Lecture 3 Basic Feedback

Size: px
Start display at page:

Download "Lecture 3 Basic Feedback"

Transcription

1 Lecture 3 Basic Feeback Simple control esign an analsis Linear moel with feeback control Use simple moel esign control valiate Simple P loop with an integrator Velocit estimation Time scale Cascae control loops Control Engineering 3-

2 Feeback Stabilit State Space x t Ax + Cx Bu Close-loop namics x t A K x + B K Simple feeback control u K ) A K B K ( A BKC BK Stabilit is escribe b the close-loop poles { λ j} eig( AK ) Control Engineering 3-2

3 Close-loop eigenvalues F6 Longituinal Moel Example A C 57.3 [ ] B Roots poles eigenvalues eig( A BKC Can be plotte for ifferent gains K Root locus plot ) % Take A from % the F6 example >> eig(a) ans i i.97 % Close-loop poles >> K -.2; >> eig(a-b*k*c) ans i i Control Engineering 3-3

4 Close-loop poles Transfer function poles tells ou everthing about stabilit Moel-base analsis for a simple feeback example: u H ( s) u K( ) H ( s) K L( s) + H ( s) K If H(s) is a rational transfer function Then L(s) also is a rational transfer function Stabilit is etermine b the poles of L(s) Same results as for the state space analsis Control Engineering 3-4

5 Control of a st orer sstem Simplest namics, st orer sstem Simple feeback works just fine Static output feeback is sometimes calle P control P proportional The name P is use in process inustries an in servosstems, less in flight control Close-loop namics are ver well unerstoo Can be use as a esign template for more complex sstems, cascae loops Control Engineering 3-5

6 Control of a st orer sstem First orer sstem, integrator namics x t x + bu x A B C b P Control u k ( ) Close loop namics x t kb ( ) Eigenvaluepole λ kb Control Engineering 3-6

7 P control - example Integrator plant: & bu + w (t) -u(t) P controller: u k (t) P( ) Example: Utilization control in a vieo server Vieo stream i processing time c[i], perio p[i] CPU utilization: U[i]c[i]/p[i] u(t) (t) (t) -(t) CPU amission rate server utilization completion rate t U new Control Engineering 3-7 t U one

8 P control Close-loop namics & + bkp bkp + w Stea-state (s ) Step response: T ( t) () e t / T + Frequenc response (banwith2π/t) ( t) ˆ ( iω) e ( t) ˆ( iω) e iωt iωt + ˆ( iω) SS bk P /( bkp ) w SS + bk P w bk P s + bk SS ( t / T e ) s + bk -5 ˆ ( iω) + wˆ ( iω) /( bkp ) - (iω) ω /( bkp ) Control Engineering 3-8 P + (t) P w 2 4

9 Control an Error Peaking Fast poles are not necessaril goo This might mean large peak resonse Example: P control of an integrator h * - close-loop impulse response u k h * - control impulse response P h( t) bk exp P ( bk t) P fast response slow response Engineering esign is a series of traeoffs Control Engineering 3-9

10 I control th orer (feethrough) sstem u + w, Introuce integrator into control Example: flow through a valve in-flow u(t) u& v, v k ( Close-loop namics I k I s + k I ) + s s + k I w valve out-flow Valves: (t) Mechanical: flui or gas Electrical: power Computing: tasks Comm: packets Control Engineering 3-

11 P an I control P control of an integrator u k P( & bu + w ) w - b k p I control of a th orer sstem. Basicall, the same feeback loop w u& k I u + ( w, ) k I - Control Engineering 3-

12 First orer estimation - ifferentiator Differentiating filter Velocit estimation: v xˆ Observer L( t ˆ xˆ ˆ) Moel: xˆ vˆ t x v t x L( ˆ) Velocit estimation filter ˆ s L v + s x ŷ - L vˆ Control Engineering 3-2

13 First orer estimation example Input Signal INPUT SIGNAL Feeback gain L ESTIMATED DERIVATIVE v ˆ Output Signal s + L v s Control Engineering TIME 3-3

14 Simplifie esign an analsis Simple esign moel Often th or st or 2 n orer moel Will consier tpical examples Use cascae loops Approximate moel, robustness Analze using a more etaile linear moel Valiate through simulation, Control Simple Design Moel Control Detaile Simulation Moel Control Engineering 3-4 Valiation an verification Design an analsis

