Using the NGSS Practices in the Elementary Grades

Size: px
Start display at page:

Download "Using the NGSS Practices in the Elementary Grades"

Transcription

1 LIVE INTERACTIVE YOUR DESKTOP Using the NGSS Practices in the Elementary Grades Presented by: Heidi Schweingruber, Deborah Smith, and Jessica Jeffries January 29, :30 p.m. 8:00 p.m. Eastern time 20

2 21

3 NSTA Learning Center 10,400+ resources 3,500+ free! Add to My Library Community forums Online advisors to assist you Tools to plan and document your learning 22

4 Introducing today s presenters Ted Willard Director of NSTA s efforts around NGSS Heidi Schweingruber National Research Council Deborah Smith Pennsylvania State University Jessica Jeffries State College Area School District 23

5 24 Developing the Standards

6 Developing the Standards Assessments Curricula Instruction Teacher Development July

7 Developing the Standards July

8 A Framework for K-12 Science Education Three-Dimensions: Scientific and Engineering Practices Crosscutting Concepts Disciplinary Core Ideas 27 View free PDF form The National Academies Press at Secure your own copy from

9 Scientific and Engineering Practices 1. Asking questions (for science) and defining problems (for engineering) 2. Developing and using models 3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information 28

10 Crosscutting Concepts 1. Patterns 2. Cause and effect: Mechanism and explanation 3. Scale, proportion, and quantity 4. Systems and system models 5. Energy and matter: Flows, cycles, and conservation 6. Structure and function 7. Stability and change 29

11 Disciplinary Core Ideas Life Science LS1: From Molecules to Organisms: Structures and Processes LS2: Ecosystems: Interactions, Energy, and Dynamics LS3: Heredity: Inheritance and Variation of Traits LS4: Biological Evolution: Unity and Diversity Physical Science PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer Earth & Space Science ESS1: Earth s Place in the Universe ESS2: Earth s Systems ESS3: Earth and Human Activity Engineering & Technology ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society 30

12 31 Life Science Earth & Space Science Physical Science LS1: From Molecules to Organisms: Structures and Processes LS1.A: Structure and Function LS1.B: Growth and Development of Organisms LS1.C: Organization for Matter and Energy Flow in Organisms LS1.D: Information Processing LS2: Ecosystems: Interactions, Energy, and Dynamics LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C: Ecosystem Dynamics, Functioning, and Resilience LS2.D: Social Interactions and Group Behavior LS3: Heredity: Inheritance and Variation of Traits LS3.A: Inheritance of Traits LS3.B: Variation of Traits LS4: Biological Evolution: Unity and Diversity LS4.A: Evidence of Common Ancestry and Diversity LS4.B: Natural Selection LS4.C: Adaptation LS4.D: Biodiversity and Humans ESS1: Earth s Place in the Universe ESS1.A: The Universe and Its Stars ESS1.B: Earth and the Solar System ESS1.C: The History of Planet Earth ESS2: Earth s Systems ESS2.A: Earth Materials and Systems ESS2.B: Plate Tectonics and Large Scale System Interactions ESS2.C: The Roles of Water in Earth s Surface Processes ESS2.D: Weather and Climate ESS2.E: Biogeology ESS3: Earth and Human Activity ESS3.A: Natural Resources ESS3.B: Natural Hazards ESS3.C: Human Impacts on Earth Systems ESS3.D: Global Climate Change PS1: Matter and Its Interactions PS1.A:Structure and Properties of Matter PS1.B: Chemical Reactions PS1.C: Nuclear Processes PS2: Motion and Stability: Forces and Interactions PS2.A:Forces and Motion PS2.B: Types of Interactions PS2.C: Stability and Instability in Physical Systems PS3: Energy PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer PS3.C: Relationship Between Energy and Forces PS3.D:Energy in Chemical Processes and Everyday Life PS4: Waves and Their Applications in Technologies for Information Transfer PS4.A:Wave Properties PS4.B: Electromagnetic Radiation PS4.C: Information Technologies and Instrumentation Engineering & Technology ETS1: Engineering Design ETS1.A: Defining and Delimiting an Engineering Problem ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution ETS2: Links Among Engineering, Technology, Science, and Society ETS2.A: Interdependence of Science, Engineering, and Technology ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

13 Developing the Standards Assessments Curricula Instruction Teacher Development July

14 Developing the Standards

15 Second Public Draft Second (and Final) Public Draft is now available for review More flexibility of viewing of the standards has been provided with two official arrangements of the performance expectations: by Topics and by Core Idea The public feedback survey has been completed revised Review period ends on January 29 th Final release is expected by the end of March 34

16 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts 35 Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

17 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts 36 Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

18 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts 37 Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

19 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts 38 Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

20 Practices in the Elementary Grades Practices in the Elementary Grades Heidi Schweingruber, National Research Council Deborah Smith, Pennsylvania State University Jessica Jeffries, State College School District, State College, PA 39

21 Kindergarten What grade are you teaching this year? 1 st 2 nd 3 rd 4 th 5 th 40 Middle or high school Not currently teaching in K 12

22 On a scale of 1 5, how familiar are you with the scientific and engineering practices in the framework/ngss? 1 Not at all familiar 3 Somewhat familiar 5 Very familiar 41

23 Guiding Assumptions Children are born investigators Focusing on core ideas and practices Understanding develops over time Science and engineering require both knowledge and practice Connecting to students interests and experience Promoting equity 42

24 Children s Competence Children starting school are surprisingly competent. They already have substantial knowledge of the natural world. They are not concrete and simplistic thinkers and can use a wide range of reasoning processes that form the underpinnings of scientific thinking Instruction must build on these foundations 43

25 Children s Reasoning Young children can think in sophisticated, abstract ways. For example, they: Distinguish living from non living Identify causes of events Know that people s beliefs are not an exact representation of the external world 44

