Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Size: px
Start display at page:

Download "Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i"

Transcription

1 Turbulence Modeling Cuong Nguyen November 05, Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1) ρ u i t + ρ (u u i ) = p + (2µs i ) (2) x x i x where the strain-rate tensor s i is given by s i = 1 ( ui + u ) 2 x x i. (3) By the application of Eq. (1), the equations of motion can be written as ρ u i t + ρu u i = p + µ 2 u i. (4) x x i x i x In turbulent flows, the field properties become random functions of space and time. Hence, the field variables u i and p must be expressed as the sum of mean and fluctuating parts as u i = U i + u i, p = P + p. (5) where the mean and fluctuating parts satisfy u i = U i, u i = 0 (6) p = P, p = 0 (7) with the bar denoting the time average. We insert Eq. (5) into (1)-(2) and take the time average to arrive at the Reynoldsaveraged Navier-Stokes (RANS) equations U i x i = 0 (8) ρ U i t + ρ (U i U ) = P + (2µS i ρu i x x i x u ), (9) 1

2 where S i is the mean strain-rate tensor S i = 1 ( Ui + U ) 2 x x i. (10) The quantity τ i = u i u is known as the Reynolds stress tensor which is symmetric and thus has six components. By the application of (8) Eq. (9) can then be expressed as U i t + U U i = P + ν 2 U i u i u. (11) x x i x i x x By decomposing the instantaneous properties into mean and fluctuating parts, we have introduced 3 unknown quantities. Unfortunately, we have gain no additional equations. This means our system is not yet closed. To close the system, we must find enough equations to solve for our unknowns. In what follows, we describe several approaches (turbulence models) for solving the RANS equations. 1.2 Turbulence Models Boussinesq Approximation The Reynolds-averaged approach to turbulence modeling requires that the Reynolds stresses in Equation (11) be appropriately modeled. A common method employs the Boussinesq hypothesis to relate the Reynolds stresses to the mean velocity gradients where the turbulence kinetic energy, k, is defined as u i u = 2ν T S i 2 3 kδ i (12) k = 1 2 u i u i, (13) and ν T is the kinetic eddy viscosity assumed as an isotropic scalar quantity which is not strictly true so that the term approximation is appropriate Spalart-Allmaras Model In Spalart-Allmaras Model, the turbulence kinetic energy is not calculated, the last term in Equation (12) is ignored when estimating the Reynolds stresses u i u = 2ν T S i. (14) The model includes eight closure coefficients and three closure functions. Its defining equations are as follows: ν T = νf v1, f v1 = χ 3, χ = ν χ 3 + c 3 v1 ν ν is the molecular viscosity and ν obeys the transport equations ν t + U ν 1 = c b1 S ν + (ν + ν) ν ] + c b2 x σ x k x k σ 2 ν x k ν x k c w1 f w (15) ] 2 ν (16) d

3 where c b1 = , c b2 = 0.622, c v1 = 7.1, σ = 2/3 (17) c w1 = c b1 κ + (1 + c b2), c 2 w2 = 0.3, c w3 = 2, κ = 0.41 (18) σ ] χ 1 + c 6 1/6 f v2 = 1, f w = g w3, g = r + c w2(r 6 r) (19) 1 + χf v1 g 6 + c 6 w3 r = ν Sκ 2 d, ν S = S + 2 κ 2 d f v2, S = 2Ω 2 i Ω i. (20) The tensor Ω i = 1 2 (U i/x U /x i ) is the rotation tensor and d is distance from the closest surface The k ω Model The k ω model has been modified over the years, production terms have been added to both the k and ω equations, which have improved the accuracy of the model for predicting free shear flows. The following version of the k ω model is presented Kinetic eddy viscosity: ν T = k/ω (21) Turbulence Kinetic Energy: k t + U k U i = τ i β kω + x x x (ν + σ ν T ) k ] x (22) Specific Dissipation rate: ω t + U ω = α ω x k τ U i i βω 2 + x x (ν + σν T ) ω ] x (23) Closure Coefficients and Relations: α = 13 25, β = β of β, β = βof β, σ = 1 2, σ = 1 (24) 2 β o = 9 125, f β = χ ω, χ ω, = Ω i Ω k S ki χ ω (βoω) 3 (25) { βo = 9 1, χk 100, f β = χ 2 k, χ 1+400χ 2 k > 0, χ k = 1 k ω (26) ω 3 x x k ɛ = β ωk, l = k/ω (27) 3

