An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013

Size: px
Start display at page:

Download "An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013"

Transcription

1 An Introduction to The Next Generation Science Standards NSTA National Conference San Antonio, Texas April 11-14, 2013

2 Science and Engineering Practices in the NGSS Colorado Science Education Network Denver, Colorado December 11, 2013

3 Goals of the Workshop Participants will understand: How NGSS was developed How the integration of the three dimensions described in the Framework come together in NGSS How performance expectations are directives about assessment, but not about instruction How the scientific and engineering practices are central to good instruction of NGSS How NGSS is related to STEM and the Common Core State Standards

4 Developing the Standards Assessments Curricula Instruction Teacher Development July

5 Developing the Standards July 2011

6 A Framework for K-12 Science Education View free PDF form The National Academies Press at Secure your own copy from

7 Resources for the Framework Science for All Americans, Benchmarks for Scientific Literacy and Atlas of Science Literacy National Science Education Standards 2009 NAEP Science Framework (National Assessment of Educational Progress) College Board Standards for College in Science NSTA s Science Anchors project

8 National Research Council Reports How People Learn (2000) America s Lab Report (2005) Taking Science to School (2007) Ready, Set, Science (2007) Learning Science in Informal Environments (2009

9 A Framework for K-12 Science Education Three-Dimensions: Scientific and Engineering Practices Crosscutting Concepts Disciplinary Core Ideas

10 Handout about the Three Dimensions

11 Scientific and Engineering Practices 1. Asking questions (for science) and defining problems (for engineering) 2. Developing and using models 3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

12 Crosscutting Concepts 1. Patterns 2. Cause and effect: Mechanism and explanation 3. Scale, proportion, and quantity 4. Systems and system models 5. Energy and matter: Flows, cycles, and conservation 6. Structure and function 7. Stability and change

13 Crosscutting Concept Groupings Patterns Patterns Systems Systems and System Models Scale, Proportion, and Quantity Causality Cause and Effect: Mechanism and Function Structure and Function Stability and Change Energy and Matter: Flows, Cycles, and Conservation Structure and Function

14 Disciplinary Core Ideas Life Science LS1: LS2: LS3: LS4: From Molecules to Organisms: Structures and Processes Ecosystems: Interactions, Energy, and Dynamics Heredity: Inheritance and Variation of Traits Biological Evolution: Unity and Diversity Earth & Space Science ESS1: Earth s Place in the Universe ESS2: Earth s Systems ESS3: Earth and Human Activity Physical Science PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer Engineering & Technology ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society

15 What is a Disciplinary Core Idea (DCI)? 1. Significance: serves as a key organizing concept within the discipline 2. Broad explanatory power: can explain a wide variety of phenomena 3. Generative: a tool for understanding or investigating more complex ideas and solving problems 4. Relevant to peoples lives: engages students life experiences as well as societal or personal interests and concerns 5. Usable from K to 12: teachable and learnable across many grades at increasing depth and sophistication Adapted from Joe Krajcik s Matter and Energy NSTA web seminar

16 Core and Component Ideas Life Science Earth & Space Science Physical Science Engineering & Technology LS1: From Molecules to Organisms: Structures and Processes LS1.A: Structure and Function LS1.B: Growth and Development of Organisms LS1.C: Organization for Matter and Energy Flow in Organisms LS1.D: Information Processing LS2: Ecosystems: Interactions, Energy, and Dynamics LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C: Ecosystem Dynamics, Functioning, and Resilience LS2.D: Social Interactions and Group Behavior LS3: Heredity: Inheritance and Variation of Traits LS3.A: Inheritance of Traits LS3.B: Variation of Traits LS4: Biological Evolution: Unity and Diversity LS4.A: Evidence of Common Ancestry and Diversity LS4.B: Natural Selection LS4.C: Adaptation LS4.D: Biodiversity and Humans ESS1: Earth s Place in the Universe ESS1.A: The Universe and Its Stars ESS1.B: Earth and the Solar System ESS1.C: The History of Planet Earth ESS2: Earth s Systems ESS2.A: Earth Materials and Systems ESS2.B: Plate Tectonics and Large- Scale System Interactions ESS2.C: The Roles of Water in Earth s Surface Processes ESS2.D: Weather and Climate ESS2.E: Biogeology ESS3: Earth and Human Activity ESS3.A: Natural Resources ESS3.B: Natural Hazards ESS3.C: Human Impacts on Earth Systems ESS3.D: Global Climate Change PS1: Matter and Its Interactions PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions PS1.C: Nuclear Processes PS2: Motion and Stability: Forces and Interactions PS2.A: Forces and Motion PS2.B: Types of Interactions PS2.C: Stability and Instability in Physical Systems PS3: Energy PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer PS3.C: Relationship Between Energy and Forces PS3.D: Energy in Chemical Processes and Everyday Life PS4: Waves and Their Applications in Technologies for Information Transfer PS4.A: Wave Properties PS4.B: Electromagnetic Radiation PS4.C: Information Technologies and Instrumentation ETS1: Engineering Design ETS1.A: Defining and Delimiting an Engineering Problem ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution ETS2: Links Among Engineering, Technology, Science, and Society ETS2.A: Interdependence of Science, Engineering, and Technology ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

17 Developing the Standards Assessments Curricula Instruction Teacher Development July

18 Developing the Standards

19 NGSS Lead State Partners

20 NGSS Writers

21 Adoption of NGSS Adopted Some step in consideration has been taken by an official entity in the state 21 (from NASBE)

22 Conceptual Shifts in NGSS 1. K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World. 2. The Next Generation Science Standards are student performance expectations NOT curriculum. 3. The science concepts in the NGSS build coherently from K The NGSS Focus on Deeper Understanding of Content as well as Application of Content. 5. Science and Engineering are Integrated in the NGSS from K The NGSS are designed to prepare students for college, career, and citizenship. 7. The NGSS and Common Core State Standards (Mathematics and English Language Arts) are Aligned. 22

23 Appendices A B C D E F G H I J K L M Conceptual Shifts Responses to May Public Feedback College and Career Readiness All Standards, All Students Disciplinary Core Idea Progressions in the NGSS Science and Engineering Practices in the NGSS Crosscutting Concepts in the NGSS Nature of Science in the NGSS Engineering Design in the NGSS Science, Technology, Society, and the Environment Model Course Mapping in Middle and High School Connections to Common Core State Standards in Mathematics Connections to Common Core State Standards in English Language Arts

24 Inside the Box

25 Based on the January 2013 Draft of NGSS Inside the NGSS Box

26 Inside the NGSS Box What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Based on the January 2013 Draft of NGSS Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels. The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. Codes for Performance Expectations Codes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection. Performance Expectations A statement that combines practices, core ideas, and crosscutting concepts together to describe how students can show what they have learned. Clarification Statement A statement that supplies examples or additional clarification to the performance expectation. Assessment Boundary A statement that provides guidance about the scope of the performance expectation at a particular grade level. Engineering Connection (*) An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box.

