Kinetics and Mechanism of the Oxidation of Benzyl Alcohol and Benzaldehyde by Aqueous Sodium Dichromate

Size: px
Start display at page:

Download "Kinetics and Mechanism of the Oxidation of Benzyl Alcohol and Benzaldehyde by Aqueous Sodium Dichromate"

Transcription

1 Kinetics and Mechanism of the Oxidation of Benzyl Alcohol and Benzaldehyde by Aqueous Sodium Dichromate DONALD G. LEE AND UDO A. SPITZER The Department of Chemistry, University of Regina, Regina, Saskatchewan S4S 0A2 Received May'6, 1975 DONALD G. LEE and UDO A. SPITZER. Can. J. Chem. 53, 3709 (1975). A kinetic study of the oxidation of a series of substituted benzyl alcohols and benzaldehydes by neutral aqueous sodium dichromate has been completed. The aldehydes are more resistant to oxidation because the reaction mechanism presumably involves hydration prior to oxidation, and under the conditions employed the extent of this hydration is suppressed. These conclusions are consistent with the activation parameters which indicate that the difference in oxidation rate is due to a more negative entropy of activation for the aldehydes. DONALD G. LEE et UDO A. SPITZER. Can. J. Chem. 53,3709 (1975). On a complete une etude cinetique de I'oxydation d'une serie d'alcools benzyliques substitues et de benzaldehvdes - Dar du dichromate de sodium aaueux en milieu neutre. Les aldehvdes sont plus resistants a I'oxydation db au fait que le mkanisme de reaction implique probablement une hydratation avant I'oxydation et dans les conditions utilisks I'hydratation est supprim&. Ces conclusions sont en accord avec les parametres &activation qui indiquent que les differences entre les vitesses de reaction sont dbes a une entropie qui est plus negative pour I'activation des aldehydes. [Traduit par le journal] Introduction The oxidation of aromatic alcohols to the corresponding aldehydes by aqueous sodium dichromate at elevated temperatures (- 100 "C) is a reaction that may be used for synthetic preparations that are difficult to accomplish using other oxidants (1). For example, Wakselman et al. have recently described the preparation of 7-coumarincarbaldehyde in 84% yield by treatment of the corresponding alcohol with aqueous sodium dichromate at reflux temperature (2). The reaction is of particular interest because it is known that under acidic conditions (which are usually employed for chromic acid oxidations) primary alcohols are oxidized by chromium(v1) to give substantial amounts of carboxylic acids or esters (3, 4) unless the aldehyde can be distilled from the reaction mixture as it forms (5, 6). However, neutral chromium(vi) solutions do not oxidize aromatic aldehides at an appreciable rate until considerably higher temperatures ( C) are attained (1). In the present work we have attempted to increase our quantitative understanding of these reactions by studying the kinetics of the oxidation of several substituted bennl alcohols and benzaldehydes by aqueous sodiim dichromate. Experimental The kinetic analyses were performed using a pseudo first-order approach where the substrate concentrations were in excess and the chromium(v1) concentration was monitored spectrophotometrically. In all cases good pseudo first-order kinetics were maintained for more than two half-lives of the reaction (Fig. 1). The rate data were obtained in the following manner. The required amount of alcohol was weighed into a flask, 20 ml of phosphate buffer was added, and the flask was stoppered and placed in a thermostated bath. Then 1.00 ml of 0.1 M chromium(v1) solution was added and the timer started after the solution had been thoroughly mixed. One ml aliquots were withdrawn at intervals, quenched by dilution with cold water to 10.0 ml, centrifuged, and analyzed spectrophotometrically for chromium(v1). Since the oxidation of the aldehydes could only be studied at temperatures above 150 "C it was necessary to use a sealed reactor for these experiments. The reaction vessel, which has previously been described (7), was charged with the reactants at room temperature, sealed, purged with nitrogen, and brought to a pressure of 320 p.s.i. of N,. The reactor was then heated to and stabilized at the desired temperature. This required about 1 h of heating; however, since the reactions were always pseudo first-order the rates could be followed by withdrawing samples when the temperature had stabilized and taking the time of the first sample as zero. The pseudo first-order rate constants were obtained from the slopes of plots of the logarithm of the concentration of HCr04- against time, and then converted to second-order rate constants through division by the concentration of the substrate.

