Numerical differentiation (Finite difference)

Size: px
Start display at page:

Download "Numerical differentiation (Finite difference)"

Transcription

1 MA umercl Alyss Week 4 To tk d wrte portle progrms we eed strct model of ter computtol evromet. Ftful models do est ut tey revel tt evromet to e too dverse forcg portle progrmmers to lot eve te smplest cocrete tsks to strct mosters. We eed sometg smple or f ot so smple ot so cprcously comple Wllm M. K (or Jue 5 9 Toroto Cd Wllm K s mtemtc d computer scetst wo receved te Turg Awrd 989 for s fudmetl cotrutos to umercl lyss. K ws te prmry rctect ed te IEEE stdrd for flotg-pot computto. He s ee clled Te Fter of Flotg Pot. Possle project topc: Go to Prof. K s persol wepge ttp:// d red s ppers d gve lecture o s results. Te terestg oes re MATLAB s loss s oody s g Bestly umers etc. Questo: How to clculte f ( we te lytc formul s ot vlle? umercl dfferetto (Fte dfferece Gol: to clculte f (. A frst order metod for f ( f ( + f ( lm = f 0 ( f( + f ( Tt s for smll we c use f( + f More precsely we c wrte f ( for smll f( + f ( = f ( + umercl ppromto e( 0 s 0 to ppromte f (. e Dscretzto error - -

2 MA umercl Alyss Let us fd out te order of e(. Tylor epso of f( + roud : f( += f e + f( + f f ( + f = f ( + f + O( ( = f ( + O( = O( f( + f + O( s frst order metod (forwrd dfferece for clcultg f (. Bg O d smll o otto: Wrte f = O ( g f 0 f ( d s ouded for suffcetly lrge. Wrte f g ( o( g g > for R suffcetly lrge = f f g goes to zero s goes to f +. Also wrte f g (red f s symptotc to g f s. For emple g + = O + e l = o Te proof goes lke ts. Sce Te trd oe s lttle rder to prove. We ote tt e e e e e l l l l l = = = l Sce l s For lrge eoug + = + s te frst two follow. l 0 s (Apply L Hoptl s Rule to see ts. l l l. Hece for lrge l / l l / e e e 0 = = = 0 s. By te squeeze teorem e l 0 s. ote: ( For frst order metod f we reduce y fctor of te e s ppromtely reduced y fctor of. - -

3 MA umercl Alyss ( Te metod s ccurte (ect we f ( = or f ( =. A secod order metod for f ( f( + f Tylor epso roud f( += f + = f ( + e( f ( + f + f 6 f( += f ( f ( + f f 6 f( + f ( = f ( + f ( 6 e = f ( f( + f clcultg f (. 6 + O( = O( + O( 4 + O( 4 + O( s secod order metod (cetrl dfferece ppromto for ote: ( For secod order metod f we reduce y fctor of te e reduced y fctor of = 4. ( Te metod s ccurte (ect for f ( =. Let us ceck f ( ( ( + ( f + f 4 = = = f = = A fourt order metod for f ( f ( ++ 8 f ( + 8 f = f ( 5 ( e 0 + f ( 4 + O( 5 = O( 4 = f ( + e( s ppromtely = cse. ote: ( For fourt order metod f we reduce y fctor of te e( s ppromtely reduced y fctor of 6. f =. ( Te metod s ccurte for 4 Oter fte dfferece metods: - -

4 ( 4 MA umercl Alyss f + + f + f f ( = + f ( + O( ( 4 f + + f + f f ( = + O( (o-cetrl fte dfferece ppromto For ger order dervtves we ve ( + + ( f f f f ( = + O ( + ( + + ( ( f f f f f ( = + O ( + 4 ( ( + ( f f f f f f ( = + O 4 4 Totl error umercl dfferetto Cosder te frst order metod f( + f ( = f ( + umercl oted wt fte precso e ( Dscretzto error e( = O( f( + f ( s OT te umercl we get from computer! Te umercl we get from computer s fl( f ( + fl( f ( were fl( f ( + = f ( + ( +ε ε ~ 0 6 (IEEE doule precso represetto: mce precso fl( f ( = f ε ~ 0 6 +ε Tus we ve fl( f ( + fl( f ( = f ( + ( +ε f +ε - 4 -