27 Inside the NGSS Box Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels. The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Based on the January 2013 Draft of NGSS

28 Inside the NGSS Box What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Performance Expectations A statement that combines practices, core ideas, and crosscutting concepts together to describe how students can show what they have learned. Clarification Statement A statement that supplies examples or additional clarification to the performance expectation. Assessment Boundary A statement that provides guidance about the scope of the performance expectation at a particular grade level. Engineering Connection (*) An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. Based on the January 2013 Draft of NGSS

29 Inside the NGSS Box Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box. Based on the January 2013 Draft of NGSS

30 Inside the NGSS Box Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Based on the January 2013 Draft of NGSS

31 Inside the NGSS Box Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box. Based on the January 2013 Draft of NGSS

32 Inside the NGSS Box Based on the January 2013 Draft of NGSS Codes for Performance Expectations Codes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection.

33 Inside the NGSS Box What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Based on the January 2013 Draft of NGSS Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels. The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. Codes for Performance Expectations Codes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection. Performance Expectations A statement that combines practices, core ideas, and crosscutting concepts together to describe how students can show what they have learned. Clarification Statement A statement that supplies examples or additional clarification to the performance expectation. Assessment Boundary A statement that provides guidance about the scope of the performance expectation at a particular grade level. Engineering Connection (*) An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box.

34 Closer Look at NGSS

35 Closer Look at a NGSS (Grade 2) 2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K 2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1) PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1) Patterns Patterns in the natural and human designed world can be observed. (2-PS1-1) 35 Connections to other DCIs in second grade: N/A Articulation of DCIs across grade-levels: 5.PS1.A Connections to Common Core State Standards in ELA/Literacy: W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1) W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1) Connections to Common Core State Standards in Mathematics: MP.4 Model with mathematics. (2-PS1-1) 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1

36 Closer Look at a NGSS (Grade 2) 2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 36 The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K 2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1) Connections to other DCIs in second grade: N/A Articulation of DCIs across grade-levels: 5.PS1.A Connections to Common Core State Standards in ELA/Literacy: W.2.7 report; record science observations). (2-PS1-1) W.2.8 Connections to Common Core State Standards in Mathematics: PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1) Patterns Patterns in the natural and human designed world can be observed. (2-PS1-1) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1) MP.4 Model with mathematics. (2-PS1-1) 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1

37 Closer Look at a NGSS (Grade 2) 2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 37 The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K 2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1) Connections to other DCIs in second grade: N/A Articulation of DCIs across grade-levels: 5.PS1.A Connections to Common Core State Standards in ELA/Literacy: W.2.7 report; record science observations). (2-PS1-1) W.2.8 Connections to Common Core State Standards in Mathematics: PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1) Patterns Patterns in the natural and human designed world can be observed. (2-PS1-1) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1) MP.4 Model with mathematics. (2-PS1-1) 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1

38 Closer Look at a NGSS (Grade 2) 2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 38 The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K 2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1) Connections to other DCIs in second grade: N/A Articulation of DCIs across grade-levels: 5.PS1.A Connections to Common Core State Standards in ELA/Literacy: W.2.7 report; record science observations). (2-PS1-1) W.2.8 Connections to Common Core State Standards in Mathematics: PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1) Patterns Patterns in the natural and human designed world can be observed. (2-PS1-1) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1) MP.4 Model with mathematics. (2-PS1-1) 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1

39 Closer Look at a NGSS (Grade 2) 2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 39 The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K 2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1) Connections to other DCIs in second grade: N/A Articulation of DCIs across grade-levels: 5.PS1.A Connections to Common Core State Standards in ELA/Literacy: W.2.7 report; record science observations). (2-PS1-1) W.2.8 Connections to Common Core State Standards in Mathematics: PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1) Patterns Patterns in the natural and human designed world can be observed. (2-PS1-1) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1) MP.4 Model with mathematics. (2-PS1-1) 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1

40 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. 40

41 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. 41

42 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. 42

43 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson. 43

44 Comparison between NGSS and Traditional Standards

45 Current State Science Standard Sample Inquiry Standards a. Students will explore the importance of curiosity, honesty, openness, and skepticism in science and will exhibit these traits in their own efforts to understand how the world works. b. Students will use standard safety practices for all classroom laboratory and field investigations. c. Students will have the computation and estimation skills necessary for analyzing data and following scientific explanations. d. Students will use tools and instruments for observing, measuring, and manipulating equipment and materials in scientific activities utilizing safe laboratory procedures. e. Students will use the ideas of system, model, change, and scale in exploring scientific and technological matters. f. Students will communicate scientific ideas and activities clearly. g. Students will question scientific claims and arguments effectively. Content Standards a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures. c. Describe the movement of particles in solids, liquids, gases, and plasmas states. d. Distinguish between physical and chemical properties of matter as physical (i.e., density, melting point, boiling point) or chemical (i.e., reactivity, combustibility). e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color). f. Recognize that there are more than 100 elements and some have similar properties as shown on the Periodic Table of Elements. g. Identify and demonstrate the Law of Conservation of Matter.

46 Standards Comparison: Structure and Properties of Matter Current State Middle School Science Standard a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures. c. Describe the movement of particles in solids, liquids, gases, and plasmas states. d. Distinguish between physical and chemical properties of matter as physical (i.e., density, melting point, boiling point) or chemical (i.e., reactivity, combustibility). e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color). f. Recognize that there are more than 100 elements and some have similar properties as shown on the Periodic Table of Elements. g. Identify and demonstrate the Law of Conservation of Matter. NGSS Middle School Sample a. Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. b. Plan investigations to generate evidence supporting the claim that one pure substance can be distinguished from another based on characteristic properties. c. Use a simulation or mechanical model to determine the effect on the temperature and motion of atoms and molecules of different substances when thermal energy is added to or removed from the substance. d. Construct an argument that explains the effect of adding or removing thermal energy to a pure substance in different phases and during a phase change in terms of atomic and molecular motion.

47 Standards Comparison: Structure and Properties of Matter Current State Middle School Science Standard a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures. c. Describe the movement of particles in solids, liquids, gases, and plasmas states. d. Distinguish between physical and chemical properties of matter as physical (i.e., density, melting point, boiling point) or chemical (i.e., reactivity, combustibility). e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color). f. Recognize that there are more than 100 elements and some have similar properties as shown on the Periodic Table of Elements. g. Identify and demonstrate the Law of Conservation of Matter. NGSS Middle School Sample a. Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. b. Plan investigations to generate evidence supporting the claim that one pure substance can be distinguished from another based on characteristic properties. c. Use a simulation or mechanical model to determine the effect on the temperature and motion of atoms and molecules of different substances when thermal energy is added to or removed from the substance. d. Construct an argument that explains the effect of adding or removing thermal energy to a pure substance in different phases and during a phase change in terms of atomic and molecular motion.

