Pitch Attitude Control of a Booster Rocket

Size: px
Start display at page:

Download "Pitch Attitude Control of a Booster Rocket"

Transcription

1 Research Inventy: International Journal Of Engineering An Science Issn: , Vol.2, Issue 7 (March 2013), Pp Pitch Attitue Control of a Booster Rocket Mr. Debabrata Roy 1, Prof. Raghupati Goswami 2, Dr. Sourish Sanyal 3, Prof. Amar Nath Sanyal 4 1 Assistant Professor, Seacom Engineering College, Jala Dhulagari, Howrah, West Bengal, Inia 2 Chairman of the Trust, Ieal Institute of Engineering,alyani Shilpanchal, alyani, Naia, West Bengal, Inia 3 Associate Professor, Acaemy of Technology, Aisaptagram, Hooghly WestBengal, Inia 4 Professor, Acaemy of Technology, Aisaptagram, Hooghly West Bengal, Inia Abstract-There are three important variables for a rocket moving through air an then through space. These are its yaw, pitch an roll. These variables are to be precisely controlle in orer to reach the target an prouce the esire effect. The paper eals with pitch attitue control of a booster rocket for launching a spaceship. Starting from its block iagram, the mathematical moel has been evelope an the analytical treatment has been mae by inigenously mae computer program an also by using MATLAB-tools for getting the esire results. Fulfillment of the specifications coul be mae suitably choosing the forwar path gain an the coefficient of rate feeback. eywors-feeback, Overshoot, Phase margin,pitch attitue, Rocket I. INTRODUCTION A rocket is essential for space travel. It is a self-propelle evice that carries its own fuel, as well as oxygen, or other chemical agent, neee to burn its fuel. Most rockets move by burning their fuel an expelling the hot exhaust gases that result. The force of these hot gases shooting out in one irection causes the rocket to move in the opposite irection. A rocket engine is the most powerful engine for its weight. Other forms of propulsion, such as jet-powere an propeller-riven engines, cannot match its power. Rockets can operate in space, because they carry their own oxygen for burning their fuel. Rockets are presently the only vehicles that can launch into an move aroun in space [17,18]. Space exploration is a challenging activity ue to its complexity. The complication arisesout of so many obstacles which we are to overcome [1,2,3,4,5] e.g. The vacuum of space Heat management problems The ifficulty of re-entry Orbital mechanics Micrometeorites an space ebris Cosmic an solar raiation The logistics of having restroom facilities in a weightless environment But the biggest problem of all is harnessing enough energy simply to get a spaceship off the groun. This is possible ue to high capacity of rocket engines. The rocket engines are easy to buil for flying inexpensively. But that is true only for the toy level. For propulsion through space it is so highly complicate [9,10] that space eneavours have been taken up only by someavance countries of the worl. Inia is one amongst the successful countries in space eneavours. Our ISRO is one of the pioneers in space activity. II. PRINCIPLE OF A ROCET ENGINE Rocket engines are reaction engines [17,18]. The basic principle is the Newton s 3 r. law i.e. action is equal to the reaction. A rocket engine throws mass in one irection an moves in the opposite irection by reactionary forces. The "strength" of a rocket engine is calle its thrust. It is generate by throwing burnt fuels backwar. The flight can be controlle by changing the rate of burning of the fuel an the irection of throw.motion along three principal axes is important while it moves through air an subsequently through space. The principal axes are the following: Vertical axis, or yaw axis an axis rawn from top to bottom, an perpenicular to the other two axes. 8

2 Pitch Attitue Control Of A Booster Rocket Lateral axis, transverse axis, or pitch axis an axis running from the pilot's left to right in pilote aircraft, an parallel to the wings of a winge aircraft. Longituinal axis, or roll axis an axis rawn through the boy of the vehicle from tail to nose in the normal irection of flight, or the irection the pilot faces. The motion along these three principal axes is to be closely controlle [1,2,3]. This is accomplishe by proportional-erivative (PD) feeback control. The erivative or rate feeback as well as the forwar path gain are to be ajustable [6,7,12]. III. THE MATHEMATICAL MODEL AND THE BLOC DIAGRAM The pitch attitue control of a booster rocket contains both attitue an rate gyros [6,7,12]. The block iagram [8] representation is given in fig. 1. We are aiming at fining out amplifier gain, an the feeback coefficients for best possible ynamic performance. The system shoul be almost critically ampe. The percentage overshoot has to be limite to 0.1% an the phase margin must be at least 30 o. Fig. 1. Pitch attitue control of booster rocket: block iagram The transfer function of the forwar an backwar path are given below: 6 G( S) ; H( s) 1 2 s s( s 16s 100) 1 The close loop transfer function is given as: 6 M( S) 3 2 s 16 s (6 100) s 6 2 IV. ANALYTICAL TECHNIQUES The general practice is to go in for root contour to fin out appropriate values of gain an feeback coefficients. But the metho is complex. So, we have treate the problem analytically [6,7]. The solution has been obtaine by a specially constructe program [14,15,16]. The program fins the characteristic equation choosing values of gain an feeback coefficients arbitrarily. Then a cut an try process has been followe to realize a amping factor of nearly unity for the ominant poles an at the same time a phase margin of atleast 30 o. The specifications coul not be fulfille in several attempts. The computer print-out change to worformat, is given below: The programme.fins out amplifier gain an feeback coefficients of a booster rocket The chosen parameters: Amplifier gain, = 87; Coefficient of attitue feeback, p = 1; coefficient of rate feeback, = 0.2 Roots of the characteristic equation are being foun out by Coates metho (3r orer convergence)[14,15] to reuce the no. of steps. The characteristic equation is given below: 3 2 s 16 s s st root: ; 2n & 3r roots: ± j The natural frequency of oscillation for the ominant roots = r/s The amping factor = Corresponing ampe frequency of oscillation = r/s The percent overshoot = The peak time = sec The settling time = sec The gain crossover occurs at an angular frequency of r/s Phase margin = o 9