4 1.2.4 The Standard k ɛ Model The standard k ɛ model is a semi-empirical model based on model transport equations for the turbulence kinetic energy k and its dissipation rate ɛ. The model transport equation for k is derived from the exact equation, while the model transport equation for ɛ was obtained using physical reasoning and bears little resemblance to its mathematically exact counterpart. In the derivation of the k ɛ model, it was assumed that the flow is fully turbulent, and the effects of molecular viscosity are negligible. The standard k ɛ model is therefore valid only for fully turbulent flows. Kinetic eddy viscosity: ν T = C µ k 2 /ɛ (28) Turbulence Kinetic Energy: k t + U k U i = τ i ɛ + x x x (ν + ν T /σ k ) k ] x (29) Specific Dissipation rate: ɛ t + U ɛ ɛ = C ɛ1 x k τ U i ɛ 2 i C ɛ2 x k + x Closure Coefficients and Relations: (ν + ν T /σ ɛ ) ɛ ] x (30) C ɛ1 = 1.44, C ɛ2 = 1.92, C ɛµ = 0.09, σ k = 1.0, σ ɛ = 1.3 (31) ω = ɛ/(c µ k), l = C µ k 3/2 /ɛ (32) 2 Compressible Case 2.1 Favre-averaged Equations Gorverning equations The compressible Navier-Stokes equations in conservation form are ρ t + (ρu i ) = 0 (33) x i t (ρu i) + (ρu u i ) = p + t i (34) x x i x ρ (e + 12 )] t u iu i + ρu (h + 12 )] x u iu i = (u t i ) q (35) x x where e is specific internal energy, h = e+p/ρ is specific enthalpy, t i is the viscous stress tensor, and q is the heat flux vector. For gases, the classical ideal gas law is p = ρrt = (γ 1)ρe. (36) 4

5 For the compressible flow, t i, is given by ( t i = 2µ s i 1 ) u k δ i 3 x k. (37) where the strain-rate tensor s i is given by s i = 1 ( ui + u ) 2 x x i. (38) The convective heat flux q is defined as q = κ T x (39) where κ is thermal conductivity. Furthermore, the specific internal energy and specific enthalpy are given by e = c v T, h = c p T (40) where c v and c p are the specific-heat coefficients (note that γ = c p /c v and R = c p c v ). Then, we have h q = κ/c p = µ h (41) x P r x where P r is the Prandtl number defined by Mass Averaging P r = c pµ κ. (42) Let Φ(x, t) be any dependent variable. We recall the time (Reynolds) average of P hi(x, t) defined by Φ(x, t) = 1 Φ(x, t)dt (43) T and the Reynolds decomposition defined as We now introduce the density weighted time (Favre) average T Φ = Φ + Φ. (44) Φ = ρφ ρ (45) and define the Favre decomposition as It should be noted that Φ = 0 but Φ 0. Φ = Φ + Φ. (46) 5

6 2.1.3 Turbulent Equations We first introduce the Reynolds decomposition for ρ and p and the Favre decomposition for u, e, and h as ρ = ρ + ρ, p = p + p, q = q + q (47) u i = ũ i + u i, e = ẽ + e, h = h + h. (48) We next insert them into the governing equations and the take the time average for the governing equations to obtain ρ t + (ρũ i ) = 0 (49) x i t (ρũ i) + (ρũ i ũ ) = p + t i x x i x x (ρu i u ) (50) ρũ ( h + 12ũiũ i ) ρ (ẽ + 12ũiũ ) i + 1 ] t 2 ρu i u i + x ( ) ũ i t i ρu i x u ] ρu i + ũ u i = 2 q ρu h + t i u 1 i ρu 2 u i u i ] (51) p = (γ 1)ρẽ (52) Approximations Reynolds-stress tensor: ρτ i = ρu i u = 2µ T 2.2 Turbulence Models ( S i 1 ) ũ k δ i 2 3 x k 3 ρkδ i (53) 6