48 Standards Comparison: Structure and Properties of Matter Current State Middle School Science Standard a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures. c. Describe the movement of particles in solids, liquids, gases, and plasmas states. d. Distinguish between physical and chemical properties of matter as physical (i.e., density, melting point, boiling point) or chemical (i.e., reactivity, combustibility). e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color). f. Recognize that there are more than 100 elements and some have similar properties as shown on the Periodic Table of Elements. g. Identify and demonstrate the Law of Conservation of Matter. NGSS Middle School Sample a. Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. b. Plan investigations to generate evidence supporting the claim that one pure substance can be distinguished from another based on characteristic properties. c. Use a simulation or mechanical model to determine the effect on the temperature and motion of atoms and molecules of different substances when thermal energy is added to or removed from the substance. d. Construct an argument that explains the effect of adding or removing thermal energy to a pure substance in different phases and during a phase change in terms of atomic and molecular motion.

49 Standards Comparison: Structure and Properties of Matter Current State Middle School Science Standard a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures. c. Describe the movement of particles in solids, liquids, gases, and plasmas states. d. Distinguish between physical and chemical properties of matter as physical (i.e., density, melting point, boiling point) or chemical (i.e., reactivity, combustibility). e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color). f. Recognize that there are more than 100 elements and some have similar properties as shown on the Periodic Table of Elements. g. Identify and demonstrate the Law of Conservation of Matter. NGSS Middle School Sample a. Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. b. Plan investigations to generate evidence supporting the claim that one pure substance can be distinguished from another based on characteristic properties. c. Use a simulation or mechanical model to determine the effect on the temperature and motion of atoms and molecules of different substances when thermal energy is added to or removed from the substance. d. Construct an argument that explains the effect of adding or removing thermal energy to a pure substance in different phases and during a phase change in terms of atomic and molecular motion.

50 Standards Comparison: Structure and Properties of Matter Current State Middle School Science Standard a. Distinguish between atoms and molecules. b. Describe the difference between pure substances (elements and compounds) and mixtures. c. Describe the movement of particles in solids, liquids, gases, and plasmas states. d. Distinguish between physical and chemical properties of matter as physical (i.e., density, melting point, boiling point) or chemical (i.e., reactivity, combustibility). e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color). f. Recognize that there are more than 100 elements and some have similar properties as shown on the Periodic Table of Elements. g. Identify and demonstrate the Law of Conservation of Matter. NGSS Middle School Sample a. Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the number of atoms and repeating subunits. b. Plan investigations to generate evidence supporting the claim that one pure substance can be distinguished from another based on characteristic properties. c. Use a simulation or mechanical model to determine the effect on the temperature and motion of atoms and molecules of different substances when thermal energy is added to or removed from the substance. d. Construct an argument that explains the effect of adding or removing thermal energy to a pure substance in different phases and during a phase change in terms of atomic and molecular motion.

51 An Analogy

52 An Analogy between NGSS and a Cake Baking a Cake (Performance Expectation) Baking Tools & Techniques (Practices) Cake (Core Ideas) Frosting (Crosscutting Concepts)

53 An Analogy between NGSS and Cooking Preparing a Meal (Performance Expectation) Kitchen Tools & Techniques (Practices) Basic Ingredients (Core Ideas) Herbs, Spices, & Seasonings (Crosscutting Concepts)

54 An Analogy between NGSS and Cooking Life Science (Vegetables) Physical Science (Meats) Earth & Space Science (Grains) Engineering & Technology (Dairy) 54

55 Mixing and Matching the Elements

56 PE s combine particular elements of the three dimensions MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Developing and Using Models Modeling in 3 5 builds on K 2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. Use models to describe phenomena. Disciplinary Core Ideas PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. Crosscutting Concepts Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large. (5-PS1-1) 56

57 Instruction can use those same elements MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.] Science and Engineering Practices Developing and Using Models Modeling in 3 5 builds on K 2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. Use models to describe phenomena. Disciplinary Core Ideas PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. Crosscutting Concepts Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large. 57

58 Instruction can use those same elements MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.] Disciplinary Core Ideas PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. 58

59 But should also mix and match elements MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.] Science and Engineering Practices Asking Developing Planning Analyzing Using Constructing Engaging Obtaining, Mathematics Questions and Evaluating, and Argument Explanations Carrying Interpreting Using and and Defining Models Out from and and Data Modeling Analyzing Problems Investigations Computational Designing Evidence Communicating data in 3 5 Solutions in 3 5 builds Thinking Information builds on on K 2 K 2 Asking Planning experiences Mathematical Constructing Engaging Obtaining, questions and evaluating, argument and explanations carrying and progresses and computational out from and defining and to to problems building investigations introducing thinking designing evidence communicating and solutions 3 5 quantitative 3 5 revising to information builds answer 3 5 simple on approaches questions K 2 builds K 2 in 3 5 on models or to K 2 experiences builds collecting test on solutions and K 2 and data using and experiences to and progresses models problems progresses conducting and to to 3 5 to specifying represent builds multiple extending the critiquing progresses use on of trials K 2 the quantitative evidence events to qualitative scientific evaluating experiences of qualitative and constructing explanations design the and merit relationships. solutions. progresses observations. measurements explanations or and solutions accuracy to proposed that of include When to ideas specify a variety possible investigations and by peers variables methods. of and by feasible, physical that citing Communicate control describe relevant properties digital variables and evidence tools scientific predict and should and using about provide and/or be the Use Ask models questions to describe that can be evidence used. computation phenomena natural technical and to designed support and information mathematics designing explanations world(s). orally to or phenomena. investigated and predict design analyze multiple Analyze Compare and/or solutions. data in and and written interpret refine compare to formats, design arguments data to alternative problems. reasonable Make make based including sense observations on design various an of outcomes evaluation phenomena, solutions. forms and/or based of the media on measurements using Organize Identify evidence and patterns may logical the include simple presented. evidence reasoning, such to data tables, produce cause sets that to data and effect to mathematics, reveal supports diagrams, serve patterns relationships. as particular and and/or charts. basis that points suggest for in an evidence computation. relationships. explanation. for an explanation of a phenomenon or test a design solution. Disciplinary Core Ideas PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. Crosscutting Concepts Patterns Cause Scale, Systems Energy Structure Stability Proportion, and Effect: Matter: System Change Function and Flows, Models Mechanism Quantity Cycles, Different Patterns A Change system and of materials can measured Conservation change and be Prediction described can have in different used Cause Natural in Matter terms terms to of and is objects make of differences substructures, made effect its predictions. components and/or of over which relationships observable and particles. time their and can may interactions. sometimes phenomena are occur routinely at be observed. identified, exist different from rates. the tested, very and small used to the to immensely explain change. large or from very short to very long time periods. 59

60 Exploring at the Practices

61 Exploring the Practices Review the following information about one practice: A. Section from Chapter 3 of the Framework B. Matrix for the practices from Appendix F of the NGSS C. Example performance expectations that use the practice Use these discussion questions: 1. What are the key elements of this practice? 2. How will engaging in this practice support the learning of a disciplinary core idea? 3. To what extent do you currently provide opportunities for students to engage in this practice during instruction? Prepare a poster and be prepared to make a 2 minute presentation about your practice to the whole group

