Simultaneous Sparsity

Size: px
Start display at page:

Download "Simultaneous Sparsity"

Transcription

1 Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg Department of Mathematics The University of Michigan 1

2 Simple Sparse Approximation Work in the d-dimensional, complex inner-product space C d Let {ϕ ω : ω Ω} be a collection of unit-norm elementary signals Choose T indices λ 1,..., λ T Ω Suppose we measure a noisy sparse signal s = T c t ϕ λt t=1 + ν The simple sparse approximation problem asks 1. Can we identify the indices λ 1,..., λ T? 2. Can we estimate the coefficients c 1,..., c T? Simultaneous Sparse Approximation (ICASSP 2005) 2

3 Facts about Greedy Algorithms A greedy algorithm for sparse approximation makes locally optimal choices in an effort to obtain a good global solution. Advantages Fast Easy to implement Work well for many problems Disadvantages Less robust than l 1 methods Not effective for superresolution Simultaneous Sparse Approximation (ICASSP 2005) 3

4 Orthogonal Matching Pursuit (OMP) Input: A signal s and the number of terms T Output: Indices {λ 1,..., λ T } and coefficients {c 1,..., c T } 1. Set the initial residual r 0 = s and the counter t = 1 2. Find an index λ t that solves max ω Ω r t 1, ϕ ω 3. Determine the orthogonal projector P t onto span {ϕ λ1,..., ϕ λt } 4. Calculate the new residual: r t = s P t s 5. Increment t, and repeat until t = T 6. The coefficient estimates appear in the expansion P T s = T t=1 c t ϕ λt Simultaneous Sparse Approximation (ICASSP 2005) 4

5 Simultaneous Sparse Approximation Idea: More observations should make the problem easier Choose T indices λ 1,..., λ T Ω Suppose we measure K noisy sparse signals s k = T c tk ϕ λt t=1 + ν k The simultaneous sparse approximation problem asks 1. Can we identify the indices λ 1,..., λ T? 2. Can we estimate the set of coefficients {c tk }? Simultaneous Sparse Approximation (ICASSP 2005) 5

6 Application: MIMO Communications Transmit 1: ϕ λ1 Receive 1: Transmit 2: ϕ λ2 Receive 2: Transmit t: ϕ λt Receive k: t h t1 ϕ λt + ν 1 t h t2 ϕ λt + ν 2 t h tk ϕ λt + ν k The dimension d corresponds with the length of a transmission block Send one elementary signal on each of T transmit antennas Measure one superposition on each of K receive antennas The numbers h tk are fading coefficients The vectors ν k are additive noise Goal: Identify which elementary signals were transmitted Simultaneous Sparse Approximation (ICASSP 2005) 6

7 Simultaneous OMP Input: A d K signal matrix S and the number of terms T Output: Indices {λ 1,..., λ T } 1. Set the initial residual R 0 = S and the counter t = 1 2. Find an index λ t that solves max ω Ω K R t 1 e k, ϕ ω k=1 3. Determine the orthogonal projector P t onto span {ϕ λ1,..., ϕ λt } 4. Calculate the new residual: R t = S P t S 5. Increment t, and repeat until t = T Simultaneous Sparse Approximation (ICASSP 2005) 7

8 Experiments with S-OMP The Z 4 Kerdock code yields 64 elementary signals in C 8 Fix the number of transmit/receive antennas and the SNR For each trial, we construct K signals s k = T h tk ϕ λt t=1 + ν k where h tk are Gaussian variables and ν k are Gaussian vectors S-OMP is used to pick T elementary signals Calculate the fraction correctly identified Average over 1000 trials Simultaneous Sparse Approximation (ICASSP 2005) 8

9 Hamming distance per receive antenna as a function of SNR at 4 transmit antennas dB 16dB 13dB 11.2dB 10dB 6dB 0.4 hamming distance number of receive antennas Simultaneous Sparse Approximation (ICASSP 2005) 9