2. Conservation Equations for Turbulent Flows

2. Conservation Equations for Turbulent Flows 2. Conservation Equations for Turbulent Flows Coverage of this section: Review of Tensor Notation Review of Navier-Stokes Equations for Incompressible and Compressible Flows Reynolds & Favre Averaging

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

TWO-EQUATION MODEL COMPUTATIONS OF HIGH-SPEED (M =2.25, 7.2), TURBULENT BOUNDARY LAYERS. A Thesis SRIRAM S. ARASANIPALAI

TWO-EQUATION MODEL COMPUTATIONS OF HIGH-SPEED (M =2.25, 7.2), TURBULENT BOUNDARY LAYERS. A Thesis SRIRAM S. ARASANIPALAI TWO-EQUATION MODEL COMPUTATIONS OF HIGH-SPEED (M =2.25, 7.2), TURBULENT BOUNDARY LAYERS A Thesis by SRIRAM S. ARASANIPALAI Submitted to the Office of Graduate Studies of Texas A&M University in partial

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Introduction of compressible turbulence

Introduction of compressible turbulence Introduction of compressible turbulence 1 Main topics Derive averaged equations for compressible turbulence Introduce a math. technique to perform averaging in presence of density variation Favre average

More information

Turbulence modelling. Sørensen, Niels N. Publication date: Link back to DTU Orbit

Turbulence modelling. Sørensen, Niels N. Publication date: Link back to DTU Orbit Downloaded from orbit.dtu.dk on: Dec 19, 2017 Turbulence modelling Sørensen, Niels N. Publication date: 2010 Link back to DTU Orbit Citation (APA): Sørensen, N. N. (2010). Turbulence modelling. Paper presented

More information

Physics of turbulent flow

Physics of turbulent flow ECL-MOD 3A & MSc. Physics of turbulent flow Christophe Bailly Université de Lyon, Ecole Centrale de Lyon & LMFA - UMR CNRS 5509 http://acoustique.ec-lyon.fr Outline of the course A short introduction to

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #195

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #195 . 18 m 2012 th International Conference ENGINEERING MECHANICS 2012 pp. 309 315 Svratka, Czech Republic, May 14 17, 2012 Paper #195 NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY

More information

Mass Transfer in Turbulent Flow

Mass Transfer in Turbulent Flow Mass Transfer in Turbulent Flow ChEn 6603 References: S.. Pope. Turbulent Flows. Cambridge University Press, New York, 2000. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

RANS Equations in Curvilinear Coordinates

RANS Equations in Curvilinear Coordinates Appendix C RANS Equations in Curvilinear Coordinates To begin with, the Reynolds-averaged Navier-Stokes RANS equations are presented in the familiar vector and Cartesian tensor forms. Each term in the

More information

Turbulence Solutions

Turbulence Solutions School of Mechanical, Aerospace & Civil Engineering 3rd Year/MSc Fluids Turbulence Solutions Question 1. Decomposing into mean and fluctuating parts, we write M = M + m and Ũ i = U i + u i a. The transport

More information

Turbulence models and excitation of solar oscillation modes

Turbulence models and excitation of solar oscillation modes Center for Turbulence Research Annual Research Briefs Turbulence models and excitation of solar oscillation modes By L. Jacoutot, A. Wray, A. G. Kosovichev AND N. N. Mansour. Motivation and objectives

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY

NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY Engineering MECHANICS, Vol. 20, 2013, No. 5, p. 379 388 379 NUMERICAL SIMULATION OF TRANSITIONAL FLOWS WITH LAMINAR KINETIC ENERGY JiříFürst* The article deals with the numerical solution of transitional