26 Living thing Non living thing Bird Fish Vehicle Tool 4 legged animal 45

27 Children s Reasoning Practice and instructional support are key Children can learn how to control variables They can learn how to evaluate evidence objectively 46

28 Constraints on Children s Reasoning Conceptual knowledge children are universal novices Nature of the task Awareness of their own thinking (metacognition) their knowledge is often implicit 47

29 Why Practices? Practices engage students in science and engineering AND leverage learning provide opportunities for reflection and consolidating understanding 48

30 The Power of Conceptual Knowledge Understanding is constructed on a foundation of existing understanding and experiences. Students need to learn how ideas are related to each other and their implications and applications in the discipline. This requires conceptual change, which requires intentional effort and instructional support. For many ideas in science, students are unlikely to arrive at an understanding of them without explicit instruction (for example, understanding atomicmolecular theory or genetics). 49

31 50

32 Learning Develops Over Time Learning difficult ideas takes time and is dependent on instruction Working with core ideas and practices over multiple years supports learning Understanding often comes together as students work on tasks that force them to synthesize ideas THE PRACTICES! 51

33 Scientific and Engineering Practices 1. Asking questions and defining problems 2. Developing and using models 3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Developing explanations and designing solutions 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information 52

34 How practices support learning Provide opportunities for reflection and consolidation of understanding Promote metacognition (awareness of their own knowledge and thinking) Help students take control of their own learning 53

35 Select the statement that best describes how you are currently thinking about the practices. A. The practices are all quite sophisticated and I think my students will have a very difficult time engaging in any them. B. I can imagine my students engaging in some of the practices but others will be too difficult. C. I see ways that my students could engage in all of the practices with guidance from me. D. I think that all of the practices are things my students can do readily. 54

36 Creating a Scientific Community In the Classroom Strive to create a scientific community for learners Novices need guidance and support to participate A caveat novices cannot function exactly like professional scientists 55

37 Before We Get to Your Questions You can turn off notifications of others arriving: Edit -> Preferences -> General -> Visual notifications You can minimize OR detach and expand chat panel Left arrow = minimize; right menu = detach Continue the discussion in the Community Forums 56

38 57 What questions or ideas do you have?

39 Encouraging kindergarten children s science practices Deb Smith Jessica Jeffries 58

40 Environments for learning Students learn science by actively engaging in the practices of science. A classroom environment that provides opportunities for students to participate in scientific practices includes scientific tasks embedded in social interaction using the discourse of science and work with scientific representations and tools. Each of these aspects requires support for student learning of scientific practices. Duschl, Schweingruber and Shouse Taking Science to School, p

41 Collaborative planning for a community of learners 60

42 NGSS K.IRE storyline K.IRE Interdependent Relationships in Ecosystems Kindergarten students investigate living things, such as plants and animals, in their natural environment. Students generate pictures and drawings of plants and animals in their natural environments and identify what plants and animals need to live and grow, such as water and light. As students investigate a wide variety of living things, they describe patterns in how plants and animals live in an environment that meets their needs. 61

43 NGSS 1.SFIP Structure, Function, and Information Processing storyline 62 1.SFIP focuses on the external parts of plants and animals, and how these parts are used to help plants and animals meet their needs. Careful observation of plants and animals allows students to provide evidence of the similarities and differences among individuals and parents and offspring. 1.SFIP is a beginning of study related to parts and their uses, which will be expanded in grade three to include internal parts. Students awareness of th e differences that exist among plants and animals of the same type is a foundation for their later study of heredity.

44 Science practices: Asking questions A practice of science is to ask and refine questions that lead to descriptions and explanations of how the natural and designed world works and which can be empirically tested. Ask questions about observations of the natural and designed world. 63

45 Question: What is a seed? How do we know? It is a seed because seeds have black. It is a seed because it s soft. Yes, because it has a crack. Yes, because it is peeling. Yes, because it is smooth. Yes, because it smells like popcorn. Yes, some people were saying that they planted it at their school and it grew. No, too big. No, because it is too little. No, because some seeds are hard. No, because it is shiny and hard. No, because it looks like a brush (marigold). 64

46 Science practices: Planning and carrying out investigations Evaluate different ways of observing and/or measuring an attribute of interest. Make observations and/or measurements to collect data which can be used to make comparisons. Identify questions and make predictions based on prior experiences. 65

47 How could we find out? Jeremy: We could plant it and see. Carol: If we put it in dirt, and water it, it will grow. Angela: If we plant it, and after four months, it doesn t grow, then it probably isn t a seed. 66

48 67 Bettina s prediction about whether #11 (sunflower) is a seed

49 Science practices: Analyzing and interpreting data Use and share pictures, drawings, and/or writings of observations where appropriate. Use observations to note patterns and/or relationships in order to answer scientific questions and solve problems. Make measurements of length using standard units to quantify data. 68

50 69 Planning and carrying out investigations: If it is a seed, it will grow.