3 Pitch Attitue Control Of A Booster Rocket The Nyquist plot oes not intersect the real axis. So the gain margin is infinity. The phase margin is aequate. But the time-omain performance is not acceptable. The percentage overshoot is very high, much above the specifie value. Therefore, we make recourse to MATLAB-tools to get an acceptably goo esign. V. MATLAB-BASED ANALYSIS Now we make recourse to MATLAB-tools for refinement of the esign [11,12,13]. We set the amping coefficient arbitrarily at = 0.1 an check the t-omain an f-omain performance. We fin that the overshoot is as high as 10.3%. Then we graually increase the value of to 0.14 in steps of 0.02 an check the same. The t-omain an f-omain (Boe plot) responses are given in fig. 2 to fig. 7. It is observe that the best results are obtaine for a amping coefficient of = Fig 2 Step response with = 0.1 Fig. 3 Boe plot for = 0.1 For = 0.1, we get a rather high overshoot of 10.3% at a peak time of s. The rise time is s an the settling time is s. The phase margin is 31.1 o at 14.1 r/s. This esign is not acceptable as the overshoot is high. We want almost critical amping. Fig 4 Step response with =

4 Phase (eg) Magnitue (B) Pitch Attitue Control Of A Booster Rocket Fig 5 Boe plot with = 0.12 For = 0.12, we get a much reuce overshoot of 1.53% at a peak time of 0.68 s. The rise time is s an the settling time is s. The phase margin is 33.2 o at 15.1 r/s. This esign is much better. But we shall try to further reuce the overshoot an achieve critical amping. Fig 6 Time omain response for = Boe Diagram Gm = Inf B (at Inf ra/sec), Pm = 34.1 eg (at 16.2 ra/sec) Frequency (ra/sec) Fig. 7 Boe plot for =

5 Pitch Attitue Control Of A Booster Rocket For = 0.14, we get an overshoot of % at a peak time of 1.02 s. The rise time is s an the settling time is s. The phase margin is 34.1 o at 16.2 r/s. The overshoot is now extremely small. We have almost reache critical amping. We accept the thir esign as final. The experimental results for ifferent values of are given in table 1 TABLE 1 COMPARISON OF RESULTS (PA CONTROL) Damping coeff. Rise time Peak time Peak overshoot Settling time Phase margin = s s 10.3% s 31.1 o = s 0.68 s 1.53% s 33.2 o = s o The gain margin is infinity for all the cases. VI. CONCLUSION A booster rocket is use to launch a space-ship from launch-pa to its spatial flight orasatellite to its esire orbit. The rocket has a powerful engine which operates on the principle Newton s 3 r. law. It is propelle controlle combustion of fuel as well as the burning material within the rocket. At first, it moves through air an then through space. The spee has to be continuously controlle as the rocket leaves the launch-pa moves to higher an higher altitue[17,18]. The motion control has to be exercise along three principle axes viz. yaw, pitch an roll. The paper eals with the esign an performance evaluation of automatic control system intene forpitch attitue control of the rocket[1]. The control is of proportional-erivative (PD) type, with controllable rate feeback so as to keep the system only very slightly uner ampe retaining the phase margin above a specifie value. It was trie at first to reach the target by analytical treatment an self-mae program. But the attempt faile. Then recourse was mae to MATLAB-tools [11,12,13]. The specifications coul be reache by simultaneous change of the forwar path gain an the coefficient of rate feeback. REFERENCES Journal Papers: [1] M.D. Shuster, A survey of attitue representations, J. Astronautical Science., 41,pp , [2] Y. Umetani an. Yoshia. Resolve motion rate control of space manipulators with generalize jacobian matrix, in IEEE Transactions on Robotics an Automation,5(3): pp , [3] E. Papaopoulos an S. Dubowsky, On the nature of control algorithms for free-floating space manipulators, in IEEE Trans. on Robotics an Automation,7(6): pp , December, [4] D. Nenchev, Y. Umetani an. Yoshia, Analysis of a reunant free-flying spacecraft/ manipulator system, in IEEE Trans. on Robotics an Automation, 8(1):1-6, [5] O. Egelan an J.R. Sagli, Coorination of motion in a spacecraft/manipulator system, in Int. Journal of Robotics Research, 12(4): pp. 366{379, August, Books: [6]. Ogata, Moern control engineering, Pearson Eucation [7] S.M. Shinners, Moern control system theory an esign, John Wiley an Sons. [8] A.M. Law an W.D. elton, Simulation, moeling an analysis, Mcgraw-Hill, New York, 2 n. Eition, [9] J.R. Wertz (E.): Spacecraft attitue etermination an control,.luwer Acaemic Publishers, Dorrecht, [10] R.H. Battin, An introuction to the mathematics an methos of astroynamics, AIAA Eucation Series, Reston, VA (1999). [11] R. Pratap, Getting strate with MATLAB7,Oxfor, Inian E, [12] J.J. D Azzo, C.H. Houpis an S.N. Shelon, Linear control system analysis an esign with MATLAB, 5e, Marcel Dekker Inc. New York, BASEL [13] A.J. Grace, N. Laub, J.N. Little an C. Thomson, Control system tool box for use with MATLAB, User Guie, Mathworks, [14] E.reyszig, Avance engineering mathematics, Wiley, New York, [15] V. Rajaraman, Computer-oriente numerical methos, PHI, 1995 [16]. Deb, Optimization for engineering esign, PHI, 2010 E- References: [17] Free Encyclopeia of Wikipeia, 12