More information

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ Chapter 2 Mathematical Models The following sections present the equations which are used in the numerical simulations documented in this thesis. For clarity, equations have been presented in Cartesian

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2 Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2 Department of Mechanical and Materials Engineering, Military Engineering Institute,

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

The Johns Hopkins Turbulence Databases (JHTDB)

The Johns Hopkins Turbulence Databases (JHTDB) The Johns Hopkins Turbulence Databases (JHTDB) HOMOGENEOUS BUOYANCY DRIVEN TURBULENCE DATA SET Data provenance: D. Livescu 1 Database Ingest and Web Services: C. Canada 1, K. Kalin 2, R. Burns 2 & IDIES

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model Hybrid RANS Method Based on an Explicit Algebraic Reynolds Stress Model Benoit Jaffrézic, Michael Breuer and Antonio Delgado Institute of Fluid Mechanics, LSTM University of Nürnberg bjaffrez/breuer@lstm.uni-erlangen.de

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Dynamic k-equation Model for Large Eddy Simulation of Compressible Flows. Xiaochuan Chai and Krishnan Mahesh

Dynamic k-equation Model for Large Eddy Simulation of Compressible Flows. Xiaochuan Chai and Krishnan Mahesh 40th Fluid Dynamics Conference and Exhibit 8 June - July 00, Chicago, Illinois AIAA 00-506 Dynamic k-equation Model for Large Eddy Simulation of Compressible Flows Xiaochuan Chai and Krishnan Mahesh University

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Governing Equations for Turbulent Flow

Governing Equations for Turbulent Flow Governing Equations for Turbulent Flow (i) Boundary Layer on a Flat Plate ρu x Re x = = Reynolds Number µ Re Re x =5(10) 5 Re x =10 6 x =0 u/ U = 0.99 層流區域 過渡區域 紊流區域 Thickness of boundary layer The Origin

More information

Corso di Laurea in Ingegneria Aerospaziale. Performance of CFD packages for flow simulations in aerospace applications

Corso di Laurea in Ingegneria Aerospaziale. Performance of CFD packages for flow simulations in aerospace applications Universitá degli Studi di Padova Dipartimento di Ingegneria Industriale DII Department of Industrial Engineering Corso di Laurea in Ingegneria Aerospaziale Performance of CFD packages for flow simulations

More information

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM 206 9th International Conference on Developments in esystems Engineering A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM Hayder Al-Jelawy, Stefan Kaczmarczyk

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows

The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows Flow Turbulence Combust (2017) 99:279 327 DOI 10.1007/s10494-017-9828-8 The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows Bruno Chaouat 1 Received: 22 April 2017 /

More information

Aalto University School of Science and Technology CFD-group/ Department of Applied Mechanics. MEMO No CFD/MECHA DATE: March 15, 2012

Aalto University School of Science and Technology CFD-group/ Department of Applied Mechanics. MEMO No CFD/MECHA DATE: March 15, 2012 Aalto University School of Science and Technology CFD-group/ Department of Applied Mechanics MEMO No CFD/MECHA-2-212 DATE: March 15, 212 TITLE The Effect of Free-Stream Turbulence Parameters on the SST

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

Exam in Fluid Mechanics 5C1214

Exam in Fluid Mechanics 5C1214 Eam in Fluid Mechanics 5C1214 Final eam in course 5C1214 13/01 2004 09-13 in Q24 Eaminer: Prof. Dan Henningson The point value of each question is given in parenthesis and you need more than 20 points

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics.

Turbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics. Outline Department of Fluid Mechanics, Budapest University of Technology and Economics October 2009 Outline Outline Definition and Properties of Properties High Re number Disordered, chaotic 3D phenomena

More information

Optimization of Turbulent Prandtl Number in Turbulent, Wall Bounded Flows

Optimization of Turbulent Prandtl Number in Turbulent, Wall Bounded Flows University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Optimization of Turbulent Prandtl Number in Turbulent, Wall Bounded Flows Donald Edward

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Self-study manual for introduction to computational fluid dynamics

Self-study manual for introduction to computational fluid dynamics Self-study manual for introduction to computational fluid dynamics Bachelor s thesis Riihimäki, Mechanical Engineering and Production Technology Spring 2017 Andrey Nabatov ABSTRACT Mechanical Engineering

More information

Entropy generation and transport

Entropy generation and transport Chapter 7 Entropy generation and transport 7.1 Convective form of the Gibbs equation In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

More information

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly 1. Introduction to Turbulent Flows Coverage of this section: Definition of Turbulence Features of Turbulent Flows Numerical Modelling Challenges History of Turbulence Modelling 1 1.1 Definition of Turbulence

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Transport equations, Navier Stokes equations Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav

More information

2 LES Governing Equations

2 LES Governing Equations 2 LES Governing Equations This chapter is divided in five main parts. The first one is devoted to the presentation of the chosen set of equations. The second part deals with the filtering paradigm and

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Hybrid RANS/LES simulations of a cavitating flow in Venturi

Hybrid RANS/LES simulations of a cavitating flow in Venturi Hybrid RANS/LES simulations of a cavitating flow in Venturi TSFP-8, 28-31 August 2013 - Poitiers - France Jean Decaix jean.decaix@hevs.ch University of Applied Sciences, Western Switzerland Eric Goncalves

More information

Several forms of the equations of motion

Several forms of the equations of motion Chapter 6 Several forms of the equations of motion 6.1 The Navier-Stokes equations Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Computation of hypersonic shock boundary layer interaction on a double wedge using a differential Reynolds Stress Model

Computation of hypersonic shock boundary layer interaction on a double wedge using a differential Reynolds Stress Model Computation of hypersonic shock boundary layer interaction on a double wedge using a differential Reynolds Stress Model A. Bosco AICES, Templergraben 55, Aachen, 52056, Germany B. Reinartz CATS, Theaterplatz

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

Numerical Simulation of a Blunt Airfoil Wake

Numerical Simulation of a Blunt Airfoil Wake 6th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 7 Numerical Simulation of a Blunt Airfoil Wake C.J. Doolan School of Mechanical Engineering University of Adelaide,

More information

1 Mean Flow Equations

1 Mean Flow Equations ME 543 Averaged Equations 23 January 2018 These notes are meant as a supplement to the text, and as an aid for the class notes, but not as an independent document. 1 Mean Flow Equations 1.1 Mean flow equations

More information

A physically consistent and numerically robust k-ɛ model for computing turbulent flows with shock waves

A physically consistent and numerically robust k-ɛ model for computing turbulent flows with shock waves A physically consistent and numerically robust k-ɛ model for computing turbulent flows with shock waves Pratikkumar Raje, Krishnendu Sinha Indian Institute of Technology Bombay, Mumbai, 400076, India Abstract

More information

The Kolmogorov Law of turbulence

The Kolmogorov Law of turbulence What can rigorously be proved? IRMAR, UMR CNRS 6625. Labex CHL. University of RENNES 1, FRANCE Introduction Aim: Mathematical framework for the Kolomogorov laws. Table of contents 1 Incompressible Navier-Stokes

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations Needs work : define boundary conditions and fluxes before, change slides 1-2-3 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,

More information

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 9 (September 2017), PP.12-19 CFD Analysis for Thermal Behavior of Turbulent

More information

Evaluation of Turbulence Models in Gas Dispersion

Evaluation of Turbulence Models in Gas Dispersion Evaluation of Turbulence Models in Gas Dispersion Alexander Moen University of Bergen, Department of Physics and Technology Bergen, Norway A thesis in partial fulfilment of the requirements for the degree

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Turbulent Rankine Vortices

Turbulent Rankine Vortices Turbulent Rankine Vortices Roger Kingdon April 2008 Turbulent Rankine Vortices Overview of key results in the theory of turbulence Motivation for a fresh perspective on turbulence The Rankine vortex CFD