2 3710 CAN. J. CHEM. VOL TIME (MIN ) FIG. 1. Pseudo first-order rate plots for the oxidation of benzyl alcohol at 95.9 "C (upper) and the oxidation of benzaldehyde at 170 "C (lower). The substituted benzyl alcohols and benzaldehydes were all obtained commercially and purified prior to use. Benzyl alcohol a,a-d2 was prepared by the lithium aluminum deuteride reduction of benzoic acid (8). I I I log [ALCOHOL] FIG. 2. Dependence of rate constants upon benzyl alcohol concentration. Slope = 1.09, r = Fm. 3. Hammett plot for the aqueous dichromate oxidation of benzyl alcohols. Slope = -0.61, r = Results and Discussions Oxidation of Benzyl Alcohol chromate esters. A similar effect was noted in ~h~ aqueous dichromate oxidation of benzyl the aqueous sodium dichromate oxidations when alcohol appears to be similar in several respects various mixtures of dioxane and water were used. to chromic acid oxidations (9). Some of the Because of these several similarities it is not common features are: the reaction is firstmorder that parallel mechanisms prevail for in oxidant (Fig. 1) and in benzyl alcohol (Fig. 2); the two reactions. Consequently we have assuma primary isotope is observed when the ed, in analogy with chromic acid oxidations, that a-hydrogens are replaced by deuterium (Table chromium(v1) esters are also involved as inter- 1); a negative Hammett value is obtained mediates in the oxidation of alcohols by aqueous (Fig. 3); and similar activation parameters sodium dichromate. (See Scheme 1). (AH* = kcal/mole and AS* = 25 + [I] HCr0,- + +CH20H e +CH20Cr03- + H20 2 e.u.) are obtained (10). Furthermore, chromic [2] 4CH20Cr CHO + HCr03- acid oxidations of alcohols are known to exhibit SCHEME I rate increases when non-polar organic co-solvents are used (11). These increases, caused by the The unfavorable entropy of activation may, decrease in solvent polarity, have been attributed at least partially, be due to formation of a cyclic to an equilibrium shift favoring the formation of transition state such as 1.

3 LEE AND SPITZER: OXIDATION BY SODIUM DICHROMATE TABLE 1. Isotope effects on the oxidation of benzyl alcohol by aqueous sodium dichromate* Substrate [Alcohol] (M) k, x ~o~(m-'s-' ) t k~lko Benzyl alcohol Benzyl alcohol Benzyl alcohol a,a-d, Benzyl alcohol a,u-d, *[Cr(VI)] = 5.8 x 10-3M, T = 96.4% The ph was adjusted to 5.52 at 25"C, th~p04-i = M, IHP04Z-] = M.?The second-order rate constants were obtained by division of the pseudo first-order constants with the concentration of alcohol present. TABLE 2. Rate constants for the oxidation of benzyl alcohol* PH~ [HzPO4-] (M) [HP042-] (M) kl x lo5 (s-')$ log kz *[Cr(VI)] = 5.18 x 10-3 M, [alcohol] = M, T = 96 C. ph was measured at 25 OC.!k i s a pseudo first-order rate constant. 5kz = kllialcohol]. The negative Hammett p value (-0.6) is probably a consequence of the fact that the slow step involves development of a carbonyl which would be destabilized by electron-withdrawing substituents. The magnitude of the p value is less than that observed for the corresponding chromic acid oxidations, thus suggesting that the carbonyl is less fully developed under neutral conditions. The slight increase in rate that is observed as the ph is decreased (Table 2) is difficult to account for quantitatively and may, in fact, be due to experimental uncertainties since the ph was measured at 25 "C while the reactions were actually carried out at 96 "C(7). 1 The Oxidation of Benzaldehyde The rate of the oxidation of benzaldehyde shows a first-order dependence upon both the oxidant (Fig. 1) and the substrate (Fig. 4), but requires a much higher temperature than the oxidation of benzyl alcohol (Table 3). FIG. 4. Dependence of rate upon benzaldehyde concentration. Slope = 0.9 f 0.1, r =

4 3712 CAN. J. CHEM. VOL TABLE 3. Rate constants for the oxidation of benzaldehyde* P H ~ 1H2PO4-I (M) [Hpo42-1 (M) kl x lo4 (s-l) log kz *[Cr(Vl)I = 5.45 x M, [benzaldehyde] = , T = 170 "C.?pH was measured at 25 OC. Skz = kl/[benzaldehydel. I expected increase in the rate of [6] (Scheme 2) FIG. 5. Hammett plot for the aqueous dichromate oxidation of benzaldehyde. Slope = 1.1, r = The Hammett p value is positive for the oxidation of substituted benzaldehydes (Fig. 5) in contrast to the negative p value observed for the oxidation of the corresponding benzyl alcohols. A similar observation for the oxidation of aldehydes by chromic acid (12) has been shown to be due to a pre-oxidative hydration step [3]. The suppression of such a hydration step at high temperatures (13) offers an explanation as to why aldehydes are more resistant to oxidation under the conditions required for oxidation by aqueous K [31 RCHO + H20 + RCH(OH)2 sodium dichromate. Because HCr0,- is not a vigorous oxidant, high temperatures must be used to obtain a reasonable reaction rate; however, independent studies have shown that the extent of carbonyl hydration decreases as temperature increases (13, 14). Consequently the with temperature would be partly nulified by a concurrent decrease in K,, and it is thus necessary to use higher temperatures for aldehyde oxidations than for alcohol oxidations. It is for this reason that aqueous sodium dichromate is particularly useful for the oxidation of alcohols to aldehydes (1). When the response of the rate of reaction to temperature changes was studied the activation parameters were found to be AH * = 13.2 f 0.4 kcal/mole and AS* = - 30 f 4 e.u. This highly unfavorable entropy of activation is probably due to a combination of three factors: (i) the transition state is likely cyclic as in 2, (ii) the formation of an aldehyde hydrate which precedes the rate determining step would have a negative entropy (14), and (iii) it is likely that the esterification step would also exhibit a negative entropy (15). A further interesting fact that emerges from a consideration of the activation parameters is that the difference in the rates of oxidation of benzyl alcohol and benzaldehyde is due mainly to a difference in the entropy of activation, which is in turn likely related to the additional hydration step that occurs only in the aldehyde oxidation mechanism. The authors are grateful to the National Research Council of Canada and the Saskatchewan Research Council for financial assistance.