51 Whole class scientific notebook: Making measurements of length 70

52 Scientific notebooks To what extent do your students use drawing and writing in scientific notebooks to represent their work? A. Not at all B. Some C. Usually D. Almost always 71

53 Analyzing and interpreting data: Were they all seeds? How do we know? 72

54 Representations To what extent do your students use representations of data, like charts or graphs, to help them see patterns in investigations? A. Not at all B. Some C. Usually D. Almost always 73

55 Constructing explanations: Why is that seed growing in your cup and not in mine? Mike: Each of us planted the seed a different time. Greg: They re in a different place (tray under lights). Trina: Maybe they aren t getting the same amount of water. Greg: Maybe people didn t push it down enough. Bettina: Maybe some of them didn t get enough soil. Because the soil is the bestest part to help them, because if they didn t have soil, they couldn t eat. Mike: And (the seed) needs drinks as soon as it drinks it all, it needs more water. 74

56 75 Children s emerging questions

57 Science practices: Engaging in argument from evidence Distinguish arguments that are supported by evidence from those that are not. Listen actively to others arguments and ask questions for clarification. 76

58 More questions Why are some lima beans in the baggies soft and moldy? Jake because they drank up all the water too fast and needed more. Greg because they got too much water and are dying. Angela because they need dirt, because the dirt is the food. Bettina Every single one needs more water, because plants need a lot of water. Kevin maybe different amounts of water make a difference. 77

59 78 Rick points out that healthy beans have less water on the inside of the bag

60 Engaging in argument from evidence Rick: I think this one (moldy) had too much water and that one (healthy), and this one (healthy), and this one (healthy), had just the right amount of water, cause they look like they re growing. And the others got too much water, cause they re not growing. Evidence: There are water droplets inside the bag with the moldy bean. The healthy beans don t have water droplets inside the bag. Rick: That this one (moldy) got a lot of water, and it gots mold, and this one... Because it got a lot of water, because there s still water on that one, and there s no water on that one (healthy), so it probably didn t get as much water. 79

61 On the other hand Jake: I do see some (water) on mine (moldy), but I still think that s a little bit less. Jeffries: Less than what? Can you find something you think it s less than? Jake: Um, that one (another moldy one). Jeffries: You think there s less water up here (Jake s) than down here (other moldy bean)? Jake: Yeah, cause it probably drank it too fast, and it s brown, and it got too fast, it drank it too fast. 80

62 Recognizing when the evidence isn t relevant Bettina: Terri s, I mean, every single one (of the baggies) needs more water. Jeffries: Why do you think that? You mean, every single one of the lima beans needs more water? Bettina: Yes, because um, plants need a lot of water. If they don t get a lot of water, they ll die and get moldy. Smith: Wait a second, though. When we looked at those three plants by the window, which one had yellow leaves? Culp: I think there s some confusion (goes to get plant). Look over here (points to over watered plant) Bettina: But they (plants in pots) don t have a lot of mold! 81

63 Planning investigations to test ideas Jeryll Ones like Trina s (moldy), we should give them more water, and watch to see what happens, if it grows more. Rick Maybe you could get a new paper towel, and don t put as much water on it. 82

64 Science talks and conferences To what extent do your students meet together to share ideas, results, and questions, and to propose new investigations? A. Not at all B. Some C. Usually D. Almost always 83

65 What can teachers do? Connect to scientists Jeffries: Look at all these questions and wonderings people have (points to chart with questions), from looking at what happened when we planted these things in cups. Smith: And you know what, if this was a scientists lab, and we were all in the lab, just like we are scientists here in our classroom, that s exactly what scientists would be doing. They d be saying, Oh, look at what happened here. I wonder why that happened. What shall we do about that? And you did just the same thing. You looked at what we had, and said, Oh, I wonder why that s happening. That s a puzzle. Why is that? and then thought of ways to test it. Thank you for a lovely set of wonderings. 84

66 What can teachers do? Talk moves (Ready, Set, Science!) Jeffries: It s time to stop, but I did want to go back to Rick. At the beginning, Rick thought this (moldy bean) got so soft and so moldy, because it had too much water. How are you feeling now, Rick, because some people are thinking it didn t get enough water. What do you think we should do? Rick: Maybe you could get a new paper towel, and don t put as much water on it. Jeffries: Maybe we could change the paper towel, and not put as much water on it.. You can decide whether to put more water, less water, replant, you could do it with a completely different paper towel. That sounds like a good plan. 85

67 86 What did we learn by talking about ideas and sharing our results?

68 Lessons we learned together 1. Investigations in science and in classrooms aren t always straightforward. When children s investigations go wrong, opportunities open up for authentic science practices. 2. Taking risks as a community helps teachers and children to use science practices to solve puzzles and make new knowledge. 3. Listening to children s ideas, theories, evidence and puzzles helps guide next steps on the pathway. 4. Young children spontaneously take up scientific practices in environments that encourage and invite them. 87

69 Before We Get to Your Questions You can turn off notifications of others arriving: Edit -> Preferences -> General -> Visual notifications You can minimize OR detach and expand chat panel Left arrow = minimize; right menu = detach Continue the discussion in the Community Forums 88

70 89 What questions or ideas do you have?

71 NSTA Resources on NGSS 90

72 NSTA Resources on NGSS 91

73 92 Community Forums

74 NSTA Print Resources NSTA Reader s Guide to the Framework NSTA Journal Articles about the Framework and the Standards 93

75 NSTA National Conference The place to be to learn about San Antonio, Texas April

76 Upcoming Web Seminars about NGSS Engineering Practices in the NGSS Mariel Milano, Orange County Public Schools & NGSS Writer 6:30-8:00, on Tuesday, January 15 th Using the NGSS Practices in the Elementary Grades Heidi Schweingruber, National Research Council and Deborah Smith, Pennsylvania State University 6:30-8:00, on Tuesday, January 29 th Connections between the Practices in NGSS, Common Core Math, and Common Core ELA Sarah Michaels, Clark University and author of Ready, Set, Science 6:30-8:00, on Tuesday, February 12 th 95

77 Web Seminars on Crosscutting Concepts Feb. 19: Patterns March 5: Cause and effect: Mechanism and explanation March 19: Scale, proportion, and quantity April 16: Systems and system models April 30: Energy and matter: Flows, cycles, and conservation May 14: Structure and function May 28: Stability and change All sessions will take place from 6:30-8:00 on Tuesdays Also, archives of last fall s web seminars about the Scientific and Engineering Practices are available 96

78 Thanks to today s presenters Ted Willard Director of NSTA s efforts around NGSS Heidi Schweingruber National Research Council Deborah Smith Pennsylvania State University Jessica Jeffries State College Area School District 97

79 Thank you to the sponsor of today s web seminar: 98 This web seminar contains information about programs, products, and services offered by third parties, as well as links to third-party websites. The presence of a listing or such information does not constitute an endorsement by NSTA of a particular company or organization, or its programs, products, or services.