10 Hamming distance as a function of k receive antennas at SNR = 20dB k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 0.5 hamming distance number of transmit antennas Simultaneous Sparse Approximation (ICASSP 2005) 10

11 A Theoretical Result for S-OMP Claim: Each result for simple sparse approximation has an analog for simultaneous sparse approximation. Define the coherence parameter µ = max λ ω ϕ λ, ϕ ω Theorem 1. Suppose that T µ 1 3. Let S be a signal matrix. After T iterations, S-OMP calculates a T -term approximation A T of the signal matrix that satisfies S A T F KT S A opt F where A opt is the optimal T -term approximation of S in Frobenius norm. Simultaneous Sparse Approximation (ICASSP 2005) 11

12 Convex Relaxation for SSA Can view simultaneous sparse approximation as a combinatorial optimization problem min C # nonzero rows of C subject to S Φ C F ε Can replace this combinatorial problem with a related convex program min C ω max k c ωk subject to S Φ C F δ One can prove the two problems often have similar solutions Simultaneous Sparse Approximation (ICASSP 2005) 12

13 Related Work Çetin, Malioutov, Willsky (Algorithms, Applications) Chen, Huo (Theory) Cotter, Engan, Kreutz-Delgado, Rao, et al. (Algorithms, Applications) Gribonval, Nielsen (Theory, Applications) Leviatan, Lutoborsky, Temlyakov (Theory) Simultaneous Sparse Approximation (ICASSP 2005) 13

14 Publications and Preprints TGS, Simultaneous sparse approximation via greedy pursuit, ICASSP TGS, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, submitted November T, Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, submitted November GT, Applications of sparse approximation in communications, submitted January TG, Signal recovery from partial information via Orthogonal Matching Pursuit, submitted March Papers available from Contact information: {jtropp annacg Simultaneous Sparse Approximation (ICASSP 2005) 14

15 Greed: Still Good 100 Percentage of input signals recovered (d = 256) Percentage recovered m=4 m=12 m=20 m=28 m= Number of measurements (N) Simultaneous Sparse Approximation (ICASSP 2005) 15

16 Greed: Still Good Theorem 2. Suppose that s is an arbitrary m-sparse signal in R d. Given K p m log d random linear measurements of s, OMP can recover s with probability 1 O(d p ). This theorem is more or less equivalent with results for l 1 minimization due to Candès Tao, Donoho, and Rudelson Vershynin. Simultaneous Sparse Approximation (ICASSP 2005) 16

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION PART II: CONVEX RELAXATION

ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION PART II: CONVEX RELAXATION ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION PART II: CONVEX RELAXATION JOEL A TROPP Abstract A simultaneous sparse approximation problem requests a good approximation of several input signals at once

More information

Robust multichannel sparse recovery

Robust multichannel sparse recovery Robust multichannel sparse recovery Esa Ollila Department of Signal Processing and Acoustics Aalto University, Finland SUPELEC, Feb 4th, 2015 1 Introduction 2 Nonparametric sparse recovery 3 Simulation

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE METHODS AND APPLICATIONS OF ANALYSIS. c 2011 International Press Vol. 18, No. 1, pp. 105 110, March 2011 007 EXACT SUPPORT RECOVERY FOR LINEAR INVERSE PROBLEMS WITH SPARSITY CONSTRAINTS DENNIS TREDE Abstract.