62 Handouts Practice 1 Asking Questions and Defining Problems Questions are the engine that drive science and engineering. Science asks What exists and what happens? Why does it happen? How does one know? Engineering asks What can be done to address a particular human need or want? How can the need be better specified? What tools and technologies are available, or could be developed, for addressing this need? Both science and engineering ask How does one communicate about phenomena, evidence, explanations, and design solutions? Asking questions is essential to developing scientific habits of mind. Even for individuals who do not become scientists or engineers, the ability to ask well defined questions is an important component of science literacy, helping to make them critical consumers of scientific knowledge. Scientific questions arise in a variety of ways. They can be driven by curiosity about the world (e.g., Why is the sky blue?). They can be inspired by a model s or theory s predictions or by attempts to extend or refine a model or theory (e.g., How does the particle model of matter explain the incompressibility of liquids?). Or they can result from the need to provide better solutions to a problem. For example, the question of why it is impossible to siphon water above a height of 32 feet led Evangelista Torricelli (17th-century inventor of the barometer) to his discoveries about the atmosphere and the identification of a vacuum. Questions are also important in engineering. Engineers must be able to ask probing questions in order to define an engineering problem. For example, they may ask: What is the need or desire that underlies the problem? What are the criteria (specifications) for a successful solution? What are the constraints? Other questions arise when generating possible solutions: Will this solution meet the design criteria? Can two or more ideas be combined to produce a better solution? What are the possible trade-offs? And more questions arise when testing solutions: Which ideas should be tested? What evidence is needed to show which idea is optimal under the given constraints? The experience of learning science and engineering should therefore develop students ability to ask and indeed, encourage them to ask well-formulated questions that can be investigated empirically. Students also need to recognize the distinction between questions that can be answered empirically and those that are answerable only in other domains of knowledge or human experience. GOALS By grade 12, students should be able to Ask questions about the natural and human-built worlds for example: Why are there seasons? What do bees do? Why did that structure collapse? How is electric power generated? Distinguish a scientific question (e.g., Why do helium balloons rise?) from a nonscientific question (Which of these colored balloons is the prettiest?). Formulate and refine questions that can be answered empirically in a science classroom and use them to design an inquiry or construct a pragmatic solution. Ask probing questions that seek to identify the premises of an argument, request further elaboration, refine a research question or engineering problem, or challenge the interpretation of a data set for example: How do you know? What evidence supports that argument? Note features, patterns, or contradictions in observations and ask questions about them. For engineering, ask questions about the need or desire to be met in order to define constraints and specifications for a solution.

63 Practices in Science, Mathematics, and English Language Arts (ELA)

64 Practices in Math, Science, and ELA* Practices in Mathematics, Science, and English Language Arts* Math Science English Language Arts M1. Make sense of problems and persevere in solving them. M2. Reason abstractly and quantitatively. M3. Construct viable arguments and critique the reasoning of others. M4. Model with mathematics. M5. Use appropriate tools strategically. M6. Attend to precision. M7. Look for and make use of structure. M8. Look for and express regularity in repeated reasoning. S1. Asking questions (for science) and defining problems (for engineering). S2. Developing and using models. S3. Planning and carrying out investigations. S4. Analyzing and interpreting data. S5. Using mathematics, information and computer technology, and computational thinking. S6. Constructing explanations (for science) and designing solutions (for engineering). S7. Engaging in argument from evidence. S8. Obtaining, evaluating, and communicating information. E1. They demonstrate independence. E2. They build strong content knowledge. E3. They respond to the varying demands of audience, task, purpose, and discipline. E4. They comprehend as well as critique. E5. They value evidence. E6. They use technology and digital media strategically and capably. E7. They come to understanding other perspectives and cultures. * The Common Core English Language Arts uses the term student capacities rather than the term practices used in Common Core Mathematics and the Next Generation Science Standards.

65 Math M1: Make sense of problems and persevere in solving them M2: Reason abstractly & quantitatively M6: Attend to precision M7: Look for & make use of structure M8: Look for & make use of regularity in repeated reasoning E6: Use technology & digital media strategically & capably M5: Use appropriate tools strategically M4. Models with mathematics S2: Develop & use models S5: Use mathematics & computational thinking E2: Build a strong base of knowledge through content rich texts E5: Read, write, and speak grounded in evidence M3 & E4: Construct viable arguments and critique reasoning of others S7: Engage in argument from evidence Science S1: Ask questions and define problems S3: Plan & carry out investigations S4: Analyze & interpret data S6: Construct explanations & design solutions S8: Obtain, evaluate, & communicate information E3: Obtain, synthesize, and report findings clearly and effectively in response to task and purpose Commonalities Among the Practices in Science, Mathematics and English Language Arts Based on work by Tina Chuek, ell.stanford.edu E1: Demonstrate independence in reading complex texts, and writing and speaking about them E7: Come to understand other perspectives and cultures through reading, listening, and collaborations ELA

66 NSTA Resources

67 Standards are Only the Start

68 Standards are Only the Start

69 On the Web nextgenscience.org nsta.org/ngss

70 NSTA Resources on NGSS Web Seminars Practices (Archive from Fall 2012) Crosscutting Concepts (Archive from Spring 2013) Disciplinary Core Ideas (Coming in the School Year) Journal Articles Science and Children Science Scope The Science Teacher

71 From the NSTA Bookstore 71

72 NGSS App

73 Connect & Collaborate with Colleagues NSTA Member-only Listserv on NGSS Discussion forum on NGSS in the Learning center

74 Conferences Next Spring National Conference Boston April 3-6, 2014 STEM Forum New Orleans May 14-17,

75 Fall 2014 Regional Conferences Richmond, VA October Orlando, FL November 6-8 Long Beach, CA December

76 Conferences in 2015 National Conference Chicago March 26-29, 2015 Reno, NV October Philadelphia, PA November Kansas City, MO December

77 Hub

78 Hub

79 Hub

80 Hub

81 Hub

82 Hub

83 Hub NSTA is developing an interactive website that will enable dynamic browsing and searching of the NGSS, access to instructional resources aligned to the standards, tools for searching and sharing those resources, and much more. Three Aspects 1. Resources to support teaching and learning 2. Forum to network and collaborate with other educators 3. Tools for curriculum planning and professional development Leverage the NSTA Learning Center

84 Hub Resources Contributed by NSTA as well as other organizations Lesson Plans and Units Videos, Simulations, and Data tools Trade Books, Research Articles, and Webinars Selected by Curators focused on certain standards Coordinators insure coherence within grade spans and within sub-disciplines

85 Hub Forum Discussion Lists Crowdsourcing Resource Sharing Peer Evaluation An Environment to Foster Professional Learning Communities

86 Hub Tools Develop Lessons Organize Curriculum Plan and Implement Professional Development

NGSS Crosscutting Concepts: Systems and System Models

NGSS Crosscutting Concepts: Systems and System Models LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Crosscutting Concepts: Systems and System Models Presented by: Ramon Lopez June 11, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org

More information

A Conversation on NGSS: For Members, By Members

A Conversation on NGSS: For Members, By Members LIVE INTERACTIVE LEARNING @ YOUR DESKTOP A Conversation on NGSS: For Members, By Members Presented by: Harold Pratt and Ted Willard January 22, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 Introducing today