Compensator Design for Helicopter Stabilization

Compensator Design for Helicopter Stabilization Available online at www.sciencedirect.com Procedia Technology 4 (212 ) 74 81 C3IT-212 Compensator Design for Helicopter Stabilization Raghupati Goswami a,sourish Sanyal b, Amar Nath Sanyal c a Chairman,

More information

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error

More information

6.003 Homework #7 Solutions

6.003 Homework #7 Solutions 6.003 Homework #7 Solutions Problems. Secon-orer systems The impulse response of a secon-orer CT system has the form h(t) = e σt cos(ω t + φ)u(t) where the parameters σ, ω, an φ are relate to the parameters

More information

VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK

VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK AIAA Guiance, Navigation, an Control Conference an Exhibit 5-8 August, Monterey, California AIAA -9 VIRTUAL STRUCTURE BASED SPACECRAT ORMATION CONTROL WITH ORMATION EEDBACK Wei Ren Ranal W. Bear Department

More information

Practical implementation of Differential Flatness concept for quadrotor trajectory control

Practical implementation of Differential Flatness concept for quadrotor trajectory control Practical implementation of Differential Flatness concept for quarotor trajectory control Abhishek Manjunath 1 an Parwiner Singh Mehrok 2 Abstract This report ocuments how the concept of Differential Flatness

More information

Guidance Control of a Small Unmanned Aerial Vehicle with a Delta Wing

Guidance Control of a Small Unmanned Aerial Vehicle with a Delta Wing Proceeings of Australasian Conference on Robotics an Automation, -4 Dec 13, University of New South Wales, Syney Australia Guiance Control of a Small Unmanne Aerial Vehicle with a Delta Wing Shuichi TAJIMA,

More information

Attitude Control System Design of UAV Guo Li1, a, Xiaoliang Lv2, b, Yongqing Zeng3, c

Attitude Control System Design of UAV Guo Li1, a, Xiaoliang Lv2, b, Yongqing Zeng3, c 4th National Conference on Electrical, Electronics an Computer Engineering (NCEECE 205) Attitue Control ystem Design of UAV Guo Li, a, Xiaoliang Lv2, b, Yongqing eng3, c Automation chool, University of

More information

Examining Geometric Integration for Propagating Orbit Trajectories with Non-Conservative Forcing

Examining Geometric Integration for Propagating Orbit Trajectories with Non-Conservative Forcing Examining Geometric Integration for Propagating Orbit Trajectories with Non-Conservative Forcing Course Project for CDS 05 - Geometric Mechanics John M. Carson III California Institute of Technology June

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

PD Controller for Car-Following Models Based on Real Data

PD Controller for Car-Following Models Based on Real Data PD Controller for Car-Following Moels Base on Real Data Xiaopeng Fang, Hung A. Pham an Minoru Kobayashi Department of Mechanical Engineering Iowa State University, Ames, IA 5 Hona R&D The car following

More information

Optimal LQR Control of Structures using Linear Modal Model

Optimal LQR Control of Structures using Linear Modal Model Optimal LQR Control of Structures using Linear Moal Moel I. Halperin,2, G. Agranovich an Y. Ribakov 2 Department of Electrical an Electronics Engineering 2 Department of Civil Engineering Faculty of Engineering,