80 National Science Teachers Association Gerry Wheeler, Interim Executive Director Zipporah Miller, Associate Executive Director, Conferences and Programs Al Byers, Ph.D., Assistant Executive Director, e-learning and Government Partnerships Flavio Mendez, Senior Director, NSTA Learning Center NSTA Web Seminars Brynn Slate, Manager Jeff Layman, Technical Coordinator 99

NGSS Crosscutting Concepts: Systems and System Models

NGSS Crosscutting Concepts: Systems and System Models LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Crosscutting Concepts: Systems and System Models Presented by: Ramon Lopez June 11, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org

More information

A Conversation on NGSS: For Members, By Members

A Conversation on NGSS: For Members, By Members LIVE INTERACTIVE LEARNING @ YOUR DESKTOP A Conversation on NGSS: For Members, By Members Presented by: Harold Pratt and Ted Willard January 22, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 Introducing today

More information

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013 An Introduction to The Next Generation Science Standards NSTA National Conference San Antonio, Texas April 11-14, 2013 Science and Engineering Practices in the NGSS Colorado Science Education Network Denver,

More information

LS1 LS2. From Molecules to Organisms. Ecosystems

LS1 LS2. From Molecules to Organisms. Ecosystems LS1 LS2 From Molecules to Organisms Ecosystems Ecosystems From Molecules to Organisms LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C:

More information

NGSS Core Ideas: Matter and Its Interactions

NGSS Core Ideas: Matter and Its Interactions LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Core Ideas: Matter and Its Interactions Presented by: Joe Krajcik September 10, 2013 6:30 p.m. ET / 5:30 p.m. CT / 4:30 p.m. MT / 3:30 p.m. PT 1 2 http://learningcenter.nsta.org

More information

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Crosscutting Concepts: Scale, Proportion, and Quantity Presented by: Amy Taylor and Kelly Riedinger March 19, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org

More information

Introduction to the Next Generation Science Standards (NGSS) First Public Draft

Introduction to the Next Generation Science Standards (NGSS) First Public Draft LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Introduction to the Next Generation Science Standards (NGSS) First Public Draft Presented by: Dr. Gerry Wheeler and Dr. Stephen Pruitt May 15, 2012 NGSS First Public

More information

The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate. Structure of the NGSS

The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate. Structure of the NGSS The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate Structure of the NGSS The Next Generation Science Standards (NGSS) are multidimensional

More information

BLUE VALLEY DISTRICT CURRICULUM Science Grade 3

BLUE VALLEY DISTRICT CURRICULUM Science Grade 3 BLUE VALLEY DISTRICT CURRICULUM Science Grade 3 ORGANIZING THEME/TOPIC Unit 1: Weather Patterns and Predictions Unit 3: Weather and Climate Lessons 1-5 Suggested Time Frame: 39 days Unit 2: Climates of

More information

High School Chemistry: Year at a Glance

High School Chemistry: Year at a Glance UNIT 1, STRUCTURE AND PRORTIES OF MATTER Instructional days: 40 Essential question: How can one explain the structure, properties, and interactions of matter? Unit abstract: Students are expected to develop

More information

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments: Fluence Learning HS-Biology NGSS Formative Assessments - NGSS Bundles Supporting Documents This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

More information

RESOURCES: Smithsonian Science and Technology. Concepts Motion and Design Unit Lessons 1-17

RESOURCES: Smithsonian Science and Technology. Concepts Motion and Design Unit Lessons 1-17 Quarter 1 Subject: STEM Science, Technology, Engineering, Mathematics MAP Grade 3 Means to the PS2.A Forces and Motion Each force acts on one particular object and has both strength and direction. An object

More information

Electromagnetic Spectrum: Remote Sensing Ices on Mars

Electromagnetic Spectrum: Remote Sensing Ices on Mars LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Electromagnetic Spectrum: Remote Sensing Ices on Mars Presented by: Rudo Kashiri October 4, 2012 7:30 p.m. 9:00 p.m. Eastern time 1 Introducing today s presenter

More information

Next Generation Science Standards

Next Generation Science Standards The Next Generation Science Standards and the Life Sciences The important features of life science standards for elementary, middle, and high school levels Rodger W. Bybee Publication of the Next Generation

More information

Developing the Next Generation Science Standards

Developing the Next Generation Science Standards 6/18/12 Developing the Next Generation Science Standards Chris Embry Mohr Olympia High School Stanford, Illinois Science and Agriculture Teacher, NGSS Writer chrisembry.mohr@olympia.org www.nextgenscience.org

More information

Interdependent Relationships in Ecosystems

Interdependent Relationships in Ecosystems Standards Curriculum Map Bourbon County Schools Level: 3rd Grade and/or Course: Science Updated: 5/22/13 e.g. = Example only Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) Days

More information

Astronomy Forensic Science. Chemistry Honors Chemistry AP Chemistry. Biology AP Biology. Physics. Honors Physiology & Anatomy.