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 12, DECEMBER 2008 2009 Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation Yuanqing Li, Member, IEEE, Andrzej Cichocki,

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

On the Role of the Properties of the Nonzero Entries on Sparse Signal Recovery

On the Role of the Properties of the Nonzero Entries on Sparse Signal Recovery On the Role of the Properties of the Nonzero Entries on Sparse Signal Recovery Yuzhe Jin and Bhaskar D. Rao Department of Electrical and Computer Engineering, University of California at San Diego, La

More information

SPARSE signal processing has recently been exploited in

SPARSE signal processing has recently been exploited in JOURNA OF A TEX CASS FIES, VO. 14, NO. 8, AUGUST 2015 1 Simultaneous Sparse Approximation Using an Iterative Method with Adaptive Thresholding Shahrzad Kiani, Sahar Sadrizadeh, Mahdi Boloursaz, Student

More information

EUSIPCO

EUSIPCO EUSIPCO 013 1569746769 SUBSET PURSUIT FOR ANALYSIS DICTIONARY LEARNING Ye Zhang 1,, Haolong Wang 1, Tenglong Yu 1, Wenwu Wang 1 Department of Electronic and Information Engineering, Nanchang University,

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Designing Information Devices and Systems I Discussion 13B

Designing Information Devices and Systems I Discussion 13B EECS 6A Fall 7 Designing Information Devices and Systems I Discussion 3B. Orthogonal Matching Pursuit Lecture Orthogonal Matching Pursuit (OMP) algorithm: Inputs: A set of m songs, each of length n: S

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Yin Zhang Technical Report TR05-06 Department of Computational and Applied Mathematics Rice University,

More information

THE emerging theory of compressed sensing (CS) supplies. Joint Sparse Recovery with Semi-Supervised MUSIC. arxiv: v1 [cs.

THE emerging theory of compressed sensing (CS) supplies. Joint Sparse Recovery with Semi-Supervised MUSIC. arxiv: v1 [cs. 1 Joint Sparse Recovery with Semi-Supervised MUSIC Zaidao Wen, Biao Hou, Member, IEEE, Licheng Jiao, Senior Member, IEEE arxiv:1705.09446v1 [cs.it] 26 May 2017 Abstract Discrete multiple signal classification

More information

Interpolation via weighted l 1 minimization

Interpolation via weighted l 1 minimization Interpolation via weighted l 1 minimization Rachel Ward University of Texas at Austin December 12, 2014 Joint work with Holger Rauhut (Aachen University) Function interpolation Given a function f : D C

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery

On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery Jeffrey D. Blanchard a,1,, Caleb Leedy a,2, Yimin Wu a,2 a Department of Mathematics and Statistics, Grinnell College, Grinnell, IA

More information

Sparse & Redundant Signal Representation, and its Role in Image Processing

Sparse & Redundant Signal Representation, and its Role in Image Processing Sparse & Redundant Signal Representation, and its Role in Michael Elad The CS Department The Technion Israel Institute of technology Haifa 3000, Israel Wave 006 Wavelet and Applications Ecole Polytechnique

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

A simple test to check the optimality of sparse signal approximations

A simple test to check the optimality of sparse signal approximations A simple test to check the optimality of sparse signal approximations Rémi Gribonval, Rosa Maria Figueras I Ventura, Pierre Vergheynst To cite this version: Rémi Gribonval, Rosa Maria Figueras I Ventura,

More information

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Hufei Zhu, Ganghua Yang Communications Technology Laboratory Huawei Technologies Co Ltd, P R China

More information

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1239 Preconditioning for Underdetermined Linear Systems with Sparse Solutions Evaggelia Tsiligianni, StudentMember,IEEE, Lisimachos P. Kondi,

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Robust Sparse Recovery via Non-Convex Optimization

Robust Sparse Recovery via Non-Convex Optimization Robust Sparse Recovery via Non-Convex Optimization Laming Chen and Yuantao Gu Department of Electronic Engineering, Tsinghua University Homepage: http://gu.ee.tsinghua.edu.cn/ Email: gyt@tsinghua.edu.cn

More information

SGN Advanced Signal Processing Project bonus: Sparse model estimation

SGN Advanced Signal Processing Project bonus: Sparse model estimation SGN 21006 Advanced Signal Processing Project bonus: Sparse model estimation Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 12 Sparse models Initial problem: solve