More information

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions 015 Question 1 (a) (i) State Newton s secon law of motion. Force is proportional to rate of change of momentum (ii) What is the

More information

Human-friendly Motion Control of a Wheeled Inverted Pendulum by Reduced-order Disturbance Observer

Human-friendly Motion Control of a Wheeled Inverted Pendulum by Reduced-order Disturbance Observer 2008 IEEE International Conference on Robotics an Automation Pasaena, CA, USA, May 19-23, 2008 Human-frienly Motion Control of a Wheele Inverte Penulum by Reuce-orer Disturbance Observer DONGIL CHOI an

More information

Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain

Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain Nonlinear Aaptive Ship Course Tracking Control Base on Backstepping an Nussbaum Gain Jialu Du, Chen Guo Abstract A nonlinear aaptive controller combining aaptive Backstepping algorithm with Nussbaum gain

More information

APPPHYS 217 Thursday 8 April 2010

APPPHYS 217 Thursday 8 April 2010 APPPHYS 7 Thursay 8 April A&M example 6: The ouble integrator Consier the motion of a point particle in D with the applie force as a control input This is simply Newton s equation F ma with F u : t q q

More information

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Yin Li, Stuent Member, IEEE, Lingling Fan, Senior Member, IEEE Abstract This paper proposes a robust power system stabilizer (PSS)

More information

Lecture 3 Basic Feedback

Lecture 3 Basic Feedback Lecture 3 Basic Feeback Simple control esign an analsis Linear moel with feeback control Use simple moel esign control valiate Simple P loop with an integrator Velocit estimation Time scale Cascae control

More information

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum October 6, 4 ARDB Note Analytic Scaling Formulas for Crosse Laser Acceleration in Vacuum Robert J. Noble Stanfor Linear Accelerator Center, Stanfor University 575 San Hill Roa, Menlo Park, California 945

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers Optimal Variable-Structure Control racking of Spacecraft Maneuvers John L. Crassiis 1 Srinivas R. Vaali F. Lanis Markley 3 Introuction In recent years, much effort has been evote to the close-loop esign

More information

Angles-Only Orbit Determination Copyright 2006 Michel Santos Page 1

Angles-Only Orbit Determination Copyright 2006 Michel Santos Page 1 Angles-Only Orbit Determination Copyright 6 Michel Santos Page 1 Abstract This ocument presents a re-erivation of the Gauss an Laplace Angles-Only Methos for Initial Orbit Determination. It keeps close

More information

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A AN INTRODUCTION TO AIRCRAFT WIN FLUTTER Revision A By Tom Irvine Email: tomirvine@aol.com January 8, 000 Introuction Certain aircraft wings have experience violent oscillations uring high spee flight.

More information

Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlled Induction Motor Drive

Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlled Induction Motor Drive Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlle Inuction Motor Drive V. S. S. Pavan Kumar Hari, Avanish Tripathi 2 an G.Narayanan 3 Department of Electrical Engineering,

More information

VISUAL SERVOING WITH ORIENTATION LIMITS OF A X4-FLYER

VISUAL SERVOING WITH ORIENTATION LIMITS OF A X4-FLYER VISUAL SERVOING WITH ORIENTATION LIMITS OF A X4-FLYER Najib Metni,Tarek Hamel,Isabelle Fantoni Laboratoire Central es Ponts et Chaussées, LCPC-Paris France, najib.metni@lcpc.fr Cemif-Sc FRE-CNRS 2494,

More information

Adaptive Optimal Path Following for High Wind Flights

Adaptive Optimal Path Following for High Wind Flights Milano (Italy) August - September, 11 Aaptive Optimal Path Following for High Win Flights Ashwini Ratnoo P.B. Sujit Mangal Kothari Postoctoral Fellow, Department of Aerospace Engineering, Technion-Israel

More information

Total Energy Shaping of a Class of Underactuated Port-Hamiltonian Systems using a New Set of Closed-Loop Potential Shape Variables*

Total Energy Shaping of a Class of Underactuated Port-Hamiltonian Systems using a New Set of Closed-Loop Potential Shape Variables* 51st IEEE Conference on Decision an Control December 1-13 212. Maui Hawaii USA Total Energy Shaping of a Class of Uneractuate Port-Hamiltonian Systems using a New Set of Close-Loop Potential Shape Variables*

More information

New Simple Controller Tuning Rules for Integrating and Stable or Unstable First Order plus Dead-Time Processes

New Simple Controller Tuning Rules for Integrating and Stable or Unstable First Order plus Dead-Time Processes Proceeings of the 3th WSEAS nternational Conference on SYSTEMS New Simple Controller Tuning Rules for ntegrating an Stable or Unstable First Orer plus Dea-Time Processes.G.ARVANTS Department of Natural

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

A Comparison between a Conventional Power System Stabilizer (PSS) and Novel PSS Based on Feedback Linearization Technique