Astronomy Forensic Science. Chemistry Honors Chemistry AP Chemistry. Biology AP Biology. Physics. Honors Physiology & Anatomy. HS PS1 1 HS PS1 2 HS PS1 3 HS PS1 4 HS PS1 5 HS PS1 6 HS PS1 7 HS PS1 8 HS PS2 1 HS PS2 2 HS PS2 3 HS PS2 4 Physical Science Use the periodic table as a model to predict the relative properties of elements

More information

Electromagnetic Spectrum: Remote Sensing Ices on Mars

Electromagnetic Spectrum: Remote Sensing Ices on Mars LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Electromagnetic Spectrum: Remote Sensing Ices on Mars Presented by: Rudo Kashiri February 21, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 Introducing today s presenter

More information

Next Generation Science Standards Correlations (1 of 6)

Next Generation Science Standards Correlations (1 of 6) Next Generation Science Standards Correlations (1 of 6) The Next Generation Science Standards (NGSS) were completed and published online (http://www.nextgenscience.org) in April 2013. The standards are

More information

NGSS Example Bundles. 1 of 15

NGSS Example Bundles. 1 of 15 Middle School Topics Model Course III Bundle 3 Mechanisms of Diversity This is the third bundle of the Middle School Topics Model Course III. Each bundle has connections to the other bundles in the course,

More information

Analyzing Solar Energy Graphs: MY NASA DATA

Analyzing Solar Energy Graphs: MY NASA DATA LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Analyzing Solar Energy Graphs: MY NASA DATA Presented by: Alissa Keil September 12, 2011 MY NASA DATA Know your Earth video http://www.youtube.com/watch? v=d2kh_z720ia

More information

Kindergarten Science, Quarter 4, Unit 4.1. Plants. Overview

Kindergarten Science, Quarter 4, Unit 4.1. Plants. Overview Kindergarten Science, Quarter 4, Unit 4.1 Plants Overview Number of instructional days: 10 (1 day = 20 30 minutes) Content to be learned Observe that plants need water, air, food, and light to grow. Identify

More information

Appendix III Disciplinary Core Idea Progression Matrix

Appendix III Disciplinary Core Idea Progression Matrix Appendix III Disciplinary Core Idea Progression Matrix Each disciplinary core idea spans pre-k to high school, with each grade span representing a reconceptualization or more sophisticated understanding

More information

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable 1st Grade - Thematic Model - Bundle 1 Seeing Objects This is the first bundle of the 1 st Grade Thematic Model. Each bundle has connections to the other bundles in the course, as shown in the Course Flowchart.

More information

3-LS1-1 From Molecules to Organisms: Structures and Processes

3-LS1-1 From Molecules to Organisms: Structures and Processes 3-LS1-1 From Molecules to Organisms: Structures and Processes 3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction,

More information

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM. Content Area: Middle School Science. Grade Level: Eighth Grade. 45 Days. 45 Days. 45 Days.

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM. Content Area: Middle School Science. Grade Level: Eighth Grade. 45 Days. 45 Days. 45 Days. Content Area: Middle School Science Grade Level: BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM Unit Timeframe Unit 1: Structure and Properties of Matter 45 Days Unit 2: Chemical Reactions 45 Days Unit

More information

A Focus on Physical Science

A Focus on Physical Science The Next Generation Science Standards A Focus on Physical Science By Joe Krajcik What should all students know about the physical sciences? Why should all students have a basic understanding of these ideas?

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade ORGANIZING THEME/TOPIC UNIT 1: CELLS Structure and Function of Cells MS-LS1-1. Conduct an investigation to provide evidence that

More information

NGSS Example Bundles. Page 1 of 23

NGSS Example Bundles. Page 1 of 23 High School Conceptual Progressions Model III Bundle 2 Evolution of Life This is the second bundle of the High School Conceptual Progressions Model Course III. Each bundle has connections to the other

More information

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade ORGANIZING THEME/TOPIC UNIT 1: ENERGY Definitions of Energy Potential and Kinetic Energy Conservation of Energy Energy Transfer MS-PS3-1:

More information

Activities. Textbook alignment: Chapter 1: Plants and How They Grow- Lessons 1-4. Chapter 2: How Animals Live- Lessons 1 & 2

Activities. Textbook alignment: Chapter 1: Plants and How They Grow- Lessons 1-4. Chapter 2: How Animals Live- Lessons 1 & 2 *See Teacher Share- Grade 3 NGSS Curriculum for most supplementary texts and listed activities Process Skills/ Activities Standard Integration Evaluation Technology 1 From Molecules to Organisms, Structures

More information

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA What is so different about NGSS? Chemistry PD Joe Krajcik CREATE for STEM Michigan State University Atlanta, GA Institute for Collaborative Research in Education, Assessment, and Teaching Environments

More information

Science 8 th Grade Scope and Sequence

Science 8 th Grade Scope and Sequence Sample Science 8 th Grade Science 8 th Grade Scope and Sequence August - October = ESS1: Earth s Place in the Universe Essential Questions: What is Earth s place in the Universe? What makes up our solar

More information

Career and College Readiness in Terms of Next Generation Science Standards (NGSS)

Career and College Readiness in Terms of Next Generation Science Standards (NGSS) Career and College Readiness in Terms of Next Generation Science Standards (NGSS) Michigan An NGSS Lead State Partner Next Generation Science Standards for Today s Students and Tomorrow s Workforce Building

More information

Weather and Climate: Satellite Meteorology

Weather and Climate: Satellite Meteorology LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Weather and Climate: Satellite Meteorology Presented by: Rudo Kashiri April 4, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org NSTA Learning

More information

NES: Weather and Climate: Satellite Meteorology

NES: Weather and Climate: Satellite Meteorology LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Weather and Climate: Satellite Meteorology Presented by: Rudo Kashiri January 23, 2012 Weather and Climate: Satellite Meteorology Presented by Rudo Kashiri

More information

This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry in the Earth System:

This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry in the Earth System: Fluence Learning High School NGSS Formative Assessments - New York Supporting Documents This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry

More information

NGSS Formative Assessments - California. High School - Chemistry in the Earth System

