injecting into a supersonic crossflow. In: 53rd AIAA Aerospace Sciences Meeting: AIAA 2015 Sci-Tech Conference, Kissimmee,

More information

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS Conference Applications of Mathematics 212 in honor of the 6th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 212 ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

More information

INVESTIGATION OF FLOW PARAMETERS AND NOISE OF SUBSONIC AND SUPERSONIC JETS USING RANS/ILES HIGH RESOLUTION METHOD

INVESTIGATION OF FLOW PARAMETERS AND NOISE OF SUBSONIC AND SUPERSONIC JETS USING RANS/ILES HIGH RESOLUTION METHOD INVESTIGATION OF FLOW PARAMETERS AND NOISE OF SUBSONIC AND SUPERSONIC JETS USING RANS/ILES HIGH RESOLUTION METHOD L.A. Benderskiy, D.A. Lyubimov Central Institute of Aviation Motors, Russia Leosun.Ben@gmail.com

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Numerical simulations of a massively separated reactive flow using a DDES approach for turbulence modelling

Numerical simulations of a massively separated reactive flow using a DDES approach for turbulence modelling Numerical simulations of a massively separated reactive flow using a DDES approach for turbulence modelling Bruno Sainte-Rose, Nicolas Bertier, Sébastien Deck and Francis Dupoirieux Abstract Computations

More information

TOWARDS DETACHED EDDY SIMULATION MODELLING USING A K-EQUATION TURBULENCE MODEL

TOWARDS DETACHED EDDY SIMULATION MODELLING USING A K-EQUATION TURBULENCE MODEL European Conference on Computational Fluid Dynamics ECCOMAS CFD 6 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 6 TOWARDS DETACHED EDDY SIMULATION MODELLING USING A K-EQUATION

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT FLOWS IN AN INCLINED IMPINGING JET WITH MODERATE RE-NUMBER

NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT FLOWS IN AN INCLINED IMPINGING JET WITH MODERATE RE-NUMBER 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT

More information

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM 206 9th International Conference on Developments in esystems Engineering A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM Hayder Al-Jelawy, Stefan Kaczmarczyk

More information

Numerical simulation of flow past a circular base on PANS methods

Numerical simulation of flow past a circular base on PANS methods IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical simulation of flow past a circular base on PANS methods To cite this article: J T Liu et al 016 IOP Conf. Ser.: Mater.

More information

A Hybrid-Filter Approach to Turbulence Simulation

A Hybrid-Filter Approach to Turbulence Simulation Flow Turbulence Combust (2) 85:42 44 DOI.7/s494--9254-7 A Hybrid-Filter Approach to Turbulence Simulation Bernie Raamani John Kim Received: 7 December 29 / Accepted: 23 February 2 / Published online: 2

More information

Turbulent eddies in the RANS/LES transition region

Turbulent eddies in the RANS/LES transition region Turbulent eddies in the RANS/LES transition region Ugo Piomelli Senthil Radhakrishnan Giuseppe De Prisco University of Maryland College Park, MD, USA Research sponsored by the ONR and AFOSR Outline Motivation

More information

The effect of geometric parameters on the head loss factor in headers

The effect of geometric parameters on the head loss factor in headers Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract

More information

Numerical Simulation of a Blunt Airfoil Wake

Numerical Simulation of a Blunt Airfoil Wake 6th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 7 Numerical Simulation of a Blunt Airfoil Wake C.J. Doolan School of Mechanical Engineering University of Adelaide,

More information

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model Hybrid RANS Method Based on an Explicit Algebraic Reynolds Stress Model Benoit Jaffrézic, Michael Breuer and Antonio Delgado Institute of Fluid Mechanics, LSTM University of Nürnberg bjaffrez/breuer@lstm.uni-erlangen.de

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

DELAYED DETACHED EDDY SIMULATION OF FLOW IN MACROSCALE AND MICROSCALE MULTI-INLET VORTEX REACTORS

DELAYED DETACHED EDDY SIMULATION OF FLOW IN MACROSCALE AND MICROSCALE MULTI-INLET VORTEX REACTORS DELAYED DETACHED EDDY SIMULATION OF FLOW IN MACROSCALE AND MICROSCALE MULTI-INLET VORTEX REACTORS Zhenping Liu Department of Mechanical Engineering payneliu@iastate.edu Michael G. Olsen Alberto Passalacqua

More information

Explicit algebraic Reynolds stress models for internal flows

Explicit algebraic Reynolds stress models for internal flows 5. Double Circular Arc (DCA) cascade blade flow, problem statement The second test case deals with a DCA compressor cascade, which is considered a severe challenge for the CFD codes, due to the presence

More information

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #195

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #195 . 18 m 2012 th International Conference ENGINEERING MECHANICS 2012 pp. 309 315 Svratka, Czech Republic, May 14 17, 2012 Paper #195 NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Attached and Detached Eddy Simulation