A Comparison between a Conventional Power System Stabilizer (PSS) and Novel PSS Based on Feedback Linearization Technique J. Basic. Appl. Sci. Res., ()9-99,, TextRoa Publication ISSN 9-434 Journal of Basic an Applie Scientific Research www.textroa.com A Comparison between a Conventional Power System Stabilizer (PSS) an Novel

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Numerical Integrator. Graphics

Numerical Integrator. Graphics 1 Introuction CS229 Dynamics Hanout The question of the week is how owe write a ynamic simulator for particles, rigi boies, or an articulate character such as a human figure?" In their SIGGRPH course notes,

More information

Tutorial Test 5 2D welding robot

Tutorial Test 5 2D welding robot Tutorial Test 5 D weling robot Phys 70: Planar rigi boy ynamics The problem statement is appene at the en of the reference solution. June 19, 015 Begin: 10:00 am En: 11:30 am Duration: 90 min Solution.

More information

Reactionless Path Planning Strategies for Capture of Tumbling Objects in Space Using a Dual-Arm Robotic System

Reactionless Path Planning Strategies for Capture of Tumbling Objects in Space Using a Dual-Arm Robotic System Reactionless Path Planning Strategies for Capture of Tumbling Objects in Space Using a Dual-Arm Robotic System Suril V. Shah Robotics Research Center, IIIT Hyeraba, Anhra Praesh, 53, Inia surilshah@iiit.ac.in

More information

739. Design of adaptive sliding mode control for spherical robot based on MR fluid actuator

739. Design of adaptive sliding mode control for spherical robot based on MR fluid actuator 739. Design of aaptive sliing moe control for spherical robot base on MR flui actuator M. Yue,, B. Y. Liu School of Automotive Engineering, Dalian University of echnology 604, Dalian, Liaoning province,

More information

Chapter 24: Magnetic Fields and Forces Solutions

Chapter 24: Magnetic Fields and Forces Solutions Chapter 24: Magnetic iels an orces Solutions Questions: 4, 13, 16, 18, 31 Exercises & Problems: 3, 6, 7, 15, 21, 23, 31, 47, 60 Q24.4: Green turtles use the earth s magnetic fiel to navigate. They seem

More information

Optimum design of tuned mass damper systems for seismic structures

Optimum design of tuned mass damper systems for seismic structures Earthquake Resistant Engineering Structures VII 175 Optimum esign of tune mass amper systems for seismic structures I. Abulsalam, M. Al-Janabi & M. G. Al-Taweel Department of Civil Engineering, Faculty

More information

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR

LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES LQG FLUTTER CONTROL OF WIND TUNNEL MODEL USING PIEZO-CERAMIC ACTUATOR Tatsunori Kaneko* an Yasuto Asano* * Department of Mechanical Engineering,

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Consider for simplicity a 3rd-order IIR filter with a transfer function. where

Consider for simplicity a 3rd-order IIR filter with a transfer function. where Basic IIR Digital Filter The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient ifference equation

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an D Control Theory Chapter 11: Feeback an D Control Theory. ntrouction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works by

More information

This module is part of the. Memobust Handbook. on Methodology of Modern Business Statistics

This module is part of the. Memobust Handbook. on Methodology of Modern Business Statistics This moule is part of the Memobust Hanbook on Methoology of Moern Business Statistics 26 March 2014 Metho: Balance Sampling for Multi-Way Stratification Contents General section... 3 1. Summary... 3 2.

More information

Non Interacting Fuzzy Control System Design for Distillation Columns

Non Interacting Fuzzy Control System Design for Distillation Columns Non Interacting Fuzzy Control System Design for Distillation Columns A. MAIDI, 1, M. DIAF, A. KHELASSI, C. BOUYAHIAOUI Département Automatique, Faculté e Génie Electrique et Informatique, Université Moulou

More information

Basic IIR Digital Filter Structures

Basic IIR Digital Filter Structures Basic IIR Digital Filter Structures The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient

More information

Ch.7 #4 7,11,12,18 21,24 27

Ch.7 #4 7,11,12,18 21,24 27 Ch.7 #4 7,,,8,4 7 4. Picture the Problem: The farmhan pushes the hay horizontally. 88 N Strategy: Multiply the force by the istance because in this case the two point along the same irection. 3.9 m Solution:

More information

arxiv:physics/ v4 [physics.class-ph] 9 Jul 1999

arxiv:physics/ v4 [physics.class-ph] 9 Jul 1999 AIAA-99-2144 PROPULSION THROUGH ELECTROMAGNETIC SELF-SUSTAINED ACCELERATION arxiv:physics/9906059v4 [physics.class-ph] 9 Jul 1999 Abstract As is known the repulsion of the volume elements of an uniformly

More information

SELF-ERECTING, ROTARY MOTION INVERTED PENDULUM Quanser Consulting Inc.