15 Example F6 longituinal moel, constant velocit Assume that the velocit is maintaine b regulating thrust V & α 2. α +. 9q 25. & θ q q&. 82α 8. q 8. δ e -3 δ e θ α V x 57.3θ z u δ e δ e x t [ 57.3 ] x C x + u A B >> eig(a) ans Control Engineering 3-5

16 F6 Attitue Control Simulate step response At slow time scale, the integrator namics are ominant Approximate b a simple integrator moel θ 2δ e t STEP RESPONSE TIME (s) Control Engineering 3-6

17 F6 Attitue Control P control esign for an integrator Simple moel θ k P.5 T P /(2k ) δ ( e k P θ θ ).4 Time responses for the simple moel an for the etaile moel STEP RESPONSE θ t 2δ Detaile moel e θ δ ( e k P θ θ ) TIME (s) x& θ Ax Cx + Bδ e Control Engineering 3-7

18 Time scale The same plot at ifferent scales Banwith /Timescale Simple 2 n orer moel example: H(s) /(+s+s 2 ) Time scales:.4 Fast Intermeiate Slow H /s 2 H /(+s+s 2 ) H Control Engineering 3-8

19 Time Scale an Frequenc Response Time scales: Frequenc response for the example: H(s) /(+s+s 2 ) Magnitue (B) Slow Boe Diagram 5 Banwith/Timescale The banwith is limite b moel uncertaint: Lectures 9- Phase (eg) Intermeiate Fast Control Engineering Frequenc (ra/sec ) 3-9

20 Feeback loop time scale Slow feeback loop I control Plant as a feethrough Fast feeback loop P control, plant as an integrator PD control, plant as a ouble integrator Control Engineering 3-2

21 Cascae loop esign Inner loop has faster time scale than outer loop In the outer loop time scale, consier the inner loop as a th or st orer sstem that follows its setpoint input outer loop setpoint Plant output - Outer Loop Control inner loop setpoint - Inner Loop Control inner loop Control Engineering 3-2

22 Servomotor Spee Control Example Power amp Motor sensor control voltage u The control goal is to track a velocit setpoint Mechanical time constant T J is ominant. Use simple moel controller spee v - setpoint v s G T J u moel Jv& + bv ci LI& + RI u v Transfer function G ( + TJ s)( + TI s) Control Engineering 3-22 T J.sec, TI G u.2 sec

23 Servomotor Example, cont Design P control u k v v ) for the simple moel v u V OPEN LOOP STEP RESPONSE ( s G T J k T V loop k P G / T J CLOSED LOOP STEP RESPONSE Simplifie moel Detaile moel Control Engineering 3-23

24 Servomotor Position Control Power amp Motor sensor control voltage u spee control - spee v setpoint v position control - position x setpoint x Cascae with the spee control loop The control goal is to track the position setpoint Spee loop integrator iels the ominant namics Use simple moel of the plant (inner loop) x t s Control Engineering 3-24 v u

25 Servomotor Position, cont v s Design P control v k ) for the simple moel P ( STEP RESPONSE OF POSTION WITH OUTER LOOP OPEN k T P loop 2 k P CLOSED LOOP STEP RESPONSE Simplifie moel Detaile moel Control Engineering 3-25

26 Electric Motor Servo Broal available proucts 2-4 cascae loops epening on the sensor harware, motor harware, the application, an the require control functions Lecture 6 Control Engineering 3-26

27 Aircraft Cascae Loops In practice, multivarable control esign might be one for attitue control Otherwise, aircraft is represente as a chain of several integrators Control Engineering 3-27

28 Basic cascae loops in aircraft FMS/MMS Guiance an Autopilot Wapoint Altitue, coorinates Translational position Commane airspee Translational velocit Flight Control θ x α V Flight Actuators Actuators Attitue comman Angular position; Attitue Angular rate comman Angular rate Elevator position Actuator servos Control Engineering 3-28

29 Aircraft Cascae Loops Embee servo avionics Actuators, hz banwith Flight Control box Angular rate, 2Hz banwith Angular position,.5hz banwith Autopilot/Guiance Translational velocit, 5 sec Translational position, 3 sec FMS - Flight Management Sstem Wapoint, - sec Control Engineering 3-29