5 LEE AND SPITZER: OXIDATION BY SODIUM DICHROMATE D. G. LEE and U. A. SPITZER. J. On. - Chem. 35, R. STEWART. Oxidation mechanisms. Benjamin, New (1970). York pp M. WAKSELMAN, J. F. HAMON, and M. VILKAS. 10. D. G. LEE and D. T. JOHNSON. Can. J. Chem I I Tetrahedron, 30,4069 (1974). (1965). 3. W. A. MOSHER and D. M. PREISS. J. Am. Chern. Soc. 11. F. H. WESTHEIMER. Chern. Rev. 45,419 (1949). 75,5605 (1953). 12. J. ROCEK and C. S. NG. J. Org. Chem. 38,3348 (1973). 4. G. R. ROBERTSON. In Organic synthesis. Coll. Vol. I. 13. J. L. KURZ. J. Am. Chern. Soc. 89,3524(1967). Wiley, New York p R. P. BELL. Adv. Phys. Org. Chem. 4, l(1966). 5. E. WERTHEIM. J. Am. Chem. Soc. 44,2658 (1922). 15. H. A. SMITH. J. Am. Chem. Soc. 61,254 (1939); E. K. 6. A. L. HENNE, R. L. PELLEY, and R. M. ALM. J. Am. EURANTO. The chemistry of carboxylic acids and es- Chem. Soc. 72,3370 (1950). ters. Edited by S. Patai. Interscience, Toronto D. G. LEE and U. A. SPITZER. Can. J. Chern. 49,2763 p (1971). 8. H. 0. HOUSE. Modem synthetic reactions. Benjamin, New York

Kinetics and Mechanism of the Selective Oxidation of Benzyl Alcohols by Acidified Dichromate in Aqueous Acetic Acid Medium

Kinetics and Mechanism of the Selective Oxidation of Benzyl Alcohols by Acidified Dichromate in Aqueous Acetic Acid Medium ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (3): Pg. 1391-1396 Kinetics and Mechanism

More information

The pk, values of simple aldehydes determined by kinetics of chlorination

The pk, values of simple aldehydes determined by kinetics of chlorination The pk, values of simple aldehydes determined by kinetics of chlorination J. PETER GUTHRIE' AND JOHN COSSAR Department of Chemistry, University of Western Ontario, London, Ont., Canada N6A 5B7 Received

More information

International Journal of Chemical Studies

International Journal of Chemical Studies ISSN: 2321-4902 Volume 1 Issue 4 nline Available at www.chemijournal.com International Journal of Chemical Studies olymer Supported Sodium Chromate xidation of 1- henylethanol: A Kinetic Mechanistic Study

More information

Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate

Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate Kinetic Study of Oxidation of n-hexanol by Tetramethyl ammonium Fluorochromate Sayyed Hussain 1 and Syed Yousuf Hussain 2* 1-P.G. Department of Chemistry, Sir Sayyed College Aurangabad 2-Department of

More information

Chapter 9 Aldehydes and Ketones

Chapter 9 Aldehydes and Ketones Chapter 9 Aldehydes and Ketones 9.1 Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al The aldehyde functional group is always carbon

More information

Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net Vol. 5, No.4, pp. 754-760, October 2008 Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate J. DHARMARAJA,

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Kinetic Isotope Effects

Kinetic Isotope Effects 1 Experiment 31 Kinetic Isotope Effects Isotopic substitution is a useful technique for the probing of reaction mechanisms. The change of an isotope may affect the reaction rate in a number of ways, providing

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Chromic acid oxidation of aromatic alcohols1

Chromic acid oxidation of aromatic alcohols1 Chromic acid oxidation of aromatic alcohols1 Ross STEWART AND FARIZA BANOO~ Department of Chemistry, University of British Colunzbia, Vat~couver 8, British Colu~nbia Received March 13, 1969 The mechanism

More information

Chapter 19 Carboxylic Acids

Chapter 19 Carboxylic Acids Carboxylic acids have the formula RCO2H. Nomenclature Chapter 19 Carboxylic Acids For the parent alkane, drop the terminal e and add the suffix oic acid. The parent alkane is the longest continuous chain