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES A NEW FRAMEWORK FOR DESIGNING INCOERENT SPARSIFYING DICTIONARIES Gang Li, Zhihui Zhu, 2 uang Bai, 3 and Aihua Yu 3 School of Automation & EE, Zhejiang Univ. of Sci. & Tech., angzhou, Zhejiang, P.R. China

More information

Numerical Methods. Rafał Zdunek Underdetermined problems (2h.) Applications) (FOCUSS, M-FOCUSS,

Numerical Methods. Rafał Zdunek Underdetermined problems (2h.) Applications) (FOCUSS, M-FOCUSS, Numerical Methods Rafał Zdunek Underdetermined problems (h.) (FOCUSS, M-FOCUSS, M Applications) Introduction Solutions to underdetermined linear systems, Morphological constraints, FOCUSS algorithm, M-FOCUSS

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Boaz Nadler The Weizmann Institute of Science Israel Joint works with Inbal Horev, Ronen Basri, Meirav Galun and Ery Arias-Castro

More information

Recovery Guarantees for Rank Aware Pursuits

Recovery Guarantees for Rank Aware Pursuits BLANCHARD AND DAVIES: RECOVERY GUARANTEES FOR RANK AWARE PURSUITS 1 Recovery Guarantees for Rank Aware Pursuits Jeffrey D. Blanchard and Mike E. Davies Abstract This paper considers sufficient conditions

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

A Performance Guarantee for Orthogonal Matching Pursuit Using Mutual Coherence

A Performance Guarantee for Orthogonal Matching Pursuit Using Mutual Coherence oname manuscript o. (will be inserted by the editor) A Performance Guarantee for Orthogonal Matching Pursuit Using Mutual Coherence Mohammad Emadi Ehsan Miandji Jonas Unger the date of receipt and acceptance

More information

Copyright by Joel Aaron Tropp 2004

Copyright by Joel Aaron Tropp 2004 Copyright by Joel Aaron Tropp 2004 The Dissertation Committee for Joel Aaron Tropp certifies that this is the approved version of the following dissertation: Topics in Sparse Approximation Committee: Inderjit

More information

Uncertainty principles and sparse approximation

Uncertainty principles and sparse approximation Uncertainty principles and sparse approximation In this lecture, we will consider the special case where the dictionary Ψ is composed of a pair of orthobases. We will see that our ability to find a sparse

More information

Compressed Sensing and Redundant Dictionaries

Compressed Sensing and Redundant Dictionaries Compressed Sensing and Redundant Dictionaries Holger Rauhut, Karin Schnass and Pierre Vandergheynst December 2, 2006 Abstract This article extends the concept of compressed sensing to signals that are

More information

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Athina P. Petropulu Department of Electrical and Computer Engineering Rutgers, the State University of New Jersey Acknowledgments Shunqiao

More information

MATCHING PURSUIT WITH STOCHASTIC SELECTION

MATCHING PURSUIT WITH STOCHASTIC SELECTION 2th European Signal Processing Conference (EUSIPCO 22) Bucharest, Romania, August 27-3, 22 MATCHING PURSUIT WITH STOCHASTIC SELECTION Thomas Peel, Valentin Emiya, Liva Ralaivola Aix-Marseille Université

More information

Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information

Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information 1 Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information Emmanuel Candès, California Institute of Technology International Conference on Computational Harmonic

More information

Randomness-in-Structured Ensembles for Compressed Sensing of Images

Randomness-in-Structured Ensembles for Compressed Sensing of Images Randomness-in-Structured Ensembles for Compressed Sensing of Images Abdolreza Abdolhosseini Moghadam Dep. of Electrical and Computer Engineering Michigan State University Email: abdolhos@msu.edu Hayder