30 Cascae Loop Example Descent/Abort Guiance Dale Enns, Honewell, 989/997 X-38 - Space Station Lifeboat Control Engineering 3-3

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlled Induction Motor Drive

Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlled Induction Motor Drive Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlle Inuction Motor Drive V. S. S. Pavan Kumar Hari, Avanish Tripathi 2 an G.Narayanan 3 Department of Electrical Engineering,

More information

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Yin Li, Stuent Member, IEEE, Lingling Fan, Senior Member, IEEE Abstract This paper proposes a robust power system stabilizer (PSS)

More information

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error

More information

Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain

Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain Nonlinear Aaptive Ship Course Tracking Control Base on Backstepping an Nussbaum Gain Jialu Du, Chen Guo Abstract A nonlinear aaptive controller combining aaptive Backstepping algorithm with Nussbaum gain

More information

6.003 Homework #7 Solutions

6.003 Homework #7 Solutions 6.003 Homework #7 Solutions Problems. Secon-orer systems The impulse response of a secon-orer CT system has the form h(t) = e σt cos(ω t + φ)u(t) where the parameters σ, ω, an φ are relate to the parameters

More information

Lecture 6: Control of Three-Phase Inverters

Lecture 6: Control of Three-Phase Inverters Yoash Levron The Anrew an Erna Viterbi Faculty of Electrical Engineering, Technion Israel Institute of Technology, Haifa 323, Israel yoashl@ee.technion.ac.il Juri Belikov Department of Computer Systems,

More information

APPPHYS 217 Thursday 8 April 2010

APPPHYS 217 Thursday 8 April 2010 APPPHYS 7 Thursay 8 April A&M example 6: The ouble integrator Consier the motion of a point particle in D with the applie force as a control input This is simply Newton s equation F ma with F u : t q q

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Experimental determination of mechanical parameters in sensorless vector-controlled induction motor drive

Experimental determination of mechanical parameters in sensorless vector-controlled induction motor drive Sāhanā Vol. 42, No. 8, August 207, pp. 285 297 DOI 0.007/s2046-07-0664-2 Ó Inian Acaemy of Sciences Experimental etermination of mechanical parameters in sensorless vector-controlle inuction motor rive

More information

Nested Saturation with Guaranteed Real Poles 1

Nested Saturation with Guaranteed Real Poles 1 Neste Saturation with Guarantee Real Poles Eric N Johnson 2 an Suresh K Kannan 3 School of Aerospace Engineering Georgia Institute of Technology, Atlanta, GA 3332 Abstract The global stabilization of asymptotically

More information

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR Tatsunori Kaneko* an Yasuto Asano* * Department of Mechanical Engineering,

More information

Power Systems Control Prof. Wonhee Kim. Ch.3. Controller Design in Time Domain

Power Systems Control Prof. Wonhee Kim. Ch.3. Controller Design in Time Domain Power Systems Control Prof. Wonhee Kim Ch.3. Controller Design in Time Domain Stability in State Space Equation: State Feeback t A t B t t C t D t x x u y x u u t Kx t t A t BK t A BK x t x x x K shoul

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

Determine Power Transfer Limits of An SMIB System through Linear System Analysis with Nonlinear Simulation Validation

Determine Power Transfer Limits of An SMIB System through Linear System Analysis with Nonlinear Simulation Validation Determine Power Transfer Limits of An SMIB System through Linear System Analysis with Nonlinear Simulation Valiation Yin Li, Stuent Member, IEEE, Lingling Fan, Senior Member, IEEE Abstract This paper extens

More information

16.30/31, Fall 2010 Recitation # 1

16.30/31, Fall 2010 Recitation # 1 6./, Fall Recitation # September, In this recitation we consiere the following problem. Given a plant with open-loop transfer function.569s +.5 G p (s) = s +.7s +.97, esign a feeback control system such

More information

VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK

VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK AIAA Guiance, Navigation, an Control Conference an Exhibit 5-8 August, Monterey, California AIAA -9 VIRTUAL STRUCTURE BASED SPACECRAT ORMATION CONTROL WITH ORMATION EEDBACK Wei Ren Ranal W. Bear Department