Attached and Detached Eddy Simulation Attached and Detached Eddy Simulation Philippe R. Spalart Boeing Commercial Airplanes, Seattle, USA Mikhail K. Strelets Saint-Petersburg Polytechnic University and New Technologies and Services (NTS),

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

Delayed Detached Eddy Simulation of Supersonic Inlet Buzz

Delayed Detached Eddy Simulation of Supersonic Inlet Buzz Delayed Detached Eddy Simulation of Supersonic Inlet Buzz S. Trapier, S. Deck and P. Duveau Applied Aerodynamics Department What is Supersonic inlet buzz? Supersonic air inlets supply the engine of an

More information

On the transient modelling of impinging jets heat transfer. A practical approach

On the transient modelling of impinging jets heat transfer. A practical approach Turbulence, Heat and Mass Transfer 7 2012 Begell House, Inc. On the transient modelling of impinging jets heat transfer. A practical approach M. Bovo 1,2 and L. Davidson 1 1 Dept. of Applied Mechanics,

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

Hybrid RANS-LES Modelling on a strongly detached turbulent flow around tandem cylinder at high Reynoldsnumber

Hybrid RANS-LES Modelling on a strongly detached turbulent flow around tandem cylinder at high Reynoldsnumber Hybrid RANS-LES Modelling on a strongly detached turbulent flow around tandem cylinder at high Reynoldsnumber Gual Skopek, Marc a, Braza, Marianna a, Hoarau, Yannick b a. IMFT: Allée du Professeur Camille

More information

Implementation of an LES mixed subgrid model for the numerical investigation of flow around a circular cylinder at Re = 3,900 and 140,000

Implementation of an LES mixed subgrid model for the numerical investigation of flow around a circular cylinder at Re = 3,900 and 140,000 Advances in Fluid Mechanics VIII 79 Implementation of an LES mixed subgrid model for the numerical investigation of flow around a circular cylinder at Re =,9 and 4, J. Wong & E. Png Marine Systems, DSO

More information

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient):

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient): 8. TURBULENCE MODELLING 1 SPRING 2019 8.1 Eddy-viscosity models 8.2 Advanced turbulence models 8.3 Wall boundary conditions Summary References Appendix: Derivation of the turbulent kinetic energy equation

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD

RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD RECONSTRUCTION OF TURBULENT FLUCTUATIONS FOR HYBRID RANS/LES SIMULATIONS USING A SYNTHETIC-EDDY METHOD N. Jarrin 1, A. Revell 1, R. Prosser 1 and D. Laurence 1,2 1 School of MACE, the University of Manchester,

More information

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration 1 Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration A. Henze, C. Glatzer, M. Meinke, W. Schröder Institute of Aerodynamics, RWTH Aachen University, Germany March 21,

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

Flow simulation and aerodynamic noise prediction for a high-speed train wheelset

Flow simulation and aerodynamic noise prediction for a high-speed train wheelset aeroacoustics volume 13 number 7 & 8 214 pages 533 552 533 Flow simulation and aerodynamic noise prediction for a high-speed train wheelset J. Y. Zhu 1, Z. W. Hu 1 and D. J. Thompson 2 1 Aerodynamics and

More information

Large Eddy Simulation of Three-Stream Jets

Large Eddy Simulation of Three-Stream Jets Large Eddy Simulation of Three-Stream Jets J. Xiong 1, F. Liu 2, and D. Papamoschou 3 University of California, Irvine, Irvine, CA, 92697 We present a computational study of three-stream jets simulating

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

A Hybrid LES - Thin Boundary Layer Equations Method for Simulation of Attached and Recirculating Flows

A Hybrid LES - Thin Boundary Layer Equations Method for Simulation of Attached and Recirculating Flows Amin Rasam A Hybrid LES - Thin Boundary Layer Equations Method for Simulation of Attached and Recirculating Flows Department of Applied Mechanics Division of Fluid Dynamics Chalmers University of Technology

More information

IMPROVEMENT OF DELAYED DETACHED-EDDY SIMULATION FOR LES WITH WALL MODELLING

IMPROVEMENT OF DELAYED DETACHED-EDDY SIMULATION FOR LES WITH WALL MODELLING European Conference on Computational Fluid Dynamics ECCOMAS CDF 2006 P. Wesseling, E. Oñate, J. Périaux (Eds) TU Delft, Delft The Netherland, 2006 IMPROVEMENT OF DELAYED DETACHED-EDDY SIMULATION FOR LES

More information

DNS, LES, and wall-modeled LES of separating flow over periodic hills

DNS, LES, and wall-modeled LES of separating flow over periodic hills Center for Turbulence Research Proceedings of the Summer Program 4 47 DNS, LES, and wall-modeled LES of separating flow over periodic hills By P. Balakumar, G. I. Park AND B. Pierce Separating flow in