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

PHASE TRANSITION OF JOINT-SPARSE RECOVERY FROM MULTIPLE MEASUREMENTS VIA CONVEX OPTIMIZATION

PHASE TRANSITION OF JOINT-SPARSE RECOVERY FROM MULTIPLE MEASUREMENTS VIA CONVEX OPTIMIZATION PHASE TRASITIO OF JOIT-SPARSE RECOVERY FROM MUTIPE MEASUREMETS VIA COVEX OPTIMIZATIO Shih-Wei Hu,, Gang-Xuan in, Sung-Hsien Hsieh, and Chun-Shien u Institute of Information Science, Academia Sinica, Taipei,

More information

DISTRIBUTED TARGET LOCALIZATION VIA SPATIAL SPARSITY

DISTRIBUTED TARGET LOCALIZATION VIA SPATIAL SPARSITY First published in the Proceedings of the 16th European Signal Processing Conference (EUSIPCO-2008) in 2008, published by EURASIP DISTRIBUTED TARGET LOCALIZATION VIA SPATIAL SPARSITY Volkan Cevher, Marco

More information

LATELY, there has been a lot of fuss about sparse approximation. Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise

LATELY, there has been a lot of fuss about sparse approximation. Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise 1030 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006 Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise Joel A. Tropp, Student Member, IEEE Abstract This

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Sparse recovery using sparse random matrices

Sparse recovery using sparse random matrices Sparse recovery using sparse random matrices Radu Berinde MIT texel@mit.edu Piotr Indyk MIT indyk@mit.edu April 26, 2008 Abstract We consider the approximate sparse recovery problem, where the goal is

More information

Recovery of Sparse Signals Using Multiple Orthogonal Least Squares

Recovery of Sparse Signals Using Multiple Orthogonal Least Squares Recovery of Sparse Signals Using Multiple Orthogonal east Squares Jian Wang, Ping i Department of Statistics and Biostatistics arxiv:40.505v [stat.me] 9 Oct 04 Department of Computer Science Rutgers University

More information

Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery

Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery : Distribution-Oblivious Support Recovery Yudong Chen Department of Electrical and Computer Engineering The University of Texas at Austin Austin, TX 7872 Constantine Caramanis Department of Electrical

More information

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

Tutorial: Sparse Signal Recovery

Tutorial: Sparse Signal Recovery Tutorial: Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan (Sparse) Signal recovery problem signal or population length N k important Φ x = y measurements or tests:

More information

Abstract This paper is about the efficient solution of large-scale compressed sensing problems.

Abstract This paper is about the efficient solution of large-scale compressed sensing problems. Noname manuscript No. (will be inserted by the editor) Optimization for Compressed Sensing: New Insights and Alternatives Robert Vanderbei and Han Liu and Lie Wang Received: date / Accepted: date Abstract

More information

On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements Mihailo Stojnic, Farzad Parvaresh, and Babak Hassibi

On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements Mihailo Stojnic, Farzad Parvaresh, and Babak Hassibi IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 57, NO 8, AUGUST 2009 3075 On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements Mihailo Stojnic, Farzad Parvaresh, Babak Hassibi

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Compressed Sensing and Redundant Dictionaries

Compressed Sensing and Redundant Dictionaries Compressed Sensing and Redundant Dictionaries Holger Rauhut, Karin Schnass and Pierre Vandergheynst Abstract This article extends the concept of compressed sensing to signals that are not sparse in an

More information

Analysis of Robust PCA via Local Incoherence

Analysis of Robust PCA via Local Incoherence Analysis of Robust PCA via Local Incoherence Huishuai Zhang Department of EECS Syracuse University Syracuse, NY 3244 hzhan23@syr.edu Yi Zhou Department of EECS Syracuse University Syracuse, NY 3244 yzhou35@syr.edu

More information

L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise

L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise Srdjan Stanković, Irena Orović and Moeness Amin 1 Abstract- A modification of standard

More information

Error Correction via Linear Programming

Error Correction via Linear Programming Error Correction via Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles,