SELF-ERECTING, ROTARY MOTION INVERTED PENDULUM Quanser Consulting Inc. SELF-ERECTING, ROTARY MOTION INVERTED PENDULUM Quanser Consulting Inc. 1.0 SYSTEM DESCRIPTION The sel-erecting rotary motion inverte penulum consists of a rotary servo motor system (SRV-02) which rives

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an D Control Theory Chapter 11: Feeback an D Control Theory. ntrouction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works by

More information

DYNAMIC PERFORMANCE OF RELUCTANCE SYNCHRONOUS MACHINES

DYNAMIC PERFORMANCE OF RELUCTANCE SYNCHRONOUS MACHINES Annals of the University of Craiova, Electrical Engineering series, No 33, 9; ISSN 184-485 7 TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL AN POWER SYSTEMS October 8-9, 9 - Iaşi, Romania YNAMIC PERFORMANCE

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

DOUBLE PENDULUM VIBRATION MOTION IN FLUID FLOW

DOUBLE PENDULUM VIBRATION MOTION IN FLUID FLOW ENGINEERING FOR RURA DEEOPMENT Jelgava,.-.5.5. DOUBE PENDUUM IBRATION MOTION IN FUID FOW Janis iba, Maris Eiuks, Martins Irbe Riga Technical University, atvia janis.viba@rtu.lv, maris.eiuks@rtu.lv, martins.irbe@rtu.lv

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b)

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b) LPC Physics A 00 Las Positas College, Physics Department Staff Purpose: To etermine that, for a boy in equilibrium, the following are true: The sum of the torques about any point is zero The sum of forces

More information

Time Optimal Flight of a Hexacopter

Time Optimal Flight of a Hexacopter Time Optimal Flight of a Hexacopter Johan Vertens an Fabian Fischer Abstract This project presents a way to calculate a time optimal control path of a hexacopter using irect multiple shooting in Matlab

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

Unit 5: Chemical Kinetics and Equilibrium UNIT 5: CHEMICAL KINETICS AND EQUILIBRIUM

Unit 5: Chemical Kinetics and Equilibrium UNIT 5: CHEMICAL KINETICS AND EQUILIBRIUM UNIT 5: CHEMICAL KINETICS AND EQUILIBRIUM Chapter 14: Chemical Kinetics 14.4 & 14.6: Activation Energy, Temperature Depenence on Reaction Rates & Catalysis Reaction Rates: - the spee of which the concentration

More information

On Using Unstable Electrohydraulic Valves for Control

On Using Unstable Electrohydraulic Valves for Control Kailash Krishnaswamy Perry Y. Li Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455 e-mail: kk,pli @me.umn.eu On Using Unstable Electrohyraulic Valves

More information

Nonlinear Discrete-time Design Methods for Missile Flight Control Systems

Nonlinear Discrete-time Design Methods for Missile Flight Control Systems Presente at the 4 AIAA Guiance, Navigation, an Control Conference, August 6-9, Provience, RI. Nonlinear Discrete-time Design Methos for Missile Flight Control Systems P. K. Menon *, G. D. Sweriuk an S.

More information

THE USE OF KIRCHOFF S CURRENT LAW AND CUT-SET EQUATIONS IN THE ANALYSIS OF BRIDGES AND TRUSSES

THE USE OF KIRCHOFF S CURRENT LAW AND CUT-SET EQUATIONS IN THE ANALYSIS OF BRIDGES AND TRUSSES Session TH US O KIRCHO S CURRNT LAW AND CUT-ST QUATIONS IN TH ANALYSIS O BRIDGS AND TRUSSS Ravi P. Ramachanran an V. Ramachanran. Department of lectrical an Computer ngineering, Rowan University, Glassboro,

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

EXPERIMENTAL INVESTIGATION ON PNEUMATIC COMPONENTS

EXPERIMENTAL INVESTIGATION ON PNEUMATIC COMPONENTS Conference on Moelling Flui Flow (CMFF 03) The 12 th International Conference on Flui Flow Technologies Buapest, Hungary, September 3-6, 2003 EXPERIMENTAL INVESTIGATION ON PNEUMATIC COMPONENTS Zoltán MÓZER,

More information

THE SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING FUZZY LOGIC AND SELF TUNING FUZZY PI CONTROLLER

THE SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING FUZZY LOGIC AND SELF TUNING FUZZY PI CONTROLLER THE SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING FUZZY LOGIC AND SELF TUNING FUZZY PI CONTROLLER Abulhakim KARAKAYA Ercüment KARAKAŞ e-mail: akarakaya@kou.eu.tr e-mail: karakas@kou.eu.tr Department

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an D Control Theory Chapter 11: Feeback an D Control Theory. ntrouction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works by