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

Numerical Simulation of the Active Flow Control in Turbomachinery

Numerical Simulation of the Active Flow Control in Turbomachinery FLM Technische Universität München Lehrstuhl für Fluidmechanik o. Prof. Dr.-Ing. habil. Dr. h.c. Rudolf Schilling JASS 2009-Joint Advanced Student School, St. Petersburg, 29.3.-7.4.2009 Numerical Simulation

More information

HYBRID LES-RANS USING SYNTHESIZED TURBULENCE FOR FORCING AT THE INTERFACE

HYBRID LES-RANS USING SYNTHESIZED TURBULENCE FOR FORCING AT THE INTERFACE European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 24 P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer (eds.) Jyväskylä, 24 28 July 24 HYBRID

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT 2th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT Wang T.*, Gao S.F., Liu Y.W., Lu Z.H. and Hu H.P. *Author

More information

POTENTIAL TURBULENCE MODEL PREDICTIONS OF FLOW PAST A TRIANGULAR CYLINDER USING AN UNSTRUCTURED STAGGERED MESH METHOD

POTENTIAL TURBULENCE MODEL PREDICTIONS OF FLOW PAST A TRIANGULAR CYLINDER USING AN UNSTRUCTURED STAGGERED MESH METHOD POTENTIAL TURBULENCE MODEL PREDICTIONS OF FLOW PAST A TRIANGULAR CYLINDER USING AN UNSTRUCTURED STAGGERED MESH METHOD Xg Zhang Blair Perot Department of Mechanical and Industrial Engeerg, University of

More information

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM)

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) Journal of Fundamental and Applied Sciences ISSN 1112-9867 Available online at http://www.jfas.info NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) M. Y. Habib

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

EFFECT OF REYNOLDS NUMBER ON THE UNSTEADY FLOW AND ACOUSTIC FIELDS OF SUPERSONIC CAVITY

EFFECT OF REYNOLDS NUMBER ON THE UNSTEADY FLOW AND ACOUSTIC FIELDS OF SUPERSONIC CAVITY Proceedings of FEDSM 03 4TH ASME_JSME Joint Fluids Engineering Conference Honolulu, Hawaii, USA, July 6 11, 2003 FEDSM2003-45473 EFFECT OF REYNOLDS NUMBER ON THE UNSTEADY FLOW AND ACOUSTIC FIELDS OF SUPERSONIC

More information

NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY

NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY Engineering MECHANICS, Vol. 20, 2013, No. 5, p. 379 388 379 NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY JiříFürst* The article deals with the numerical solution of transitional

More information

Loss Mechanism and Assessment in Mixing Between Main Flow and Coolant Jets with DDES Simulation

Loss Mechanism and Assessment in Mixing Between Main Flow and Coolant Jets with DDES Simulation Proceedings of Shanghai 2017 Global Power and Propulsion Forum 30 th October 1 st November, 2017 http://www.gpps.global 0200 Loss Mechanism and Assessment in Mixing Between Main Flow and Coolant Jets with

More information

STATISTICAL CHARACTERISTICS OF UNSTEADY REYNOLDS-AVERAGED NAVIER STOKES SIMULATIONS

STATISTICAL CHARACTERISTICS OF UNSTEADY REYNOLDS-AVERAGED NAVIER STOKES SIMULATIONS Numerical Heat Transfer, Part B, 46: 1 18, 2005 Copyright # Taylor & Francis Inc. ISSN: 1040-7790 print/1521-0626 online DOI: 10.1080/10407790490515792 STATISTICAL CHARACTERISTICS OF UNSTEADY REYNOLDS-AVERAGED

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc.

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc. RANS-LES inlet boundary condition for aerodynamic and aero-acoustic acoustic applications Fabrice Mathey Davor Cokljat Fluent Inc. Presented by Fredrik Carlsson Fluent Sweden ZONAL MULTI-DOMAIN RANS/LES

More information

C. Mockett, M. Fuchs & F. Thiele

C. Mockett, M. Fuchs & F. Thiele C. Mockett, M. Fuchs & F. Thiele charles.mockett@cfd-berlin.com Overview Background & motivation DES strong points and Grey Area problem The Go4Hybrid project Improved DES with accelerated RANS to LES

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Large Eddy Simulation as a Powerful Engineering Tool for Predicting Complex Turbulent Flows and Related Phenomena

Large Eddy Simulation as a Powerful Engineering Tool for Predicting Complex Turbulent Flows and Related Phenomena 29 Review Large Eddy Simulation as a Powerful Engineering Tool for Predicting Complex Turbulent Flows and Related Phenomena Masahide Inagaki Abstract Computational Fluid Dynamics (CFD) has been applied