More information

Developing the Next Generation Science Standards

Developing the Next Generation Science Standards 6/18/12 Developing the Next Generation Science Standards Chris Embry Mohr Olympia High School Stanford, Illinois Science and Agriculture Teacher, NGSS Writer chrisembry.mohr@olympia.org www.nextgenscience.org

More information

LS1 LS2. From Molecules to Organisms. Ecosystems

LS1 LS2. From Molecules to Organisms. Ecosystems LS1 LS2 From Molecules to Organisms Ecosystems Ecosystems From Molecules to Organisms LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C:

More information

NGSS Core Ideas: Matter and Its Interactions

NGSS Core Ideas: Matter and Its Interactions LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Core Ideas: Matter and Its Interactions Presented by: Joe Krajcik September 10, 2013 6:30 p.m. ET / 5:30 p.m. CT / 4:30 p.m. MT / 3:30 p.m. PT 1 2 http://learningcenter.nsta.org

More information

Next Generation Science Standards Public Release II

Next Generation Science Standards Public Release II Next Generation Science Standards Public Release II Building on the Past; Preparing for the Future Phase I" Phase II" 1990s" 1990s-2009" 7/2011 March 2013" 1/2010-7/2011" Read It For Yourself" hat s Different

More information

5.PS1.A: Structure and Properties of Matter

5.PS1.A: Structure and Properties of Matter Disciplinary Core Idea 5.PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected

More information

The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate. Structure of the NGSS

The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate. Structure of the NGSS The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate Structure of the NGSS The Next Generation Science Standards (NGSS) are multidimensional

More information

BLUE VALLEY DISTRICT CURRICULUM Science Grade 3

BLUE VALLEY DISTRICT CURRICULUM Science Grade 3 BLUE VALLEY DISTRICT CURRICULUM Science Grade 3 ORGANIZING THEME/TOPIC Unit 1: Weather Patterns and Predictions Unit 3: Weather and Climate Lessons 1-5 Suggested Time Frame: 39 days Unit 2: Climates of

More information

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10 5 th Grade Thematic Model - Bundle 3 Stability and Change in Earth s Systems This is the third bundle of the Fifth Grade Thematic Model. Each bundle has connections to the other bundles in the course,

More information

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA What is so different about NGSS? Chemistry PD Joe Krajcik CREATE for STEM Michigan State University Atlanta, GA Institute for Collaborative Research in Education, Assessment, and Teaching Environments

More information

Grade 5 Science. Scope and Sequence. Unit of Study 1: Properties of Matter (15 days)

Grade 5 Science. Scope and Sequence. Unit of Study 1: Properties of Matter (15 days) Unit of Study 1: Properties of Matter (15 days) Standards that appear this unit: 5-PS1-3, 5-PS1-1 5.Structure and Properties of Matter 5-PS1-3. Make observations and measurements to identify materials

More information

High School Chemistry: Year at a Glance

High School Chemistry: Year at a Glance UNIT 1, STRUCTURE AND PRORTIES OF MATTER Instructional days: 40 Essential question: How can one explain the structure, properties, and interactions of matter? Unit abstract: Students are expected to develop

More information

Using the NGSS Practices in the Elementary Grades

Using the NGSS Practices in the Elementary Grades LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Using the NGSS Practices in the Elementary Grades Presented by: Heidi Schweingruber, Deborah Smith, and Jessica Jeffries January 29, 2013 6:30 p.m. 8:00 p.m. Eastern

More information

5-PS1-1 Matter and Its Interactions

5-PS1-1 Matter and Its Interactions 5-PS1-1 Matter and Its Interactions 5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include

More information

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 3 4 weeks

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 3 4 weeks Ph Physical Science 8 th Grade Physical Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 9 weeks Unit 2 9 weeks Unit 3 4 weeks Unit 4 5 weeks Unit 5 6 weeks Nature of

More information

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 4 5 weeks

Quarter 1 Quarter 2 Quarter 3 Quarter 4. Unit 4 5 weeks Physical Science 8 th Grade Physical Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 9 weeks Nature of Matter S8P1. Obtain, evaluate, and the structure and properties

More information

Introduction to the Next Generation Science Standards (NGSS) First Public Draft

Introduction to the Next Generation Science Standards (NGSS) First Public Draft LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Introduction to the Next Generation Science Standards (NGSS) First Public Draft Presented by: Dr. Gerry Wheeler and Dr. Stephen Pruitt May 15, 2012 NGSS First Public

More information

RESOURCES: Smithsonian Science and Technology. Concepts Motion and Design Unit Lessons 1-17

RESOURCES: Smithsonian Science and Technology. Concepts Motion and Design Unit Lessons 1-17 Quarter 1 Subject: STEM Science, Technology, Engineering, Mathematics MAP Grade 3 Means to the PS2.A Forces and Motion Each force acts on one particular object and has both strength and direction. An object

More information

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Crosscutting Concepts: Scale, Proportion, and Quantity Presented by: Amy Taylor and Kelly Riedinger March 19, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org

More information

Science 8 th Grade Scope and Sequence

Science 8 th Grade Scope and Sequence Sample Science 8 th Grade Science 8 th Grade Scope and Sequence August - October = ESS1: Earth s Place in the Universe Essential Questions: What is Earth s place in the Universe? What makes up our solar

More information

Astronomy Forensic Science. Chemistry Honors Chemistry AP Chemistry. Biology AP Biology. Physics. Honors Physiology & Anatomy.

Astronomy Forensic Science. Chemistry Honors Chemistry AP Chemistry. Biology AP Biology. Physics. Honors Physiology & Anatomy. HS PS1 1 HS PS1 2 HS PS1 3 HS PS1 4 HS PS1 5 HS PS1 6 HS PS1 7 HS PS1 8 HS PS2 1 HS PS2 2 HS PS2 3 HS PS2 4 Physical Science Use the periodic table as a model to predict the relative properties of elements

More information

Career and College Readiness in Terms of Next Generation Science Standards (NGSS)

Career and College Readiness in Terms of Next Generation Science Standards (NGSS) Career and College Readiness in Terms of Next Generation Science Standards (NGSS) Michigan An NGSS Lead State Partner Next Generation Science Standards for Today s Students and Tomorrow s Workforce Building

More information

INTRODUCTION TO PERFORMANCE EXPECTATIONS

INTRODUCTION TO PERFORMANCE EXPECTATIONS 2018-2019-C Copyright The Regents of the University of California Berkeley Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com INTRODUCTION TO PERFORMANCE

More information

MIXTURES AND SOLUTIONS Framework and NGSS. Contents

MIXTURES AND SOLUTIONS Framework and NGSS. Contents INTRODUCTION TO PERFORMANCE EXPECTATIONS The NGSS are standards or goals, that reflect what a student should know and be able to do; they do not dictate the manner or methods by which the standards are

More information

Reviewing the Alignment of IPS with NGSS

Reviewing the Alignment of IPS with NGSS Reviewing the Alignment of IPS with NGSS Harold A. Pratt & Robert D. Stair Introductory Physical Science (IPS) was developed long before the release of the Next Generation Science Standards (NGSS); nevertheless,

More information

A Focus on Physical Science

A Focus on Physical Science The Next Generation Science Standards A Focus on Physical Science By Joe Krajcik What should all students know about the physical sciences? Why should all students have a basic understanding of these ideas?