More information

Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship

Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship Proc. Indian Aead. Sci., Vol. 88 A, Part I, Number 5, ctober 1979, pp. 329-335, printed in India Nucleophilic substitution at a benzylic carbon by an ambident nucleophile---a linear free energy relationship

More information

Organic Reactions. Alcohols and Esterification

Organic Reactions. Alcohols and Esterification Organic Reactions Alcohols and Esterification Alcohols Ex: Ethanol (alcohol in alcoholic beverages) Ethanol production: Fermentation of glucose sugar by yeast cells - C 6 H 12 O 6 (aq) 2C 2 H 5 OH(aq)

More information

قسم : العلوم. This exam includes three exercises. It is inscribed on 4 pages numbered from 1 to 4. The use of a nonprogrammable

قسم : العلوم. This exam includes three exercises. It is inscribed on 4 pages numbered from 1 to 4. The use of a nonprogrammable نموذج مسابقة الهيئة األكاديمي ة المشتركة قسم : العلوم المادة: الكيمياء الشهادة: الثانوية العامة فرعا: علوم الحياة / العلوم العامة نموذج رقم -٢- المد ة : ساعتان )يراعي تعليق الدروس والتوصيف المعد ل للعام

More information

KINETICS OF OXIDATION OF DEOXYBENZOIN BY CHROMIC ACID

KINETICS OF OXIDATION OF DEOXYBENZOIN BY CHROMIC ACID KINETICS OF OXIDATION OF DEOXYBENZOIN BY CHROMIC ACID BY P. L. NAYAK AND N. C. KHANDUAL (Department of Chemistry, Ravenshaw College, Cuttack-3 and Department of Chemistry, G. M. College, Sambalpur) Received

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Supporting Information

Supporting Information Supporting Information Mechanistic Study of Alcohol Oxidation by the / /DMSO Catalyst System and Implications for the Development of Improved Aerobic Oxidation Catalysts Bradley A. Steinhoff, Shannon R.

More information

Kinetic Studies on The Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

Kinetic Studies on The Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis Available online at BCREC Website: http://bcrec.undip.ac.id Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2), 2014, 142-147 Research Article Kinetic Studies on The Selective xidation of Benzyl

More information

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 14 SECOND YEAR PRACTICAL. Name: Group: Date:

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 14 SECOND YEAR PRACTICAL. Name: Group: Date: JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 14 SECOND YEAR PRACTICAL Name: Group: Date: This practical will serve as (i) an introduction to aromatic chemistry and (ii) a revision of some of the reactions

More information

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION EXPERIMENT 7 ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION Materials Needed 1.0-2.0 ml of an alcohol to be chosen from the following: 3-methyl 1-butanol (isoamyl alcohol, isopentyl alcohol),

More information

Kinetics and Mechnism of Oxidation of Benzhydrol by 4-Methyl Pyridinium Di Chromate in Acetic Acid Water Medium

Kinetics and Mechnism of Oxidation of Benzhydrol by 4-Methyl Pyridinium Di Chromate in Acetic Acid Water Medium International Journal of Chemistry and Applications. ISSN 0974-3111 Volume 5, Number 1 (2013), pp. 45-53 International Research Publication House http://www.irphouse.com Kinetics and Mechnism of Oxidation

More information

Rearrangement Studies with 14C. XXXVI. Solvolysis of l-14c-2-phenylethyl Tosylate in Aqueous Acetic Acid with or without Added Sodium Azide

Rearrangement Studies with 14C. XXXVI. Solvolysis of l-14c-2-phenylethyl Tosylate in Aqueous Acetic Acid with or without Added Sodium Azide Rearrangement Studies with 14C. XXXVI. Solvolysis of l-14c-2-phenylethyl Tosylate in Aqueous Acetic Acid with or without Added Sodium Azide C. C. LEE, D. UNGER, AND SHARON VASSIE Deparrn~enr of Chernislry

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach 6 Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach V. Priya, PG and Research Department of Chemistry, Holy Cross College, Tiruchirappalli, Tamil

More information

Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 2, April 2000, pp. 73 81 Indian Academy of Sciences Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

More information

The hydrolysis of maleimide in alkaline solution

The hydrolysis of maleimide in alkaline solution The hydrolysis of maleimide in alkaline solution REM~GJO GERMANO BARRADAS, STEPHEN FLETCHER, AND JOHN DOUGLAS PORTER Departmen! of Clremistry, Carletot~ Uuiuersity, Ottawa, Crrrlndrt KIS 506 Received October

More information

1588 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 7 Jin Soon Cha and Se Jin Yu

1588 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 7 Jin Soon Cha and Se Jin Yu 1588 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 7 Jin Soon Cha and Se Jin Yu Reaction of Lithium Cyanoaluminum Hydride with Selected Organic s Containing Representative Functional Groups. Comparison of