More information

Guidance Control of a Small Unmanned Aerial Vehicle with a Delta Wing

Guidance Control of a Small Unmanned Aerial Vehicle with a Delta Wing Proceeings of Australasian Conference on Robotics an Automation, -4 Dec 13, University of New South Wales, Syney Australia Guiance Control of a Small Unmanne Aerial Vehicle with a Delta Wing Shuichi TAJIMA,

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems MEM 355 Performance Enhancement of Dynamical Systems State Space Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/8/2016 Outline State space techniques emerged

More information

On Using Unstable Electrohydraulic Valves for Control

On Using Unstable Electrohydraulic Valves for Control Kailash Krishnaswamy Perry Y. Li Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455 e-mail: kk,pli @me.umn.eu On Using Unstable Electrohyraulic Valves

More information

An inductance lookup table application for analysis of reluctance stepper motor model

An inductance lookup table application for analysis of reluctance stepper motor model ARCHIVES OF ELECTRICAL ENGINEERING VOL. 60(), pp. 5- (0) DOI 0.478/ v07-0-000-y An inuctance lookup table application for analysis of reluctance stepper motor moel JAKUB BERNAT, JAKUB KOŁOTA, SŁAWOMIR

More information

PD Controller for Car-Following Models Based on Real Data

PD Controller for Car-Following Models Based on Real Data PD Controller for Car-Following Moels Base on Real Data Xiaopeng Fang, Hung A. Pham an Minoru Kobayashi Department of Mechanical Engineering Iowa State University, Ames, IA 5 Hona R&D The car following

More information

Practical implementation of Differential Flatness concept for quadrotor trajectory control

Practical implementation of Differential Flatness concept for quadrotor trajectory control Practical implementation of Differential Flatness concept for quarotor trajectory control Abhishek Manjunath 1 an Parwiner Singh Mehrok 2 Abstract This report ocuments how the concept of Differential Flatness

More information

Multirate Feedforward Control with State Trajectory Generation based on Time Axis Reversal for Plant with Continuous Time Unstable Zeros

Multirate Feedforward Control with State Trajectory Generation based on Time Axis Reversal for Plant with Continuous Time Unstable Zeros Multirate Feeforwar Control with State Trajectory Generation base on Time Axis Reversal for with Continuous Time Unstable Zeros Wataru Ohnishi, Hiroshi Fujimoto Abstract with unstable zeros is known as

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

A Comparison between a Conventional Power System Stabilizer (PSS) and Novel PSS Based on Feedback Linearization Technique

A Comparison between a Conventional Power System Stabilizer (PSS) and Novel PSS Based on Feedback Linearization Technique J. Basic. Appl. Sci. Res., ()9-99,, TextRoa Publication ISSN 9-434 Journal of Basic an Applie Scientific Research www.textroa.com A Comparison between a Conventional Power System Stabilizer (PSS) an Novel

More information

State Space Design. MEM 355 Performance Enhancement of Dynamical Systems

State Space Design. MEM 355 Performance Enhancement of Dynamical Systems State Space Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline State space techniques emerged around

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Inverting: Representing rotations and translations between coordinate frames of reference. z B. x B x. y B. v = [ x y z ] v = R v B A. y B.

Inverting: Representing rotations and translations between coordinate frames of reference. z B. x B x. y B. v = [ x y z ] v = R v B A. y B. Kinematics Kinematics: Given the joint angles, comute the han osition = Λ( q) Inverse kinematics: Given the han osition, comute the joint angles to attain that osition q = Λ 1 ( ) s usual, inverse roblems

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

System Modeling of MEMS Gyroscopes

System Modeling of MEMS Gyroscopes Proceeings of the 5th Meiterranean Conference on Control & Automation, Jul 7-9, 7, Athens - Greece T-7 Sstem Moeling of MEMS Groscopes Ramar Rashe an H. Momeni* * Tarbiat Moares Universit, Facult of Engineering,

More information

Control of Integral Processes with Dead Time Part I: A Disturbance Observer-based 2DOF Control Scheme Λ

Control of Integral Processes with Dead Time Part I: A Disturbance Observer-based 2DOF Control Scheme Λ Control of Integral Processes with Dea Time Part I: A Disturbance Observer-base 2DOF Control Scheme Λ Qing-Chang Zhong Facult of Mechanical Engineering Technion-Israel Institute of Technolog Technion Cit,

More information

Nonlinear Discrete-time Design Methods for Missile Flight Control Systems

Nonlinear Discrete-time Design Methods for Missile Flight Control Systems Presente at the 4 AIAA Guiance, Navigation, an Control Conference, August 6-9, Provience, RI. Nonlinear Discrete-time Design Methos for Missile Flight Control Systems P. K. Menon *, G. D. Sweriuk an S.