More information

Sparse Approximation of Signals with Highly Coherent Dictionaries

Sparse Approximation of Signals with Highly Coherent Dictionaries Sparse Approximation of Signals with Highly Coherent Dictionaries Bishnu P. Lamichhane and Laura Rebollo-Neira b.p.lamichhane@aston.ac.uk, rebollol@aston.ac.uk Support from EPSRC (EP/D062632/1) is acknowledged

More information

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego 1 Outline Course Outline Motivation for Course Sparse Signal Recovery Problem Applications Computational

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 25

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 25 EECS 6 Designing Information Devices and Systems I Spring 8 Lecture Notes Note 5 5. Speeding up OMP In the last lecture note, we introduced orthogonal matching pursuit OMP, an algorithm that can extract

More information

Compressed Sensing with Very Sparse Gaussian Random Projections

Compressed Sensing with Very Sparse Gaussian Random Projections Compressed Sensing with Very Sparse Gaussian Random Projections arxiv:408.504v stat.me] Aug 04 Ping Li Department of Statistics and Biostatistics Department of Computer Science Rutgers University Piscataway,

More information

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS YIN ZHANG Abstract. Compressive sensing (CS) is an emerging methodology in computational signal processing that has

More information

Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1

Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1 Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3740 Ming-Jun Lai Department of Mathematics

More information

ORTHOGONAL matching pursuit (OMP) is the canonical

ORTHOGONAL matching pursuit (OMP) is the canonical IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4395 Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property Mark A. Davenport, Member, IEEE, and Michael

More information

An Adaptive Sublinear Time Block Sparse Fourier Transform

An Adaptive Sublinear Time Block Sparse Fourier Transform An Adaptive Sublinear Time Block Sparse Fourier Transform Volkan Cevher Michael Kapralov Jonathan Scarlett Amir Zandieh EPFL February 8th 217 Given x C N, compute the Discrete Fourier Transform (DFT) of

More information

Fast Sparse Representation Based on Smoothed

Fast Sparse Representation Based on Smoothed Fast Sparse Representation Based on Smoothed l 0 Norm G. Hosein Mohimani 1, Massoud Babaie-Zadeh 1,, and Christian Jutten 2 1 Electrical Engineering Department, Advanced Communications Research Institute

More information

A simple test to check the optimality of sparse signal approximations

A simple test to check the optimality of sparse signal approximations A simple test to check the optimality of sparse signal approximations Rémi Gribonval, Rosa Maria Figueras I Ventura, Pierre Vandergheynst To cite this version: Rémi Gribonval, Rosa Maria Figueras I Ventura,

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Fast Algorithms for Sparse Recovery with Perturbed Dictionary

Fast Algorithms for Sparse Recovery with Perturbed Dictionary Fast Algorithms for Sparse Recovery with Perturbed Dictionary Xuebing Han, Hao Zhang, Gang Li arxiv:.637v3 cs.it May Abstract In this paper, we account for approaches of sparse recovery from large underdetermined

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

17 Random Projections and Orthogonal Matching Pursuit

17 Random Projections and Orthogonal Matching Pursuit 17 Random Projections and Orthogonal Matching Pursuit Again we will consider high-dimensional data P. Now we will consider the uses and effects of randomness. We will use it to simplify P (put it in a

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

A Continuation Approach to Estimate a Solution Path of Mixed L2-L0 Minimization Problems

A Continuation Approach to Estimate a Solution Path of Mixed L2-L0 Minimization Problems A Continuation Approach to Estimate a Solution Path of Mixed L2-L Minimization Problems Junbo Duan, Charles Soussen, David Brie, Jérôme Idier Centre de Recherche en Automatique de Nancy Nancy-University,

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Signal Sparsity Models: Theory and Applications

Signal Sparsity Models: Theory and Applications Signal Sparsity Models: Theory and Applications Raja Giryes Computer Science Department, Technion Michael Elad, Technion, Haifa Israel Sangnam Nam, CMI, Marseille France Remi Gribonval, INRIA, Rennes France

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information