More information

VILAS Y. SONAWANE, SUBASH D. LAKDE and J.S. PATIL

VILAS Y. SONAWANE, SUBASH D. LAKDE and J.S. PATIL Oriental Journal of Chemistry Vol. 26(3), 995-1000 (2010) Development of green and of polymer-supported chromic acid on strong anion exchange resin for oxidation of secondary alcohol - A kinetic and mechanistic

More information

Selective Reduction of Organic Compounds with Al-Methanesulfonyldiisobutylalane

Selective Reduction of Organic Compounds with Al-Methanesulfonyldiisobutylalane 840 Bull. Korean Chem. Soc. 2010, Vol. 31, No. 4 Jin Soon Cha and Minyeong Noh DI 10.5012/bkcs.2010.31.04.840 Selective Reduction of rganic Compounds with Al-Methanesulfonyldiisobutylalane Jin Soon Cha

More information

Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid

Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid Kinetic features of the oxidation of secondary alcohol by polymer - supported chromic acid Vilas Y. Sonawane* and Nandini. Hilage. a * Department of Chemistry, Bhausaheb Nene Arts, Science and Comm. College,

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

Brønsted Acid Proton donor Base Proton acceptor O CH 3 COH + H H 3 O + + CH 3 CO -

Brønsted Acid Proton donor Base Proton acceptor O CH 3 COH + H H 3 O + + CH 3 CO - hap 7. Acid and Bases Brønsted Acid Proton donor Base Proton acceptor 3 3 3-2 acid base conj. acid conj. base 3 2 S 4 3 - S 4 base acid conj. acid conj. base 6 5 N 2 N 2 6 5 N - N 3 acid base conj. base

More information

Organolithium Compounds *

Organolithium Compounds * OpenStax-CNX module: m32444 1 Organolithium Compounds * Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 One of the major uses of lithium

More information

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II)

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II) Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2014, 6 (3):133-137 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Kinetics

More information

CHEM 254 EXP 10 Chemical Equilibrium - Homogeneous and Heterogeneous Equilibrium

CHEM 254 EXP 10 Chemical Equilibrium - Homogeneous and Heterogeneous Equilibrium Gibbs energy, G CHEM 254 EXP 10 Chemical Equilibrium Homogeneous and Heterogeneous Equilibrium A reaction at constant temperature and pressure can be expressed in terms of the reaction Gibbs energy. The

More information

Experiment : Reduction of Ethyl Acetoacetate

Experiment : Reduction of Ethyl Acetoacetate Experiment 7-2007: eduction of Ethyl Acetoacetate EXPEIMENT 7: eduction of Carbonyl Compounds: Achiral and Chiral eduction elevant sections in the text: Fox & Whitesell, 3 rd Ed. Chapter 12, pg.572-584.

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Practice Edition Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Question

More information

Ion Pairing and the Reaction of Alkali Metal Ferrocyanides and Persulfates

Ion Pairing and the Reaction of Alkali Metal Ferrocyanides and Persulfates Ion Pairing and the Reaction of Alkali Metal Ferrocyanides and Persulfates R. W. CHLEBEK AND M. W. LISTER Received April 29, 1971 Osmometric measurements have been made on the alkali metal persulfates,

More information

which characterize the thermal activation of

which characterize the thermal activation of Studies in Solvolysis. Part V. Further Investigations Concerning the Solvolysis of Primary, Secondary, and Tertiary Trifluoroacetatesl D. J. BARNES, M. COLE (nke Morrissey), S. LOBO, J. G. WINTER, AND

More information

Kinetics of Oxidation of Benzylamines by Alkaline Hexacyanoferrate(TII)

Kinetics of Oxidation of Benzylamines by Alkaline Hexacyanoferrate(TII) CROATICA CHEMICA ACTA CCACAA 59 (4) 895-899 (198G) CCA-1696 Kinetics of Oxidation of Benzylamines by Alkaline Hexacyanoferrate(TII) Copa Dasgupta and Mahendra K. Mahanti* YU ISSN 0011-1643 UDC 547.554

More information

CHAPTER - 2 EXPERIMENTAL TECHNIQUE. Potassium permanganate has been used for. oxidation of many systems. Oxidations by permanganate

CHAPTER - 2 EXPERIMENTAL TECHNIQUE. Potassium permanganate has been used for. oxidation of many systems. Oxidations by permanganate 42 CHAPTER - 2 EXPERIMENTAL TECHNIQUE Potassium permanganate has been used for oxidation of many systems. Oxidations by permanganate generally takes place very fast because it is a strong oxidising agent.