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

DYNAMIC PERFORMANCE OF RELUCTANCE SYNCHRONOUS MACHINES

DYNAMIC PERFORMANCE OF RELUCTANCE SYNCHRONOUS MACHINES Annals of the University of Craiova, Electrical Engineering series, No 33, 9; ISSN 184-485 7 TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL AN POWER SYSTEMS October 8-9, 9 - Iaşi, Romania YNAMIC PERFORMANCE

More information

With the Chain Rule. y x 2 1. and. with respect to second axle. dy du du dx. Rate of change of first axle. with respect to third axle

With the Chain Rule. y x 2 1. and. with respect to second axle. dy du du dx. Rate of change of first axle. with respect to third axle 0 CHAPTER Differentiation Section The Chain Rule Fin the erivative of a composite function using the Chain Rule Fin the erivative of a function using the General Power Rule Simplif the erivative of a function

More information

Guidance of the aircraft with model-based predictive controller with position-based dynamic reference

Guidance of the aircraft with model-based predictive controller with position-based dynamic reference 9th International PhD Workshop on Sstems an Control: Young Generation Viewpoint 1. - 3. October 28, Iola, Slovenia Guiance of the aircraft with moel-base preictive controller with position-base namic reference

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Lec 6: State Feedback, Controllability, Integral Action

Lec 6: State Feedback, Controllability, Integral Action Lec 6: State Feedback, Controllability, Integral Action November 22, 2017 Lund University, Department of Automatic Control Controllability and Observability Example of Kalman decomposition 1 s 1 x 10 x

More information

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

The Levitation Controller Design of an Electromagnetic Suspension Vehicle using Gain Scheduled Control

The Levitation Controller Design of an Electromagnetic Suspension Vehicle using Gain Scheduled Control Proceeings of the 5th WSEAS Int. Conf. on CIRCUIS, SYSEMS, ELECRONICS, CONROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 6 35 he Levitation Controller Design of an Electromagnetic Suspension Vehicle

More information

PID Adaptive Control Design Based on Singular Perturbation Technique: A Flight Control Example

PID Adaptive Control Design Based on Singular Perturbation Technique: A Flight Control Example PID Aaptive Control Design Base on Singular Perturbation Technique: A Flight Control Example Valery D. Yurkevich, Novosibirsk State Technical University, 20 K. Marx av., Novosibirsk, 630092, Russia (e-mail:

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Tutorial Test 5 2D welding robot

Tutorial Test 5 2D welding robot Tutorial Test 5 D weling robot Phys 70: Planar rigi boy ynamics The problem statement is appene at the en of the reference solution. June 19, 015 Begin: 10:00 am En: 11:30 am Duration: 90 min Solution.

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an D Control Theory Chapter 11: Feeback an D Control Theory. ntrouction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works by

More information

State observers and recursive filters in classical feedback control theory

State observers and recursive filters in classical feedback control theory State observers an recursive filters in classical feeback control theory State-feeback control example: secon-orer system Consier the riven secon-orer system q q q u x q x q x x x x Here u coul represent

More information

University of Kentucky Department of Electrical and Computer Engineering. EE421G: Signals and Systems I Fall 2007

University of Kentucky Department of Electrical and Computer Engineering. EE421G: Signals and Systems I Fall 2007 University of Kentucky Department of Electrical an Computer Engineering EE4G: Signals an Systems I Fall 7 Issue: October 4, 7 Problem Set 6 Due: October, 7 (In class) Reaing Assignments: Rea Chapter 3.7,

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems

Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems Ultimate State MEM 355 Performance Enhancement of Dnamical Sstems Harr G. Kwatn Department of Mechanical Engineering & Mechanics Drexel Universit Outline Design Criteria two step process Ultimate state

More information

Motion-Copying System Using FPGA-based Friction-Free Disturbance Observer

Motion-Copying System Using FPGA-based Friction-Free Disturbance Observer IEEJ Journal of Inustry Applications Vol.3 No.3 pp.248 259 DOI: 10.1541/ieejjia.3.248 Paper Motion-Copying System Using FPGA-base Friction-Free Disturbance Observer Thao Tran Phuong a) Member, Kiyoshi