NGSS Formative Assessments - California. High School - Chemistry in the Earth System Fluence Learning NGSS Formative Assessments - California High School - Chemistry in the Earth System Supporting Documents This document includes the following supporting documentation to accompany the

More information

Assessing Three-Dimensional Learning in the Next Generation Science Standards

Assessing Three-Dimensional Learning in the Next Generation Science Standards Assessing Three-Dimensional Learning in the Next Generation Science Standards John Howarth & Maia Willcox SEPUP The Lawrence Hall of Science University of California, Berkeley Next Generation Science Standards

More information

Earth Materials and Processes of Change

Earth Materials and Processes of Change Grade 2 Science, Quarter 4, Unit 4.1 Earth Materials and Processes of Change Overview Number of instructional days: 10 (1 day = 45 minutes) Content to be learned Record observations and data about physical

More information

Kaboom! Volunteers in Classrooms. Presentation Summaries and Related Next Generation Standards. Grades 3-5 PRESENTATION SUMMARIES

Kaboom! Volunteers in Classrooms. Presentation Summaries and Related Next Generation Standards. Grades 3-5 PRESENTATION SUMMARIES Kaboom! Volunteers in Classrooms Presentation Summaries and Related Next Generation Standards Grades 3-5 PRESENTATION SUMMARIES Mount St Helens 1980 Eruption This presentation begins by discussing tectonic

More information

Biology: Year at a Glance

Biology: Year at a Glance UNIT 1: CELLS HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized

More information

NGSS Example Bundles. Page 1 of 13

NGSS Example Bundles. Page 1 of 13 High School Modified Domains Model Course III Life Sciences Bundle 4: Life Diversifies Over Time This is the fourth bundle of the High School Domains Model Course III Life Sciences. Each bundle has connections

More information

LIVE INTERACTIVE YOUR DESKTOP. NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Energy and the Polar Environment

LIVE INTERACTIVE YOUR DESKTOP. NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Energy and the Polar Environment LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Energy and the Polar Environment Thursday, November 13, 2008 Today s NSDL Experts Jessica Fries-Gaither,

More information

National Aeronautics and Space Administration

National Aeronautics and Space Administration The Search for Life National Aeronautics and Space Administration Next Generation Science Standards Middle School Alignment Document The Search for Life Middle School Next Generation Science Standards

More information

NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review

NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review The Tables below include the conceptual questions related to Disciplinary Core Ideas from the A Framework

More information

GRADE 6 SCIENCE REVISED 2014

GRADE 6 SCIENCE REVISED 2014 QUARTER 1 Developing and Using Models Develop and use a model to describe phenomena. (MS-LS1-2) Develop a model to describe unobservable mechanisms. (MS-LS1-7) Planning and Carrying Out Investigations

More information

Grade 5 Science. Scope and Sequence. Unit of Study 1: Properties of Matter (15 days)

Grade 5 Science. Scope and Sequence. Unit of Study 1: Properties of Matter (15 days) Unit of Study 1: Properties of Matter (15 days) Standards that appear this unit: 5-PS1-3, 5-PS1-1 5.Structure and Properties of Matter 5-PS1-3. Make observations and measurements to identify materials

More information

SWALLOW SCHOOL DISTRICT CURRICULUM GUIDE. Stage 1: Desired Results

SWALLOW SCHOOL DISTRICT CURRICULUM GUIDE. Stage 1: Desired Results SWALLOW SCHOOL DISTRICT CURRICULUM GUIDE Curriculum Area: Science Course Length: Full Year Grade: 8th Date Last Approved: June 2015 Stage 1: Desired Results Course Description and Purpose: In 8th grade

More information

Middle School Science Level Shifts

Middle School Science Level Shifts Middle School Science Level Shifts Life Science: Individual organism its place in an ecosystem development of these systems over time 6 th : Structure of cells and organisms: body systems, growth and development,

More information

GRAVITY AND KINETIC ENERGY Framework and NGSS. Contents

GRAVITY AND KINETIC ENERGY Framework and NGSS. Contents INTRODUCTION TO PERFORMANCE EXPECTATIONS The NGSS are standards or goals, that reflect what a student should know and be able to do; they do not dictate the manner or methods by which the standards are

More information

EARTH S SYSTEMS: PROCESSES THAT SHAPE THE EARTH

EARTH S SYSTEMS: PROCESSES THAT SHAPE THE EARTH 9 Week Unit UNIT 2 EARTH S SYSTEMS: PROCESSES THAT SHAPE THE EARTH Fourth Grade Rogers Public Schools : Earth s Systems: Processes that Shape the Earth 9 weeks In this unit, students develop understandings

More information

All instruction should be three-dimensional. Page 1 of 9

All instruction should be three-dimensional. Page 1 of 9 High School Conceptual Progressions Model Course II Bundle 5 Inheritance of Genetic Variation This is the fifth bundle of the High School Conceptual Progressions Model Course II. Each bundle has connections

More information

NSTA Web Seminar: Force and Motion: Stop Faking It!