More information

EXPONENTIAL FOURIER INTEGRAL TRANSFORM METHOD FOR STRESS ANALYSIS OF BOUNDARY LOAD ON SOIL

EXPONENTIAL FOURIER INTEGRAL TRANSFORM METHOD FOR STRESS ANALYSIS OF BOUNDARY LOAD ON SOIL Tome XVI [18] Fascicule 3 [August] 1. Charles Chinwuba IKE EXPONENTIAL FOURIER INTEGRAL TRANSFORM METHOD FOR STRESS ANALYSIS OF BOUNDARY LOAD ON SOIL 1. Department of Civil Engineering, Enugu State University

More information

Optimization of a point-mass walking model using direct collocation and sequential quadratic programming

Optimization of a point-mass walking model using direct collocation and sequential quadratic programming Optimization of a point-mass walking moel using irect collocation an sequential quaratic programming Chris Dembia June 5, 5 Telescoping actuator y Stance leg Point-mass boy m (x,y) Swing leg x Leg uring

More information

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads IJR International Journal of Railway Vol. 6, No. 4 / December 13, pp. 155-159 The Korean Society for Railway Vibration Analysis of Railway Tracks Force by Distribute Moving Loas Sinyeob Lee*, Dongkyu Kim*,

More information

The Principle of Least Action and Designing Fiber Optics

The Principle of Least Action and Designing Fiber Optics University of Southampton Department of Physics & Astronomy Year 2 Theory Labs The Principle of Least Action an Designing Fiber Optics 1 Purpose of this Moule We will be intereste in esigning fiber optic

More information

CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions

CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions CIRCULAR MOTION AND SHM: Solutions to Higher Level Questions ****ALL QUESTIONS-ANSWERS ARE HIGHER LEVEL*** Solutions 015 Question 6 (i) Explain what is meant by centripetal force. The force - acting in

More information

Harmonic Modelling of Thyristor Bridges using a Simplified Time Domain Method

Harmonic Modelling of Thyristor Bridges using a Simplified Time Domain Method 1 Harmonic Moelling of Thyristor Briges using a Simplifie Time Domain Metho P. W. Lehn, Senior Member IEEE, an G. Ebner Abstract The paper presents time omain methos for harmonic analysis of a 6-pulse

More information

State observers and recursive filters in classical feedback control theory

State observers and recursive filters in classical feedback control theory State observers an recursive filters in classical feeback control theory State-feeback control example: secon-orer system Consier the riven secon-orer system q q q u x q x q x x x x Here u coul represent

More information

Determine Power Transfer Limits of An SMIB System through Linear System Analysis with Nonlinear Simulation Validation

Determine Power Transfer Limits of An SMIB System through Linear System Analysis with Nonlinear Simulation Validation Determine Power Transfer Limits of An SMIB System through Linear System Analysis with Nonlinear Simulation Valiation Yin Li, Stuent Member, IEEE, Lingling Fan, Senior Member, IEEE Abstract This paper extens

More information

Ogive Nose Cones. David Stribling NAR Sr

Ogive Nose Cones. David Stribling NAR Sr Ogive Nose ones Davi Stribling NA 80 Sr The ogive nose cone is probably one of the most common shapes use in moel rocketry. It exhibits very goo rag characteristics for general moel rocketry use. If you

More information

Problem 1 (20 points)

Problem 1 (20 points) ME 309 Fall 01 Exam 1 Name: C Problem 1 0 points Short answer questions. Each question is worth 5 points. Don t spen too long writing lengthy answers to these questions. Don t use more space than is given.

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots

A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots A Simple Design Approach In Yaw Plane For Two Loop Lateral Autopilots Jyoti Prasad Singha Thakur 1, Amit Mukhopadhyay Asst. Prof., AEIE, Bankura Unnayani Institute of Engineering, Bankura, West Bengal,

More information

RECENTLY, vertical take-off and landing (VTOL) unmanned

RECENTLY, vertical take-off and landing (VTOL) unmanned IEEE/CAA JOURNAL OF AUTOMATICA SINICA VOL. NO. JANUARY 5 65 Trajectory Tracking of Vertical Take-off an Laning Unmanne Aerial Vehicles Base on Disturbance Rejection Control Lu Wang an Jianbo Su Abstract

More information

A Path Planning Method Using Cubic Spiral with Curvature Constraint

A Path Planning Method Using Cubic Spiral with Curvature Constraint A Path Planning Metho Using Cubic Spiral with Curvature Constraint Tzu-Chen Liang an Jing-Sin Liu Institute of Information Science 0, Acaemia Sinica, Nankang, Taipei 5, Taiwan, R.O.C., Email: hartree@iis.sinica.eu.tw

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers

Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers Downloae 4/7/18 to 148.251.232.83. Reistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

Bilateral Teleoperation of Multiple Cooperative Robots over Delayed Communication Networks: Application

Bilateral Teleoperation of Multiple Cooperative Robots over Delayed Communication Networks: Application Proceeings of the 5 IEEE International Conference on Robotics an Automation Barcelona, Spain, April 5 Bilateral Teleoperation of Multiple Cooperative Robots over Delaye Communication Networks: Application