More information

Consider for simplicity a 3rd-order IIR filter with a transfer function. where

Consider for simplicity a 3rd-order IIR filter with a transfer function. where Basic IIR Digital Filter The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient ifference equation

More information

Root Locus. 1 Review of related mathematics. Ang Man Shun. October 30, Complex Algebra in Polar Form. 1.2 Roots of a equation

Root Locus. 1 Review of related mathematics. Ang Man Shun. October 30, Complex Algebra in Polar Form. 1.2 Roots of a equation Root Locus Ang Man Shun October 3, 212 1 Review of relate mathematics 1.1 Complex Algebra in Polar Form For a complex number z, it can be expresse in polar form as z = re jθ 1 Im z Where r = z, θ = tan.

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Application of Nonlinear Control to a Collision Avoidance System

Application of Nonlinear Control to a Collision Avoidance System Application of Nonlinear Control to a Collision Avoiance System Pete Seiler Mechanical Eng. Dept. U. of California-Berkeley Berkeley, CA 947-74, USA Phone: -5-64-6933 Fax: -5-64-663 pseiler@euler.me.berkeley.edu

More information

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes

12.5. Differentiation of vectors. Introduction. Prerequisites. Learning Outcomes Differentiation of vectors 12.5 Introuction The area known as vector calculus is use to moel mathematically a vast range of engineering phenomena incluing electrostatics, electromagnetic fiels, air flow

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Robust Tracking Control of Robot Manipulator Using Dissipativity Theory

Robust Tracking Control of Robot Manipulator Using Dissipativity Theory Moern Applie Science July 008 Robust racking Control of Robot Manipulator Using Dissipativity heory Hongrui Wang Key Lab of Inustrial Computer Control Engineering of Hebei Province Yanshan University Qinhuangao

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation A Novel ecouple Iterative Metho for eep-submicron MOSFET RF Circuit Simulation CHUAN-SHENG WANG an YIMING LI epartment of Mathematics, National Tsing Hua University, National Nano evice Laboratories, an

More information

for which the garbage will fall within the can. If the range is large, the shot is easy; if the range is small, the target is hard to hit.

for which the garbage will fall within the can. If the range is large, the shot is easy; if the range is small, the target is hard to hit. EN40: Dynamics an Vibrations Homework : Soling equations of motion for particles Due Friay Feb 18 011 School of Engineering Brown Uniersity 1. Suppose that you wish to throw a piece of garbage into a garbage

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers Optimal Variable-Structure Control racking of Spacecraft Maneuvers John L. Crassiis 1 Srinivas R. Vaali F. Lanis Markley 3 Introuction In recent years, much effort has been evote to the close-loop esign

More information

A Novel Position Control of PMSM Based on Active Disturbance Rejection

A Novel Position Control of PMSM Based on Active Disturbance Rejection A Novel Position Control of PMSM Base on Active Disturbance Rejection XING-HUA YANG, XI-JUN YANG, JIAN-GUO JIANG Dept of Electrical Engineering, Shanghai Jiao Tong University, 4, Shanghai, CHINA yangxinghua4@6com

More information

SELF-ERECTING, ROTARY MOTION INVERTED PENDULUM Quanser Consulting Inc.

SELF-ERECTING, ROTARY MOTION INVERTED PENDULUM Quanser Consulting Inc. SELF-ERECTING, ROTARY MOTION INVERTED PENDULUM Quanser Consulting Inc. 1.0 SYSTEM DESCRIPTION The sel-erecting rotary motion inverte penulum consists of a rotary servo motor system (SRV-02) which rives

More information

Mathematical Review Problems

Mathematical Review Problems Fall 6 Louis Scuiero Mathematical Review Problems I. Polynomial Equations an Graphs (Barrante--Chap. ). First egree equation an graph y f() x mx b where m is the slope of the line an b is the line's intercept

More information

Exercise 4 - Hydraulic Systems

Exercise 4 - Hydraulic Systems Exercise 4 - Hyraulic Systems 4.1 Hyraulic Systems Hyraulic systems are, in general, escribe by the Navier-Stokes equations as you might have learne in flui ynamics courses. In orer to simplify the moeling

More information

Magnetic field generated by current filaments

Magnetic field generated by current filaments Journal of Phsics: Conference Series OPEN ACCESS Magnetic fiel generate b current filaments To cite this article: Y Kimura 2014 J. Phs.: Conf. Ser. 544 012004 View the article online for upates an enhancements.