More information

Chemistry 254 Lab Experiment 1: Qualitative Organic Analysis Summer 2004

Chemistry 254 Lab Experiment 1: Qualitative Organic Analysis Summer 2004 Chemistry 254 Lab Experiment 1: Qualitative Organic Analysis Summer 2004 Introduction: Qualitative organic analysis, the identification and characterization of unknown compounds, in an important part of

More information

Chemistry 283g- Experiment 3

Chemistry 283g- Experiment 3 EXPERIMENT 3: xidation of Alcohols: Solid-Supported xidation and Qualitative Tests Relevant sections in the text: Fox & Whitesell, 3 rd Ed. pg. 448-452. A portion of this experiment is based on a paper

More information

R C OR' H 2 O carboxylic acid alcohol ester water side product

R C OR' H 2 O carboxylic acid alcohol ester water side product EXPERIMENT 7 SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1 Materials Needed 2.0 ml of an alcohol to be chosen from the following: 1-propanol (n-propyl alcohol), 3-methyl 1-butanol (isoamyl alcohol, isopentyl

More information

Ch 22 Carbonyl Alpha ( ) Substitution

Ch 22 Carbonyl Alpha ( ) Substitution Ch 22 Carbonyl Alpha () Substitution The overall reaction replaces an H with an E + The acid-catalyzed reaction has an enol intermediate The base-catalyzed reaction has an enolate intermediate Keto-Enol

More information

D = (Ut+)E4+ (UOH3+)E3,

D = (Ut+)E4+ (UOH3+)E3, HEAT OF HYDROLYSIS OF URANIUM (IV) IN PERCHLORIC ACID SOLUTIONS1 ABSTRACT The heat of hydrolysis of uranium (IV) in perchloric acid solution has been measured by a spectrophotometric technique. A value

More information

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex Supporting Information Simple Bacterial Detection and High-Throughput Drug Screening Based on Graphene-Enzyme Complex Juan-Li, Ling-Jie Wu, Shan-Shan Guo, Hua-E Fu, Guo-Nan Chen* and Huang-Hao Yang* The

More information

Conductances, Densities, and Viscosities of Solutions of Sodium Nitrate in Water and in Dioxane-Water, at 25 "C

Conductances, Densities, and Viscosities of Solutions of Sodium Nitrate in Water and in Dioxane-Water, at 25 C Conductances, Densities, and Viscosities of Solutions of Sodium Nitrate in Water and in Dioxane-Water, at 25 "C ELINOR M. KARTZMARK Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Chem 321 Lecture 10 - Acid-Base Equilibria (Review) 10/1/13

Chem 321 Lecture 10 - Acid-Base Equilibria (Review) 10/1/13 Chem 321 Lecture 10 AcidBase Equilibria (Review) 10/1/13 Student Learning Objectives In any aqueous solution at equilibrium, the water selfionization reaction is also at equilibrium. That is, and K w H2

More information

AP Chemistry Test (Chapter 3) Multiple Choice and FIB (40%)

AP Chemistry Test (Chapter 3) Multiple Choice and FIB (40%) AP Chemistry Test (Chapter 3) Class Set Multiple Choice and FIB (40%) 1) A chemistry student is filtering and drying a precipitate that formed from two solutions reacting. Which one is most likely about

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2013, 4(1):100-104 ISSN: 0976-8505 CODEN (USA) CSHIA5 Oxidation of S-phenylmercaptoacetic acid by quinoxalinium dichromate K. G. Sekar*

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2012, 3(3):703707 Kinetics of oxidation of allyl alcohol by imidazoliumdichromate K. G. Sekar *1 and M. Vellaisamy 2 ISSN: 09768505

More information

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes Reversible Additions to carbonyls: Weak Nucleophiles Weak nucleophiles, such as water, alcohols, and amines, require acid or base catalysis to undergo addition to carbonyl compounds Relative Reactivity

More information

Atovaquone: An Antipneumocystic Agent

Atovaquone: An Antipneumocystic Agent Atovaquone: An Antipneumocystic Agent Atovaquone is a pharmaceutical compound marketed in the United States under different combinations to prevent and treat pneumocystosis and malaria. In a report from

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory The Methods of Calibration Curve and Standard Addition Introduction One of the principle activities in the Quantitative Analysis Laboratory is the measurement of the concentration or total quantity of

More information

Electronic supporting information for

Electronic supporting information for Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Electronic supporting information for The effects of an ionic liquid on

More information

NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID

NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID T. URBANSKI and W. KUTKIEWICZ Institute of Technology, Warszawa, Poland Abstract It was found that 8-hydroxyquinoline and 8-hydroxy-5-nitroquinoline

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

مسابقة في الكيمياء االسم: المدة ساعتان الرقم:

مسابقة في الكيمياء االسم: المدة ساعتان الرقم: امتحانات شهادة الثانوية العامة فرع العلوم العامة دورة سنة 4002 العادية وزارة التربية و التعليم العالي المديرية العامة للتربية دائرة االمتحانات مسابقة في الكيمياء االسم: المدة ساعتان الرقم: This Exam Includes