NSTA Web Seminar: Force and Motion: Stop Faking It! LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSTA Web Seminar: Force and Motion: Stop Faking It! Thursday, January 15, 2009 Force and Motion Circular motion Different frames of reference Gravitational forces

More information

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. CHEMISTRY OF MATERIALS OVERVIEW- NGSS Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. NGPEP11 DCI: Substances are made from

More information

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined Quarter 1 PS21.A Structure and Properties of Matter Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to

More information

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter Chariho Regional School District - Science Curriculum September, 2016 GRADE EIGHT CURRICULUM Unit 1: The Makeup and Interactions of Matter OVERVIEW Summary The performance expectations for this unit help

More information

Patterns Are Observable, Predictable, and Explainable

Patterns Are Observable, Predictable, and Explainable Activities inspired by children s literature Patterns Are Observable, Predictable, and Explainable By Christine Anne Royce Pattern identification is a key element to students understanding natural phenomena

More information

Disciplinary Core Ideas

Disciplinary Core Ideas K.Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment K.Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment K-LS1-1. Use observations to describe

More information

NES: Newton s Laws of Motion: Lunar Nautics

NES: Newton s Laws of Motion: Lunar Nautics LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Newton s Laws of Motion: Lunar Nautics Presented by: Rudo Kashiri March 19, 2012 Newton s Laws of Motion LUNAR NAUTICS Rudo Kashiri NES Education Specialist

More information

Reviewing the Alignment of IPS with NGSS

Reviewing the Alignment of IPS with NGSS Reviewing the Alignment of IPS with NGSS Harold A. Pratt & Robert D. Stair Introductory Physical Science (IPS) was developed long before the release of the Next Generation Science Standards (NGSS); nevertheless,

More information

Mars Image Analysis. High School Alignment Document Next Generation Science Standards, Common Core State Standards, and 21st Century Skills

Mars Image Analysis. High School Alignment Document Next Generation Science Standards, Common Core State Standards, and 21st Century Skills National Aeronautics and Space Administration Mars Image Analysis High School Alignment Document Next Generation Science Standards, Common Core State Standards, and 21st Century Skills WHAT STUDENTS DO:

More information

Weathering and Erosion

Weathering and Erosion Unit abstract Overview In this unit of study, students are expected to develop understanding of the effects of weathering and the rate of erosion by water, ice, wind, or vegetation. The crosscutting concepts

More information

UC Irvine FOCUS! 5 E Lesson Plan Title: Marble Isotope Lab Grade Level and Course: 8 th Grade Physical Science and 9-12 High School Chemistry

UC Irvine FOCUS! 5 E Lesson Plan Title: Marble Isotope Lab Grade Level and Course: 8 th Grade Physical Science and 9-12 High School Chemistry UC Irvine FOCUS! 5 E Lesson Plan Title: Marble Isotope Lab Grade Level and Course: 8 th Grade Physical Science and 9-12 High School Chemistry Materials: Red, blue and yellow marbles (25 each) Instructional

More information

Plan and conduct investigations to provide evidence that vibrating materials can make sound. (1-PS4-1)

Plan and conduct investigations to provide evidence that vibrating materials can make sound. (1-PS4-1) Grade - Science Curriculum Framework (NGSS in Parantheses) Physical Science Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 SAS Assessment Anchor Eligible Content Matter can be

More information

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at High School Conceptual Progressions Model Course II Bundle 3 Matter and Energy in Organisms This is the third bundle of the High School Conceptual Progressions Model Course II. Each bundle has connections

More information

EdTechLens Rainforest Journey Scope and Sequence - Grade 3

EdTechLens Rainforest Journey Scope and Sequence - Grade 3 Unit 1- The Big Picture of the Rainforest 3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification

More information

Franklin Special School District Grade 1 Science

Franklin Special School District Grade 1 Science Franklin Special School District FIRST GRADE: OVERVIEW The academic standards for first grade establish the content knowledge and skills for Tennessee students necessary to prepare them for the rigorous

More information

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10 5 th Grade Thematic Model - Bundle 3 Stability and Change in Earth s Systems This is the third bundle of the Fifth Grade Thematic Model. Each bundle has connections to the other bundles in the course,

More information

1 Adapted from The Leadership and Learning Center Rigorous Curriculum Design model.

1 Adapted from The Leadership and Learning Center Rigorous Curriculum Design model. Horace W. Porter School From Molecules to Organisms Subject(s) Science Grade/Course 7 PacingTBD Performance Expectations NGSS Students who demonstrate understanding can: MS-LS1-1. Conduct an investigation

More information

Measuring Keepers S E S S I O N 1. 5 A

Measuring Keepers S E S S I O N 1. 5 A S E S S I O N 1. 5 A Measuring Keepers Math Focus Points Naming, notating, and telling time to the hour on a digital and an analog clock Understanding the meaning of at least in the context of linear measurement

More information

MESSENGER: Staying Cool My Angle on Cooling Effects of Distance and Inclination

MESSENGER: Staying Cool My Angle on Cooling Effects of Distance and Inclination LIVE INTERACTIVE LEARNING @ YOUR DESKTOP MESSENGER: Staying Cool My Angle on Cooling Effects of Distance and Inclination Presented by: Rudo Kashiri February 9, 2011 MESSENGER Mission to Mercury Presented

More information

Disciplinary Core List of Standards (NGSS) for 6-8 Life Science Progression

Disciplinary Core List of Standards (NGSS) for 6-8 Life Science Progression LS1.A: Structure and Function - All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different

More information

South Dakota Content Standards Science Grade: 7 - Adopted: 2015

South Dakota Content Standards Science Grade: 7 - Adopted: 2015 Main Criteria: South Dakota Content Standards Secondary Criteria: Subjects: Science, Social Studies Grade: 7 Correlation Options: Show Correlated South Dakota Content Standards Science Grade: 7 - Adopted:

More information

Processes that Shape the Earth

Processes that Shape the Earth Grade 8 Science, Quarter 4, Unit 4.1 Processes that Shape the Earth Overview Number of instructional days: 20 (1 day = 45 minutes) Content to be learned Explain the role of differential heating and convection

More information

Kindergarten Science, Quarter 4, Unit 5. Plants. Overview

Kindergarten Science, Quarter 4, Unit 5. Plants. Overview Kindergarten Science, Quarter 4, Unit 5 Plants Overview Number of instructional days: 20 (1 day = 20 minutes) Content to be learned Distinguish between living and nonliving things. Identify and sort based