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined Quarter 1 PS21.A Structure and Properties of Matter Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to

More information

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments: Fluence Learning HS-Biology NGSS Formative Assessments - NGSS Bundles Supporting Documents This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

More information

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. CHEMISTRY OF MATERIALS OVERVIEW- NGSS Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. NGPEP11 DCI: Substances are made from

More information

Prentice Hall Science Explorer: Inside Earth 2005 Correlated to: New Jersey Core Curriculum Content Standards for Science (End of Grade 8)

Prentice Hall Science Explorer: Inside Earth 2005 Correlated to: New Jersey Core Curriculum Content Standards for Science (End of Grade 8) New Jersey Core Curriculum Content Standards for Science (End of Grade 8) STANDARD 5.1 (SCIENTIFIC PROCESSES) - all students will develop problem-solving, decision-making and inquiry skills, reflected

More information

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM. Content Area: Middle School Science. Grade Level: Eighth Grade. 45 Days. 45 Days. 45 Days.

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM. Content Area: Middle School Science. Grade Level: Eighth Grade. 45 Days. 45 Days. 45 Days. Content Area: Middle School Science Grade Level: BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM Unit Timeframe Unit 1: Structure and Properties of Matter 45 Days Unit 2: Chemical Reactions 45 Days Unit

More information

correlated to the Massachusetts Science Curriculum Framework, Grade 6-8

correlated to the Massachusetts Science Curriculum Framework, Grade 6-8 correlated to the Massachusetts Science Curriculum Framework, Grade 6-8 CONTENTS Correlation Massachusetts Science Curriculum Framework, 6-8 correlated to the McDougal Littell Science, Earth s Atmosphere

More information

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable 1st Grade - Thematic Model - Bundle 1 Seeing Objects This is the first bundle of the 1 st Grade Thematic Model. Each bundle has connections to the other bundles in the course, as shown in the Course Flowchart.

More information

K.Forces and Interactions: Pushes and Pulls

K.Forces and Interactions: Pushes and Pulls K.Forces and Interactions: Pushes and Pulls K.Forces and Interactions: Pushes and Pulls K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different directions

More information

HS Physical Science Standards

HS Physical Science Standards HS Physical Science HS Physical Science Standards The Cobb Teaching and Learning Standards of Excellence are designed to provide foundational knowledge and skills for all students to develop proficiency

More information

Council of State Science Supervisors - National Conference

Council of State Science Supervisors - National Conference Council of State Science Supervisors - National Conference Christopher C. Lazzaro, Associate Director of Science Education clazzaro@collegeboard.org 212.520.8628 Provide an overview of the Science College

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 2, LESSON 1 HEAT, TEMPERATURE, AND CONDUCTION MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state

More information

Unit 1. Unit 2. Unit 6. Unit 3. Unit 5. Unit 4. Solutions

Unit 1. Unit 2. Unit 6. Unit 3. Unit 5. Unit 4. Solutions Chemistry Chemistry Standards The Cobb Teaching and Learning Standards (CT & LS) for science are designed to provide foundational knowledge and skills for all students to develop proficiency in science.

More information

NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review

NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review The Tables below include the conceptual questions related to Disciplinary Core Ideas from the A Framework

More information

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade ORGANIZING THEME/TOPIC UNIT 1: ENERGY Definitions of Energy Potential and Kinetic Energy Conservation of Energy Energy Transfer MS-PS3-1:

More information

3 rd Grade Math 2 nd Grade Science

3 rd Grade Math 2 nd Grade Science 3 rd Grade Math 2 nd Grade Science 2nd Grade Science Teaching and Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 6 weeks Properties of Matter Unit 2 3 weeks Season, Shadows, and the

More information

National Aeronautics and Space Administration

National Aeronautics and Space Administration The Search for Life National Aeronautics and Space Administration Next Generation Science Standards Middle School Alignment Document The Search for Life Middle School Next Generation Science Standards

More information

Next Generation Science Standards

Next Generation Science Standards The Next Generation Science Standards and the Life Sciences The important features of life science standards for elementary, middle, and high school levels Rodger W. Bybee Publication of the Next Generation

More information

Disciplinary Core Ideas

Disciplinary Core Ideas K-PS2 Motion and Stability: Forces and Interactions K-PS2 Motion and Stability: Forces and interactions K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different

More information

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve California Department of Education Clarification statements were created by the writers of NGSS to supply examples or additional clarification to the performance expectations and assessment boundary statements.

More information

Unit 3. 4 weeks BL/8 weeks YR

Unit 3. 4 weeks BL/8 weeks YR Chemistry Chemistry Standards The Cobb Teaching and Learning Standards (CT & LS) for science are designed to provide foundational knowledge and skills for all students to develop proficiency in science.

More information

Biology: Year at a Glance

Biology: Year at a Glance UNIT 1: CELLS HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized

More information

Activities. Textbook alignment: Chapter 1: Plants and How They Grow- Lessons 1-4. Chapter 2: How Animals Live- Lessons 1 & 2

Activities. Textbook alignment: Chapter 1: Plants and How They Grow- Lessons 1-4. Chapter 2: How Animals Live- Lessons 1 & 2 *See Teacher Share- Grade 3 NGSS Curriculum for most supplementary texts and listed activities Process Skills/ Activities Standard Integration Evaluation Technology 1 From Molecules to Organisms, Structures

More information

NGSS. Science Items Grade 5 Middle School High School. Table of Contents. Grade Middle School... 5 High School... 10

NGSS. Science Items Grade 5 Middle School High School. Table of Contents. Grade Middle School... 5 High School... 10 NGSS Science Items Grade 5 Middle School High School As printed in Translating the NGSS for Classroom Instruction (Bybee, 2013) Table of Contents Grade 5...1 Middle School.... 5 High School... 10 Grade

More information

NGSS Formative Assessments - California. High School - Chemistry in the Earth System

NGSS Formative Assessments - California. High School - Chemistry in the Earth System Fluence Learning NGSS Formative Assessments - California High School - Chemistry in the Earth System Supporting Documents This document includes the following supporting documentation to accompany the

More information

This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry in the Earth System:

This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry in the Earth System: Fluence Learning High School NGSS Formative Assessments - New York Supporting Documents This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry

More information

GRAVITY AND KINETIC ENERGY Framework and NGSS. Contents

GRAVITY AND KINETIC ENERGY Framework and NGSS. Contents INTRODUCTION TO PERFORMANCE EXPECTATIONS The NGSS are standards or goals, that reflect what a student should know and be able to do; they do not dictate the manner or methods by which the standards are

More information

All instruction should be three-dimensional. Page 1 of 12

All instruction should be three-dimensional. Page 1 of 12 High School Conceptual Progressions Model Course 1 - Bundle 2 Electrical Forces and Matter or Interactions Between Particles This is the second bundle of the High School Conceptual Progressions Model Course