More information

Wheel Dynamic Response to Rolling Excitation on Road Weiji Wang1, a*

Wheel Dynamic Response to Rolling Excitation on Road Weiji Wang1, a* Secon International Conference on Mechanics, Materials an Structural Engineering (ICMMSE 7) Wheel Dynamic Response to Rolling Excitation on Roa Weiji Wang, a* Department of Engineering an Design, University

More information

The canonical controllers and regular interconnection

The canonical controllers and regular interconnection Systems & Control Letters ( www.elsevier.com/locate/sysconle The canonical controllers an regular interconnection A.A. Julius a,, J.C. Willems b, M.N. Belur c, H.L. Trentelman a Department of Applie Mathematics,

More information

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v Math Fall 06 Section Monay, September 9, 06 First, some important points from the last class: Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v passing through

More information

Multirate Feedforward Control with State Trajectory Generation based on Time Axis Reversal for Plant with Continuous Time Unstable Zeros

Multirate Feedforward Control with State Trajectory Generation based on Time Axis Reversal for Plant with Continuous Time Unstable Zeros Multirate Feeforwar Control with State Trajectory Generation base on Time Axis Reversal for with Continuous Time Unstable Zeros Wataru Ohnishi, Hiroshi Fujimoto Abstract with unstable zeros is known as

More information

Robust Observer-Based Control of an Aluminum Strip Processing Line

Robust Observer-Based Control of an Aluminum Strip Processing Line IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 36, NO. 3, MAY/UNE 2 865 Robust Observer-Base Control of an Aluminum Strip Processing Line Prabhakar R. Pagilla, Member, IEEE, Eugene O. King, Member, IEEE,

More information

Laplacian Cooperative Attitude Control of Multiple Rigid Bodies

Laplacian Cooperative Attitude Control of Multiple Rigid Bodies Laplacian Cooperative Attitue Control of Multiple Rigi Boies Dimos V. Dimarogonas, Panagiotis Tsiotras an Kostas J. Kyriakopoulos Abstract Motivate by the fact that linear controllers can stabilize the

More information

Chapter 11: Feedback and PID Control Theory

Chapter 11: Feedback and PID Control Theory Chapter 11: Feeback an ID Control Theory Chapter 11: Feeback an ID Control Theory I. Introuction Feeback is a mechanism for regulating a physical system so that it maintains a certain state. Feeback works

More information

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems Construction of the Electronic Raial Wave Functions an Probability Distributions of Hyrogen-like Systems Thomas S. Kuntzleman, Department of Chemistry Spring Arbor University, Spring Arbor MI 498 tkuntzle@arbor.eu

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

Exam 2 Answers Math , Fall log x dx = x log x x + C. log u du = 1 3

Exam 2 Answers Math , Fall log x dx = x log x x + C. log u du = 1 3 Exam Answers Math -, Fall 7. Show, using any metho you like, that log x = x log x x + C. Answer: (x log x x+c) = x x + log x + = log x. Thus log x = x log x x+c.. Compute these. Remember to put boxes aroun

More information

Average value of position for the anharmonic oscillator: Classical versus quantum results

Average value of position for the anharmonic oscillator: Classical versus quantum results verage value of position for the anharmonic oscillator: Classical versus quantum results R. W. Robinett Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 682 Receive

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

An Approach for Design of Multi-element USBL Systems

An Approach for Design of Multi-element USBL Systems An Approach for Design of Multi-element USBL Systems MIKHAIL ARKHIPOV Department of Postgrauate Stuies Technological University of the Mixteca Carretera a Acatlima Km. 2.5 Huajuapan e Leon Oaxaca 69000

More information

Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei. Osvaldo Domann

Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei. Osvaldo Domann Gravitation as the result of the reintegration of migrate electrons an positrons to their atomic nuclei. Osvalo Domann oomann@yahoo.com (This paper is an extract of [6] liste in section Bibliography.)

More information

TIME-DELAY ESTIMATION USING FARROW-BASED FRACTIONAL-DELAY FIR FILTERS: FILTER APPROXIMATION VS. ESTIMATION ERRORS

TIME-DELAY ESTIMATION USING FARROW-BASED FRACTIONAL-DELAY FIR FILTERS: FILTER APPROXIMATION VS. ESTIMATION ERRORS TIME-DEAY ESTIMATION USING FARROW-BASED FRACTIONA-DEAY FIR FITERS: FITER APPROXIMATION VS. ESTIMATION ERRORS Mattias Olsson, Håkan Johansson, an Per öwenborg Div. of Electronic Systems, Dept. of Electrical

More information

Separation Principle for a Class of Nonlinear Feedback Systems Augmented with Observers

Separation Principle for a Class of Nonlinear Feedback Systems Augmented with Observers Proceeings of the 17th Worl Congress The International Feeration of Automatic Control Separation Principle for a Class of Nonlinear Feeback Systems Augmente with Observers A. Shiriaev, R. Johansson A.

More information