More information

Predictive control of synchronous generator: a multiciterial optimization approach

Predictive control of synchronous generator: a multiciterial optimization approach Preictive control of synchronous generator: a multiciterial optimization approach Marián Mrosko, Eva Miklovičová, Ján Murgaš Abstract The paper eals with the preictive control esign for nonlinear systems.

More information

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 1-3, 007 331 Vehicle Stability Improvement Base on Electronic Differential Using

More information

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by: Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Variable Structure Control ~ Disturbance Rejection. Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University

Variable Structure Control ~ Disturbance Rejection. Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Variable Structure Control ~ Disturbance Rejection Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Linear Tracking & Disturbance Rejection Variable Structure

More information

Extensions and applications of LQ

Extensions and applications of LQ Extensions and applications of LQ 1 Discrete time systems 2 Assigning closed loop pole location 3 Frequency shaping LQ Regulator for Discrete Time Systems Consider the discrete time system: x(k + 1) =

More information

Sliding mode approach to congestion control in connection-oriented communication networks

Sliding mode approach to congestion control in connection-oriented communication networks JOURNAL OF APPLIED COMPUTER SCIENCE Vol. xx. No xx (200x), pp. xx-xx Sliing moe approach to congestion control in connection-oriente communication networks Anrzej Bartoszewicz, Justyna Żuk Technical University

More information

Pitch Attitude Control of a Booster Rocket

Pitch Attitude Control of a Booster Rocket Research Inventy: International Journal Of Engineering An Science Issn: 2278-4721, Vol.2, Issue 7 (March 2013), Pp 8-12 Www.Researchinventy.Com Pitch Attitue Control of a Booster Rocket Mr. Debabrata Roy

More information

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum October 6, 4 ARDB Note Analytic Scaling Formulas for Crosse Laser Acceleration in Vacuum Robert J. Noble Stanfor Linear Accelerator Center, Stanfor University 575 San Hill Roa, Menlo Park, California 945

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an D Control Theory Chapter 11: Feeback an D Control Theory. ntrouction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works by

More information

Basic IIR Digital Filter Structures

Basic IIR Digital Filter Structures Basic IIR Digital Filter Structures The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient

More information

Experimental Robustness Study of a Second-Order Sliding Mode Controller

Experimental Robustness Study of a Second-Order Sliding Mode Controller Experimental Robustness Stuy of a Secon-Orer Sliing Moe Controller Anré Blom, Bram e Jager Einhoven University of Technology Department of Mechanical Engineering P.O. Box 513, 5600 MB Einhoven, The Netherlans

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Dynamic Modeling and Analysis of Large-scale Power Systems in the DQ0 Reference Frame

Dynamic Modeling and Analysis of Large-scale Power Systems in the DQ0 Reference Frame Dynamic Moeling an Analysis of Large-scale Power Systems in the DQ0 Reference Frame Juri Belikov Tallinn University of Technology juri.belikov@ttu.ee December 12, 2017 Juri Belikov (TUT) Moeling an Ientification

More information

CDS 101/110a: Lecture 10-2 Control Systems Implementation

CDS 101/110a: Lecture 10-2 Control Systems Implementation CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -

More information

The Chain Rule. y x 2 1 y sin x. and. Rate of change of first axle. with respect to second axle. dy du. du dx. Rate of change of first axle

The Chain Rule. y x 2 1 y sin x. and. Rate of change of first axle. with respect to second axle. dy du. du dx. Rate of change of first axle . The Chain Rule 9. The Chain Rule Fin the erivative of a composite function using the Chain Rule. Fin the erivative of a function using the General Power Rule. Simplif the erivative of a function using

More information

CHARACTERISTICS OF A DYNAMIC PRESSURE GENERATOR BASED ON LOUDSPEAKERS. Jože Kutin *, Ivan Bajsić

CHARACTERISTICS OF A DYNAMIC PRESSURE GENERATOR BASED ON LOUDSPEAKERS. Jože Kutin *, Ivan Bajsić Sensors an Actuators A: Physical 168 (211) 149-154 oi: 1.116/j.sna.211..7 211 Elsevier B.V. CHARACTERISTICS OF A DYNAMIC PRESSURE GENERATOR BASED ON LOUDSPEAKERS Jože Kutin *, Ivan Bajsić Laboratory of