More information

VALIDATION OF REYNOLDS AVERAGED MODEL AND LARGE EDDY SIMULATION IN ACTUAL FLOOR HEATING ROOM. Hiroki Ono 1 and Koji Sakai 1

VALIDATION OF REYNOLDS AVERAGED MODEL AND LARGE EDDY SIMULATION IN ACTUAL FLOOR HEATING ROOM. Hiroki Ono 1 and Koji Sakai 1 Proceedings of Building Simulation 11: VALDATON OF RYNOLDS AVRAD MODL AND LAR DDY SMULATON N ACTUAL FLOOR HATN ROOM Hiroki Ono 1 and Koji Sakai 1 1 School of Science and Technology, Meiji University, Kawasaki,

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

arxiv: v1 [physics.flu-dyn] 21 Dec 2017

arxiv: v1 [physics.flu-dyn] 21 Dec 2017 The role of bulk eddy-viscosity variation on the log-layer mismatch observed in wall-modeled large-eddy simulations Rey DeLeon arxiv:1712.08035v1 [physics.flu-dyn] 21 Dec 2017 Department of Mechanical

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Numerical Study of Flow around Twin Cubic Obstacles Issued from a Bent Chimney

Numerical Study of Flow around Twin Cubic Obstacles Issued from a Bent Chimney Numerical Study of Flow around Twin Cubic Obstacles Issued from a Bent Chimney I. Bhouri Baouab, N. Mahoub Said, H.Mhiri, G. Le Palec, P. Bournot Abstract we present in this wor a numerical study of pollutant

More information

Optimizing calculation costs of tubulent flows with RANS/LES methods

Optimizing calculation costs of tubulent flows with RANS/LES methods Optimizing calculation costs of tubulent flows with RANS/LES methods Investigation in separated flows C. Friess, R. Manceau Dpt. Fluid Flow, Heat Transfer, Combustion Institute PPrime, CNRS University

More information

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS Everts, M.,

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

A Self-adapting Turbulence Model for Flow Simulation at any Mesh Resolution.

A Self-adapting Turbulence Model for Flow Simulation at any Mesh Resolution. A Self-adapting Turbulence Model for Flow Simulation at any Mesh Resolution. J. BLAIR PEROT and JASON GADEBUSCH Department of Mechanical Engineering University of Massachusetts Amherst, Amherst, MA 01003

More information

CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM

CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM Suheni and Syamsuri Department of Mechanical Engineering, Adhi Tama Institute of Technology Surabaya, Indonesia E-Mail:

More information

Investigation of Non-synchronous Vibration Mechanism for a High Speed Axial Compressor Using Delayed DES

Investigation of Non-synchronous Vibration Mechanism for a High Speed Axial Compressor Using Delayed DES AIAA SciTech 13-17 January 2014, National Harbor, Maryland 52nd Aerospace Sciences Meeting AIAA 2014-0789 Investigation of Non-synchronous Vibration Mechanism for a High Speed Axial Compressor Using Delayed

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Evaluation of Detached Eddy Simulation for Turbulent Wake Applications

Evaluation of Detached Eddy Simulation for Turbulent Wake Applications AIAA Journal, 6 Evaluation of Detached Eddy Simulation for Turbulent Wake Applications Matthew F. Barone Christopher J. Roy Sandia National Laboratories Auburn University Albuquerque, NM 8785 Auburn, AL

More information

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT 10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT Bing-Chen Wang Department

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

INSTITUTTET FOR BYGNINGSTEKNIK DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING AALBORG UNIVERSITET AAU AALBORG DANMARK

INSTITUTTET FOR BYGNINGSTEKNIK DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING AALBORG UNIVERSITET AAU AALBORG DANMARK INSTITUTTET FOR BYGNINGSTEKNIK DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING AALBORG UNIVERSITET AAU AALBORG DANMARK Lars Davidson and Peter V. Nielsen A Study of Laminar Backward-Facing Step

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 CFD analysis of 2D unsteady flow around a square cylinder Gera.B, Pavan K. Sharma, Singh R.K Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India 400085 pa1.sharma@gmail.com ABSTRACT

More information

The current issue and full text archive of this journal is available at

The current issue and full text archive of this journal is available at The current issue and full text archive of this journal is available at www.emeraldinsight.com/0961-5539.htm HFF 16,6 660 Received February 2005 Revised December 2005 Accepted December 2005 3D unsteady

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

Hybrid RANS/LES simulations of a cavitating flow in Venturi

Hybrid RANS/LES simulations of a cavitating flow in Venturi Hybrid RANS/LES simulations of a cavitating flow in Venturi TSFP-8, 28-31 August 2013 - Poitiers - France Jean Decaix jean.decaix@hevs.ch University of Applied Sciences, Western Switzerland Eric Goncalves

More information