More information

Alignment Guide PHYSICAL GLENCOE

Alignment Guide PHYSICAL GLENCOE Alignment Guide PHYSICAL GLENCOE Glencoe Science Your Partner in Understanding and Implementing NGSS* Ease the Transition to Next Generation Science Standards Meeting NGSS Glencoe Science helps ease the

More information

Appendix III Disciplinary Core Idea Progression Matrix

Appendix III Disciplinary Core Idea Progression Matrix Appendix III Disciplinary Core Idea Progression Matrix Each disciplinary core idea spans pre-k to high school, with each grade span representing a reconceptualization or more sophisticated understanding

More information

Fairfield Public Schools Science Curriculum The Planet s Oceans

Fairfield Public Schools Science Curriculum The Planet s Oceans Fairfield Public Schools Science Curriculum The Planet s Oceans BOE Approved 5/8/2018 1 The Planet s Oceans: Description In this course, you will get to know the ocean world: plate tectonics, ocean currents,

More information

-Grade Level 8 Teacher/Room: Sue Watters/ 148 Week of:

-Grade Level 8 Teacher/Room: Sue Watters/ 148 Week of: -Grade Level 8 Teacher/Room: Sue Watters/ 148 Week of: 4-17-17 Unit Vocabulary: on-going review of all vocabulary Monday 4-10-17 CC Standards: S8P1. Students will examine the scientific view of the nature

More information

INTRODUCTION TO PERFORMANCE EXPECTATIONS

INTRODUCTION TO PERFORMANCE EXPECTATIONS Framework and NGSS 2018-2019-C Copyright The Regents of the University of California Berkeley Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com

More information

OKCPS-7th Grade Oklahoma Academic Standards and PASS (2011) Correlation

OKCPS-7th Grade Oklahoma Academic Standards and PASS (2011) Correlation This tool serves to help us analyze the gaps in our curriculum as we move to the new standards. The 8th grade OCCT ideal percentage of items aids in the vertical alignment to inform pacing that allows

More information

Kaboom! Volunteers in Classrooms. Presentation Summaries and Related Next Generation Standards. Grades 3-5 PRESENTATION SUMMARIES

Kaboom! Volunteers in Classrooms. Presentation Summaries and Related Next Generation Standards. Grades 3-5 PRESENTATION SUMMARIES Kaboom! Volunteers in Classrooms Presentation Summaries and Related Next Generation Standards Grades 3-5 PRESENTATION SUMMARIES Mount St Helens 1980 Eruption This presentation begins by discussing tectonic

More information

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments: Fluence Learning HS-Physics NGSS Formative Assessments - NGSS Bundles Supporting Documents This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

More information

Grade Level 8 Teacher/Room: Sue Watters/ 143 Week of: September 22, 2014

Grade Level 8 Teacher/Room: Sue Watters/ 143 Week of: September 22, 2014 Grade Level 8 Teacher/Room: Sue Watters/ 143 Week of: September 22, 2014 Unit Vocabulary: kinetic theory of matter; temperature; degrees; thermometer; thermal energy; calorie; joule; specific heart; conduction;

More information

Proposed California s Next Generation Science Standards (NGSS) for K-12 Grade Seven. California Department of Education, Rev.

Proposed California s Next Generation Science Standards (NGSS) for K-12 Grade Seven. California Department of Education, Rev. California Department of Education, Rev. 6-14-2013 MS-LS1 From Molecules to Organisms: Structures and Processes MS-LS1 From Molecules to Organisms: Structures and Processes Students who demonstrate understanding

More information

Analyze and interpret data from maps to describe patterns of Earth s features.

Analyze and interpret data from maps to describe patterns of Earth s features. Lesson: A Matter of Perspective 4.Earth's Systems: Processes that Shape the Earth 4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth s features. Planning and Carrying Out Investigations

More information

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at High School Conceptual Progressions Model Course II Bundle 3 Matter and Energy in Organisms This is the third bundle of the High School Conceptual Progressions Model Course II. Each bundle has connections

More information

Middle School Physical Science

Middle School Physical Science Middle School Physical Science Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences

More information

4.PS4.B: Electromagnetic Radiation

4.PS4.B: Electromagnetic Radiation DCI: Waves and Their Applications in Technologies for Information 4.PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across

More information

1 Adapted from The Leadership and Learning Center Rigorous Curriculum Design model.

1 Adapted from The Leadership and Learning Center Rigorous Curriculum Design model. Horace W. Porter School From Molecules to Organisms Subject(s) Science Grade/Course 7 PacingTBD Performance Expectations NGSS Students who demonstrate understanding can: MS-LS1-1. Conduct an investigation

More information

Interdependent Relationships in Ecosystems

Interdependent Relationships in Ecosystems Standards Curriculum Map Bourbon County Schools Level: 3rd Grade and/or Course: Science Updated: 5/22/13 e.g. = Example only Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) Days

More information

DRAFT Grade 3 SCIENCE - TLI MODEL

DRAFT Grade 3 SCIENCE - TLI MODEL Nature of Science NS.1.3.1 Communicate observations orally, in writing, and in graphic organizers: T-charts, pictographs, Venn diagrams, bar graphs, frequency tables *restate observation *record observation

More information

GRADE 5. Units of Study: Using Variables in the Inquiry Process Astronomy: Earth, Sun, Moon, Planets (Solar System) and Beyond Elements and Compounds

GRADE 5. Units of Study: Using Variables in the Inquiry Process Astronomy: Earth, Sun, Moon, Planets (Solar System) and Beyond Elements and Compounds GRADE 5 Course Overview In fifth grade, students use the inquiry process more independently throughout the year with teacher support, as needed. Students practice designing, conducting, evaluating, and

More information

Next Generation Science Standards Correlations (1 of 6)

Next Generation Science Standards Correlations (1 of 6) Next Generation Science Standards Correlations (1 of 6) The Next Generation Science Standards (NGSS) were completed and published online (http://www.nextgenscience.org) in April 2013. The standards are

More information

HS Physical Science Standards

HS Physical Science Standards HS Physical Science HS Physical Science Standards The Cobb Teaching and Learning Standards of Excellence are designed to provide foundational knowledge and skills for all students to develop proficiency

More information

Madison Public Schools

Madison Public Schools Madison Public Schools 8th Grade Science Written by: Monica Brady Jason Erdreich Reviewed by: Diane Schulthes Director of Curriculum and Instruction Tom Paterson K-12 Supervisor of Science and Technology

More information

Weathering and Erosion

Weathering and Erosion Unit abstract Overview In this unit of study, students are expected to develop understanding of the effects of weathering and the rate of erosion by water, ice, wind, or vegetation. The crosscutting concepts

More information

4.ESS1.C: The History of Planet Earth

4.ESS1.C: The History of Planet Earth Disciplinary Core Idea 4.ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and

More information

Middle School Physical Science

Middle School Physical Science Middle School Physical Science Students in middle school continue to develop understanding of four core ideas in the physical sciences. The middle school performance expectations in the Physical Sciences