More information

We G Model Reduction Approaches for Solution of Wave Equations for Multiple Frequencies

We G Model Reduction Approaches for Solution of Wave Equations for Multiple Frequencies We G15 5 Moel Reuction Approaches for Solution of Wave Equations for Multiple Frequencies M.Y. Zaslavsky (Schlumberger-Doll Research Center), R.F. Remis* (Delft University) & V.L. Druskin (Schlumberger-Doll

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an ID Control Theory Chapter 11: Feeback an ID Control Theory I. Introuction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 Chapter 31: RLC Circuits PHY049: Chapter 31 1 LC Oscillations Conservation of energy Topics Dampe oscillations in RLC circuits Energy loss AC current RMS quantities Force oscillations Resistance, reactance,

More information

Mechanical Vibrations Misc Topics Base Excitation & Seismic

Mechanical Vibrations Misc Topics Base Excitation & Seismic Mechanical Vibrations Misc Topics Base Excitation & Seismic Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell 1 Dr. Peter Avitabile Seismic events are often moele with

More information

Open Access An Exponential Reaching Law Sliding Mode Observer for PMSM in Rotating Frame

Open Access An Exponential Reaching Law Sliding Mode Observer for PMSM in Rotating Frame Sen Orers for Reprints to reprints@benthamscience.ae The Open Automation an Control Systems Journal, 25, 7, 599-66 599 Open Access An Exponential Reaching Law Sliing Moe Observer for PMSM in Rotating Frame

More information

VISUAL SERVOING WITH ORIENTATION LIMITS OF A X4-FLYER

VISUAL SERVOING WITH ORIENTATION LIMITS OF A X4-FLYER VISUAL SERVOING WITH ORIENTATION LIMITS OF A X4-FLYER Najib Metni,Tarek Hamel,Isabelle Fantoni Laboratoire Central es Ponts et Chaussées, LCPC-Paris France, najib.metni@lcpc.fr Cemif-Sc FRE-CNRS 2494,

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an D Control Theory Chapter 11: Feeback an D Control Theory. ntrouction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works by

More information

Physics 170 Week 7, Lecture 2

Physics 170 Week 7, Lecture 2 Physics 170 Week 7, Lecture 2 http://www.phas.ubc.ca/ goronws/170 Physics 170 203 Week 7, Lecture 2 1 Textbook Chapter 12:Section 12.2-3 Physics 170 203 Week 7, Lecture 2 2 Learning Goals: Learn about

More information

New Simple Controller Tuning Rules for Integrating and Stable or Unstable First Order plus Dead-Time Processes

New Simple Controller Tuning Rules for Integrating and Stable or Unstable First Order plus Dead-Time Processes Proceeings of the 3th WSEAS nternational Conference on SYSTEMS New Simple Controller Tuning Rules for ntegrating an Stable or Unstable First Orer plus Dea-Time Processes.G.ARVANTS Department of Natural

More information

4. CONTROL OF ZERO-SEQUENCE CURRENT IN PARALLEL THREE-PHASE CURRENT-BIDIRECTIONAL CONVERTERS

4. CONTROL OF ZERO-SEQUENCE CURRENT IN PARALLEL THREE-PHASE CURRENT-BIDIRECTIONAL CONVERTERS 4. CONRO OF ZERO-SEQUENCE CURREN IN PARAE HREE-PHASE CURREN-BIDIRECIONA CONVERERS 4. A NOVE ZERO-SEQUENCE CURREN CONRO 4.. Zero-Sequence Dynamics he parallel boost rectifier moel in Figure.4 an the parallel

More information

Shared Control Between Adaptive Autopilots and Human Operators for Anomaly Mitigation

Shared Control Between Adaptive Autopilots and Human Operators for Anomaly Mitigation Share Control Between Aaptive Autopilots an Human Operators for Anomaly Mitigation Benjamin T. Thomsen Anuraha M. Annaswamy Eugene Lavretsky Massachusetts Institute of Technology, Cambrige, MA 02139 The

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1 Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position

More information