More information

CHEM Chapter 23. Carbonyl Condensation Reactions (quiz) W25

CHEM Chapter 23. Carbonyl Condensation Reactions (quiz) W25 CHEM 2425. Chapter 23. Carbonyl Condensation Reactions (quiz) W25 Student: 1. Which of the following statements about Aldol reactions with either aldehydes or ketones is true? Equilibrium favors the starting

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

SELECTIVE OXIDATION OF TOLUENE TO BENZALDEHYDE USING Cu/Sn/Br CATALYST SYSTEM

SELECTIVE OXIDATION OF TOLUENE TO BENZALDEHYDE USING Cu/Sn/Br CATALYST SYSTEM Int. J. Chem. Sci.: 9(2), 211, 545-552 ISSN 972-768X www.sadgurupublications.com SELECTIVE OXIDATION OF TOLUENE TO BENZALDEHYDE USING Cu/Sn/Br CATALYST SYSTEM KALPENDRA RAJURKAR *, NILESH KULKARNI, VILAS

More information

Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide

Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide J. Chem. Sci., Vol. 116, No. 2, March 2004, pp. 101 106. Indian Academy of Sciences. Kinetics and mechanism of the oxidation of some neutral and acidic α-amino acids by tetrabutylammonium tribromide RAGHVENDRA

More information

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione The purpose of this experiment was to synthesize 5-isopropyl-1,3-cyclohexanedione from commercially available compounds. To do this, acetone and

More information

Kinetics of Oxidation of Secondary Alcohol by Polymer- Supported Oxidizing reagent Chloramine-T.

Kinetics of Oxidation of Secondary Alcohol by Polymer- Supported Oxidizing reagent Chloramine-T. Est. 1984 RIENTAL JURNAL F CHEMISTRY An International pen Free Access, eer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CDEN: JCHEG 2011, Vol. 27, No. (4): g. 1735-1741 Kinetics of xidation

More information

21.1 Introduction Carboxylic Acids

21.1 Introduction Carboxylic Acids 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. Klein, Organic Chemistry 1e 21-1 The US produces over 2.5 million tons of acetic acid per year, which

More information

Sodium Borohydride Reduction of Benzoin

Sodium Borohydride Reduction of Benzoin Sodium Borohydride Reduction of Benzoin Introduction The most common and useful reducing agents for reducing aldehydes, ketones, and other functional groups are metal hydride reagents. The two most common

More information

الشھادة الثانویة العامة فرع علوم الحیاة مسابقة في مادة الكیمیاء المدة: ساعتان

الشھادة الثانویة العامة فرع علوم الحیاة مسابقة في مادة الكیمیاء المدة: ساعتان وزارة التربیة والتعلیم العالي المدیریة العامة للتربیة داي رة الامتحانات امتحانات الشھادة الثانویة العامة فرع علوم الحیاة مسابقة في مادة الكیمیاء المدة: ساعتان الاسم: الرقم: دورة سنة ۲۰۰٦ العادیة This Exam

More information

Classifying Organic Chemical Reactions

Classifying Organic Chemical Reactions Chemical Reactivity Organic chemistry encompasses a very large number of compounds ( many millions ), and our previous discussion and illustrations have focused on their structural characteristics. Now

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Acyl chloride/ acid anhydride

Acyl chloride/ acid anhydride 3.14 Synthetic routes poly(alkene) dihalogenoalkane KH aqueous under reflux Nu Sub diol high pressure catalyst Step 1 H 2 S 4 EAdd Step 2 H 2 warm hydrolysis alcohol alkene conc. H 2 S 4 or conc. H 3 P

More information

Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl ethanol and its para substituted derivatives in aqueous acetic acid medium

Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl ethanol and its para substituted derivatives in aqueous acetic acid medium International Journal of hemtech Research ODEN (USA): IJRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.7, pp 5-40, 2017 Kinetic and mechanistic studies on the hypochlorite oxidation of 1-phenyl

More information

THE pka OF PROTONATED CARBOXYLIC ACIDS. T. S. SORENSEN Department of Chemistry, University of Alberta, Calgary, Alberta

THE pka OF PROTONATED CARBOXYLIC ACIDS. T. S. SORENSEN Department of Chemistry, University of Alberta, Calgary, Alberta THE pka OF PROTONATED a,@-unsaturated CARBOXYLIC ACIDS T. S. SORENSEN Department of Chemistry, University of Alberta, Calgary, Alberta Received October 20, 1963 ABSTRACT The pk, of three, protonated a,o-unsaturated

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic HEM 333L rganic hemistry Laboratory Revision 2.0 The Synthesis of Triphenylmethano ol In this laboratory exercise we will synthesize Triphenylmethanol, a white crystalline aromatic compound. Triphenylmethanol

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS In an oxidation-reduction reaction (redox reaction), one species loses electrons and one gains electrons. The species that loses electrons is oxidized,

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(12):143-147 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 A Kinetic Study of Oxidation of Cetirizine Hydrochloride