More information

Jr. High Department. 8th Grade Science Curriculum Map Mrs. Danielle Coleman

Jr. High Department. 8th Grade Science Curriculum Map Mrs. Danielle Coleman Jr. High Department 8th Grade Science Curriculum Map 2016 17 Mrs. Danielle Coleman The universe is a place subject to fundamental scientific principles. An understanding of these principles will better

More information

Fairfield Public Schools Science Curriculum Draft Units Physics 40

Fairfield Public Schools Science Curriculum Draft Units Physics 40 Fairfield Public Schools Science Curriculum Draft Units Physics 40 1 Course: Description The study of natural phenomena and interactions between matter and energy using mathematical models and laws to

More information

OKCPS-8th Grade Oklahoma Academic Standards and PASS (2011) Correlation

OKCPS-8th Grade Oklahoma Academic Standards and PASS (2011) Correlation This tool serves to help us analyze the gaps in our curriculum as we move to the new standards. The 8th grade OCCT ideal percentage of items aids in the vertical alignment to inform pacing that allows

More information

LAB-AIDS Correlations for NEXT GENERATION SCIENCE STANDARDS HIGH SCHOOL LEVEL, LIFE SCIENCE

LAB-AIDS Correlations for NEXT GENERATION SCIENCE STANDARDS HIGH SCHOOL LEVEL, LIFE SCIENCE LAB-AIDS Correlations for NEXT GENERATION SCIENCE STANDARDS HIGH SCHOOL LEVEL, LIFE SCIENCE Mark Koker, Ph D, Director of Curriculum &Professional Development, LAB-AIDS Oralia Gil, Curriculum Specialist,

More information

Engineering Design. 6 th Grade Science Curriculum. Students who demonstrate understanding can

Engineering Design. 6 th Grade Science Curriculum. Students who demonstrate understanding can 6 th Grade Science Curriculum Engineering Design MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant

More information

Chemistry in the Earth System Unit 3 Atoms and Elements

Chemistry in the Earth System Unit 3 Atoms and Elements Chemistry in the Earth System Unit 3 Atoms and Elements Background for Teachers and Instructional Suggestions The previous instructional segment examined the thermal interactions of objects by looking

More information

CHEM.A.1.1.1: CHEM.A.1.1.2: CHEM.A.1.1.3: CHEM.A.1.1.4: CHEM.A.1.2.1: CHEM.A.1.2.2:

CHEM.A.1.1.1: CHEM.A.1.1.2: CHEM.A.1.1.3: CHEM.A.1.1.4: CHEM.A.1.2.1: CHEM.A.1.2.2: Topic: Matter and Energy Duration: Traditional (50 minute periods) : 12-23 days (adjust to student needs using professional discretion) Block Schedule (90 minute periods) : 6-12 days (adjust to student

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 6, LESSON 1: WHAT IS A CHEMICAL REACTION? MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact

More information

Prentice Hall. Chemistry, (Wilbraham) 2008, National SE, Georgia TE. Grades 9-12

Prentice Hall. Chemistry, (Wilbraham) 2008, National SE, Georgia TE. Grades 9-12 Prentice Hall Chemistry, (Wilbraham) 2008, National SE, Georgia TE Grades 9-12 C O R R E L A T E D T O Georgia Performance s for Chemistry (Course Number 40.05100 Chemistry I) Grades 9-12 FORMAT FOR CORRELATION

More information

NGSS = Career and College Ready

NGSS = Career and College Ready NGSS = Career and College Ready Making the Case Melanie Cooper Ryan Sweeder Susan Codere Kelly http://www.create4stem.msu.edu/ngss College and Career Ready Session Objectives Clarify CCR expectations (university

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Grade Level 3rd Melting, Freezing, and More!: Phase Transitions Steven Scroggins, Ailey Crow, Tom Holcombe, and Terence Choy California

More information

Mixtures and Solutions

Mixtures and Solutions Grade 5 Physical Science Module Mixtures and Solutions In a code such as 5.2.8.D.1, the 5 indicates the science standards, the 2 indicates the physical science standard within the set of science standards,

More information

3 rd Grade Math Earth Science

3 rd Grade Math Earth Science 3 rd Grade Math Earth Science 6 th Grade Earth Science Teaching & Learning Framework * Clarification statements not provided on framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 6 weeks Rocks and

More information

Looking for Signs of Life. Overview. Directions. Content Created by. Activitydevelop. How do scientists determine whether a planet has life?

Looking for Signs of Life. Overview. Directions. Content Created by. Activitydevelop. How do scientists determine whether a planet has life? This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Activitydevelop Looking for Signs of

More information

California s Next Generation Science Standards (NGSS) for K-12 Alternative Discipline Specific Course Grade Six Earth and Space Sciences April 2014

California s Next Generation Science Standards (NGSS) for K-12 Alternative Discipline Specific Course Grade Six Earth and Space Sciences April 2014 Grade Six Earth and Space Sciences April 2014 MS-ESS1 Earth s Place in the Universe MS-ESS1 Earth s Place in the Universe Students who demonstrate understanding can: MS-ESS1-1. Develop and use a model

More information

Disciplinary Core Ideas

Disciplinary Core Ideas K.Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment K.Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment K-LS1-1. Use observations to describe

More information

Project-Based Inquiry Science: Air Quality Storyline

Project-Based Inquiry Science: Air Quality Storyline Project-Based Inquiry Science: Air Quality Storyline Targeted Performance Expectations: MS PS1 1 MS PS1 2 MS PS1 5 MS LS2 4 MS ESS2 5 MS ESS3 3 MS ESS3 4 MS ETS1 4 Air Quality: What s the Big Question?

More information

5th Grade Science Syllabus and Classroom Expectations

5th Grade Science Syllabus and Classroom Expectations 5th Grade Science Syllabus and Classroom Expectations Class Description: The organization of this class will include topics from the physical sciences, Biology, and earth Science. This year you will be

More information

Formation of the Earth and Solar System. Radiometric dating of moon rocks, minerals, and meteorites. Size and composition of solar system objects

Formation of the Earth and Solar System. Radiometric dating of moon rocks, minerals, and meteorites. Size and composition of solar system objects Environmental Science: NGSS Curriculum Map 2016 - S. Kraemer, J. Crane, M. Thorn, S. Marz Time/Interval Essential Question Content Skills Assessment Standards Days: Unit 1: History of the Earth Crosscutting:

More information

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 2. Unit 7 5 weeks. Unit 4. Unit 5

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 2. Unit 7 5 weeks. Unit 4. Unit 5 4 th Grade Science Unit 1 4 weeks 4 th Grade Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 5 weeks 4 weeks 5 weeks 5 weeks 4 weeks

More information

3 rd Grade Math 4 th Grade Science

3 rd Grade Math 4 th Grade Science 3 rd Grade Math 4 th Grade Science 4 th Grade Science Teaching & Learning Framework Quarter 1 Quarter 2 Quarter 3 Quarter 4 Unit 1 5 weeks Unit 2 Unit 3 Unit 4 Unit 5 3 weeks Unit 6 Unit 7 5 weeks Unit

More information