More information

Copyright 2008 NSTA. All rights reserved. For more information, go to Pennies

Copyright 2008 NSTA. All rights reserved. For more information, go to   Pennies Pennies A shiny new penny is made up of atoms. Put an X next to all the things on the list that describe the atoms that make up the shiny new penny. hard soft I N G O D L I B E R T Y W E T R U S T 2 0

More information

Jr. High Department. 8th Grade Science Curriculum Map Mrs. Danielle Coleman

Jr. High Department. 8th Grade Science Curriculum Map Mrs. Danielle Coleman Jr. High Department 8th Grade Science Curriculum Map 2016 17 Mrs. Danielle Coleman The universe is a place subject to fundamental scientific principles. An understanding of these principles will better

More information

Next Generation Science Standards Public Release II

Next Generation Science Standards Public Release II Next Generation Science Standards Public Release II Building on the Past; Preparing for the Future Phase I" Phase II" 1990s" 1990s-2009" 7/2011 March 2013" 1/2010-7/2011" Read It For Yourself" hat s Different

More information

overview Balance and Motion Grade 2 Overview CONTENTS

overview Balance and Motion Grade 2 Overview CONTENTS Grade 2 overview Balance and Motion Content goals We live in a dynamic world where everything is in motion, or so it seems. But not everything is moving the same way. Some things move from one place to

More information

Project-Based Inquiry Science: Air Quality Storyline

Project-Based Inquiry Science: Air Quality Storyline Project-Based Inquiry Science: Air Quality Storyline Targeted Performance Expectations: MS PS1 1 MS PS1 2 MS PS1 5 MS LS2 4 MS ESS2 5 MS ESS3 3 MS ESS3 4 MS ETS1 4 Air Quality: What s the Big Question?

More information

The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way!

The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way! LIVE INTERACTIVE LEARNING @ YOUR DESKTOP The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way! Presented by: Dr. Sten Odenwald March 31, 2011 Exoplanet Exploration Dr. Sten Odenwald

More information

Photosynthesis Promenade

Photosynthesis Promenade Photosynthesis Promenade Summary: Students simulate the process of photosynthesis through a wholebody demonstration. Objective Students will be able to illustrate how plants use the sun s energy to make

More information

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments: Fluence Learning HS-Physics NGSS Formative Assessments - NGSS Bundles Supporting Documents This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

More information

Analyze and interpret data from maps to describe patterns of Earth s features.

Analyze and interpret data from maps to describe patterns of Earth s features. Lesson: A Matter of Perspective 4.Earth's Systems: Processes that Shape the Earth 4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth s features. Planning and Carrying Out Investigations

More information

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the Solar System and Beyond Overview NGSS Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon,

More information

4.ESS1.C: The History of Planet Earth

4.ESS1.C: The History of Planet Earth Disciplinary Core Idea 4.ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and

More information

Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide

Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide A document based question (DBQ) is an authentic assessment where students interact with

More information

Middle School Life Science

Middle School Life Science Middle School Life Science Students in middle school develop understanding of key concepts to help them make sense of life science. The ideas build upon students science understanding from earlier grades

More information

Bridget Mulvey. A lesson on naming chemical compounds. The Science Teacher

Bridget Mulvey. A lesson on naming chemical compounds. The Science Teacher Bridget Mulvey A lesson on naming chemical compounds 44 The Science Teacher Students best learn science through a combination of science inquiry and language learning (Stoddart et al. 2002). This article

More information

Dear Teacher, Overview Page 1

Dear Teacher, Overview Page 1 Dear Teacher, You are about to involve your students in one of the most exciting frontiers of science the search for other worlds and life in solar systems beyond our own! Using the MicroObservatory telescopes,

More information

Grade 1 Organisms Unit Template

Grade 1 Organisms Unit Template Delaware Science Coalition Grade 1 Organisms Unit Template Copyright 2008Delaware Department of Education 1 Preface: This unit has been created as a model for teachers in their designing or redesigning

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

4.PS4.B: Electromagnetic Radiation

4.PS4.B: Electromagnetic Radiation DCI: Waves and Their Applications in Technologies for Information 4.PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across

More information

5-PS1-1 Matter and Its Interactions

5-PS1-1 Matter and Its Interactions 5-PS1-1 Matter and Its Interactions 5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include

More information

California s Next Generation Science Standards (NGSS) for K-12 Alternative Discipline Specific Course Grade Seven Life Sciences May 2014

California s Next Generation Science Standards (NGSS) for K-12 Alternative Discipline Specific Course Grade Seven Life Sciences May 2014 Grade Seven Life Sciences May 2014 MS-LS1 From Molecules to Organisms: Structures and Processes MS-LS1 From Molecules to Organisms: Structures and Processes Students who demonstrate understanding can:

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 6, LESSON 1: WHAT IS A CHEMICAL REACTION? MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact

More information

Copyright 2009 NSTA. All rights reserved. For more information, go to Nails in a Jar

Copyright 2009 NSTA. All rights reserved. For more information, go to   Nails in a Jar Nails in a Jar Jake put a handful of wet, iron nails in a glass jar. He tightly closed the lid and set the jar aside. After a few weeks, he noticed that the nails inside the jar were rusty. Which sentence

More information

NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Integrating Science and Literacy in the K-5 Classroom-- Physical Science from the Poles

NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Integrating Science and Literacy in the K-5 Classroom-- Physical Science from the Poles LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Integrating Science and Literacy in the K-5 Classroom-- Physical Science from the Poles Wednesday, October

More information

correlated to the Massachusetts Science Curriculum Framework, Grade 6-8

correlated to the Massachusetts Science Curriculum Framework, Grade 6-8 correlated to the Massachusetts Science Curriculum Framework, Grade 6-8 CONTENTS Correlation Massachusetts Science Curriculum Framework, 6-8 correlated to the McDougal Littell Science, Earth s Atmosphere

More information