More information

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered. Name Key 216 W13-Exam No. 1 Page 2 I. (10 points) The goal of recrystallization is to obtain purified material with a maximized recovery. For each of the following cases, indicate as to which of the two

More information

A contribution from the Department of Chemistry, Washington University, Campus Box 1134, One Brookings Drive, Saint Louis, Missouri 63130

A contribution from the Department of Chemistry, Washington University, Campus Box 1134, One Brookings Drive, Saint Louis, Missouri 63130 BENZOTETRAMISOLE (BTM): A REMARKABLY ENANTIOSELECTIVE ACYL TRANSFER CATALYST Vladimir B. Birman* and Ximin Li A contribution from the Department of Chemistry, Washington University, Campus Box 1134, One

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Lab #6: CARBOXYLIC ACIDS LAB

Lab #6: CARBOXYLIC ACIDS LAB lab Lab #6: CARBOXYLIC ACIDS LAB Name PART I: Preparation of Carboxylic Acids (a) Oxidation of an Aldehyde by Oxygen from the Air: Benzaldehyde is an aromatic aldehyde with a familiar odor. On a clean,

More information

N-Chlorination of secondary amides. I. Kinetics of N-chlorination of N-methyl acet amide

N-Chlorination of secondary amides. I. Kinetics of N-chlorination of N-methyl acet amide NChlorination of secondary amides. I. Kinetics of Nchlorination of Nmethyl acet amide M. WAYMAN AND E. W. C. W. THOMM Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto

More information

Effects of Solvent Acidity on the Free-Radical-Initiated Synthesis of Methanesulfonic Acid from CH 4 and SO 3

Effects of Solvent Acidity on the Free-Radical-Initiated Synthesis of Methanesulfonic Acid from CH 4 and SO 3 Ind. Eng. Chem. Res. 2002, 41, 5901-5905 5901 APPLIED CHEMISTRY Effects of Solvent Acidity on the Free-Radical-Initiated Synthesis of Methanesulfonic Acid from CH 4 and SO 3 Sudip Mukhopadhyay and Alexis

More information

به نام خدا روشهای سنتز مواد آلی

به نام خدا روشهای سنتز مواد آلی به نام خدا روشهای سنتز مواد آلی 1 References: 1. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Reactions and Synthesis (Part B), 5th ed., Springer, 2007. 2. Carey, F. A.; Sundberg, R. J. Advanced

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

*AC212* *28AC21201* Chemistry. Assessment Unit A2 1 [AC212] FRIDAY 27 MAY, MORNING

*AC212* *28AC21201* Chemistry. Assessment Unit A2 1 [AC212] FRIDAY 27 MAY, MORNING Centre Number ADVANCED General Certificate of Education 2016 Candidate Number Chemistry Assessment Unit A2 1 assessing Periodic Trends and Further Organic, Physical and Inorganic Chemistry [AC212] *AC212*

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

Supporting Information

Supporting Information An Improved ynthesis of the Pyridine-Thiazole Cores of Thiopeptide Antibiotics Virender. Aulakh, Marco A. Ciufolini* Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, BC

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2005 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005 ISSN 14341948 SUPPORTING INFORMATION Title: The Hidden Equilibrium in Aqueous Sodium Carbonate Solutions Evidence for the

More information

Inter-conversions of carbon compounds Inter-conversions between the functional groups Considerations in planning a synthetic route

Inter-conversions of carbon compounds Inter-conversions between the functional groups Considerations in planning a synthetic route Chapter 45 Inter-conversions of carbon compounds 45.1 Inter-conversions between the functional groups 45.2 Considerations in planning a synthetic route 45.3 Laboratory preparation of simple carbon compounds

More information

CHEM 344 Fall 2015 Final Exam (100 pts)

CHEM 344 Fall 2015 Final Exam (100 pts) CHEM 344 Fall 2015 Final Exam (100 pts) Name: TA Name: DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Have a swell winter break. Directions for drawing molecules, reactions, and electron-pushing mechanisms:

More information

Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar

Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar Structure Aldehydes are cpd.s of the general formula R ; Ketones are cpd.s of the general formula RŔ. The groups R and

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

media), except those of aluminum and calcium

media), except those of aluminum and calcium 1- Aspirin occurs as white crystals or as a white crystalline powder. 2- It is slightly soluble in water (1:300), soluble in alcohol (1 :5), chloroform (1:17) & ether (1:15). It dissolves easily in glycerin.

More information

Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal Poly hydroxy Alcohols

Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal Poly hydroxy Alcohols International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.3, pp 1480-1485, July-Sept 2010 Kinetic and Mechanistic Approach of N- Chlorosaccharin Oxidation of some Non Vicinal

More information

Honors Cup Synthetic Proposal

Honors Cup Synthetic Proposal onors Cup Synthetic Proposal Section: 270-V Group Members: Azhar Carim, Ian Cross, Albert Tang Title: Synthesis of indigo from -(2-bromoethyl)-2-nitrobenzamide Introduction: Indigo has been used as a dye

More information