More information

Usman Zamir Afridi. Numerical Simulation of turbulent Flow Over a Cavity

Usman Zamir Afridi. Numerical Simulation of turbulent Flow Over a Cavity Usman Zamir Afridi Numerical Simulation of turbulent Flow Over a Cavity Department of Applied Mechanics Division of Fluid Dynamics Chalmers University of Technology Göteborg Sweden, 2012 Master s Thesis

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

Modelling Turbulent Non-Premixed Combustion in Industrial Furnaces

Modelling Turbulent Non-Premixed Combustion in Industrial Furnaces Modelling Turbulent Non-Premixed Combustion in Industrial Furnaces Using the Open Source Toolbox OpenFOAM by Ali Hussain Kadar to obtain the degree of Master of Science at the Delft University of Technology,

More information

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT CHAPTER 8 ENTROPY GENERATION AND TRANSPORT 8.1 CONVECTIVE FORM OF THE GIBBS EQUATION In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

Numerical modeling of complex turbulent flows

Numerical modeling of complex turbulent flows ISTP-16, 5, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA Numerical modeling of complex turbulent flows Karel Kozel Petr Louda Jaromír Příhoda Dept. of Technical Mathematics CTU Prague, Karlovo

More information

Regularization modeling of turbulent mixing; sweeping the scales

Regularization modeling of turbulent mixing; sweeping the scales Regularization modeling of turbulent mixing; sweeping the scales Bernard J. Geurts Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) D 2 HFest, July 22-28, 2007 Turbulence

More information

Modications and Clarications for the Implementation of the Spalart-Allmaras Turbulence Model

Modications and Clarications for the Implementation of the Spalart-Allmaras Turbulence Model Modications and Clarications for the Implementation of the Spalart-Allmaras Turbulence Model Steven R. Allmaras, Forrester T. Johnson and Philippe R. Spalart corresponding author: steven.r.allmaras@gmail.com

More information

Evaluation Study of Pressure-Strain Correlation Models in Compressible Flow

Evaluation Study of Pressure-Strain Correlation Models in Compressible Flow Journal of Applied Fluid Mechanics, Vol. 9, No. 6, pp. 2685-2693, 2016. Available online at www.jafmonline.net, SSN 1735-3572, ESSN 1735-3645. Evaluation Study of ressure-strain Correlation Models in Compressible

More information

Inverse Turbulence Modeling of channel flow using Continuous Adjoint method

Inverse Turbulence Modeling of channel flow using Continuous Adjoint method Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2016 Inverse Turbulence Modeling of channel flow using Continuous Adjoint method Kumar Vishal Iowa State University

More information

Introduction to ANSYS FLUENT

Introduction to ANSYS FLUENT Lecture 6 Turbulence 14. 0 Release Introduction to ANSYS FLUENT 1 2011 ANSYS, Inc. January 19, 2012 Lecture Theme: Introduction The majority of engineering flows are turbulent. Successfully simulating

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient):

The mean shear stress has both viscous and turbulent parts. In simple shear (i.e. U / y the only non-zero mean gradient): 8. TURBULENCE MODELLING 1 SPRING 2019 8.1 Eddy-viscosity models 8.2 Advanced turbulence models 8.3 Wall boundary conditions Summary References Appendix: Derivation of the turbulent kinetic energy equation

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2011 Outline Outline Part I First Lecture Connection between time and ensemble average Ergodicity1 Ergodicity

More information

Predicting natural transition using large eddy simulation

Predicting natural transition using large eddy simulation Center for Turbulence Research Annual Research Briefs 2011 97 Predicting natural transition using large eddy simulation By T. Sayadi AND P. Moin 1. Motivation and objectives Transition has a big impact

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

A Hydrodynamic Interpretation of Quantum Mechanics via Turbulence

A Hydrodynamic Interpretation of Quantum Mechanics via Turbulence [arxiv 1804.0095] A Hydrodynamic Interpretation of Quantum Mechanics via Turbulence Roumen Tsekov 1, Eyal Heifetz and Eliahu Cohen 1 Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria

More information