5 Te dscretzto error: MA umercl Alyss = f + + f + ε f ( ε ( f ( + + f ( ε = f ( + e( + ε ~ 0 6 Dscretzto error e( C 0 s 0 Te effect of roud-off error: f ( + + f ( ε Effect of roud-off error 6 ~ f ( + + f ( 0 s 0 Te totl error s defed s fl( f ( + fl( f ( E T ( = f ( umercl oted wt fte precso ( = e( + f ( + + f ( ε C + f ( + + f ( ε Cosder te smple stuto were te error s gve y ET ( = + E T ( = = 0 = 0 = 0 At =0 8 E T ( tts te mmum. m E T ( =0 8 (Drw te grp of E T ( = ote: m E T s te mmum totl error we c ceve usg te umercl metod. For te secod order metod we ve E T ( C + f ( + + f ( Cosder te smple stuto tt ll coeffcets re oe d ε = 0 6. ε - 5 -

6 MA umercl Alyss 0 0 ET ( = + E ( = = = = / 5. T At =0 5. E T ( tts te mmum m E T ( =0 0.7 For te fourt order metod ET ( = + E T ( = 4 = 0 =0. At =0. E T ( tts te mmum m E T ( =0.8 ote: frst_ord.m: secod_ord.m: fourt_ord.m: 8 m 0 = m E T 5. = m E T m 0. = m E T m 0 ( =0 8 ( =0 0.7 ( =0.8 For ger order metod te mmum totl error s smller d te mmum totl error s ceved t lrger of (prctclly ceper. Ts s wy ger order metods re more desrle prctce. See Codes/Totl_error/frst_ord.m secod_ord.m d fourt_ord.m. umercl tegrto Te defte tegrl I = f d s defed Clculus s lmt of wt re clled Rem sums. It s te proved tt I = f ( d = F ( F ( were f F s y tdervtve of ; ts s te Fudmetl Teorem of Clculus. My tegrls c e evluted y usg ts formul d sgfct porto of Clculus ooks s devoted to ts pproc. oeteless most tegrls cot e evluted y ts formul ecuse most tegrds f ( do ot ve tdervtves epressle terms of elemetry fuctos. Emples of suc tegrls re π 0 0 π e d s d - 6 -

7 MA umercl Alyss Oter metods re eeded for evlutg suc tegrls. Gol: To clculte (ppromte f d We wll troduce two of te oldest d most populr umercl metods: te trpezodl rule d Smpso s rule. Strtegy: Dvde [ ] to sutervls of te sze =. Let = + = 0 (te pots 0 re clled te umercl tegrto ode pots (Drw te rel s to sow f ( d = f ( d = [ ] d = + = 0 To ppromte f ( d we oly eed to ppromte f ( d. Trpezodl rule: ( f + f = f ( d + e ( Error umercl ppromto f = f ( ( = O( e We wll derve te trpezodl rule lter. Composte trpezodl rule: Sum from = to = we ot f + f = f ( d + e = = = 0 f + f + f = f d + E = Error umercl ppromto T ( f - 7 -

8 MA umercl Alyss = e ( E = O( = O( = O = =. We s douled s lved d te term = were we ve used te fct tt decreses y fctor of 4. To llustrte ow fuctos s re reused we s douled cosder f 0 f T ( f = + f ( + = [ f0 + f + f] + = 0 = = = Also T f T f : 4 f 0 f 4 T4 ( f = + f ( + f ( + f ( + = 0 4 ( f + f + f + f + f = 0 = = = = 4 = T T we c see tt oly Comprg 4 fucto s re kow from T. f f eed to e evluted for 4 T s te oter Te cetrl de ed most formuls for ppromtg f ( d s to replce f ppromtg fucto wose tegrl c e evluted. If we ppromte f ( y te ler polyoml P = ( f ( + ( f ( wc terpoltes P ( over [ ] f t d (.e. P ( f ( P ( f ( y = =. Te tegrl of s te re of te trpezod (drw fgure d t s gve y f + f f + f P ( d d ( f s lmost ler o [ ]. = = (trpezodl rule. Ts s good ppromto f - 8 -

9 MA umercl Alyss To mprove te ove pproc use qudrtc terpolto to ppromte f ( o [ ] Let P ( e te qudrtc polyoml tt terpoltes. Usg ts to ppromte f f d P d d we get f t. / / = f ( + f ( / + f ( d / / / / Te complete evluto of ts tegrl yelds f ( d f ( 4 f ( / f ( (Smpso s rule Smpso s rule: ( 6 f + 4 f + f / = f ( d + e ( Error umercl ppromto f = f ( f / = f ( = + / / e ( = O 5 We wll derve te Smpso s rule lter. Composte Smpso s rule: Sum from = to = we ot 6 f + 4 f / + f = f ( d + e ( = = = 6 f 0 + f + f + 4 f / = = = f ( d + E ( Error umercl ppromto = e ( E = O( 5 = O( 5 = O 4 = = - 9 -

10 MA umercl Alyss Smpso s rule s ee mog te most populr umercl tegrto metods for more t two cetures. Go troug Codes\um_tegrto\trpezod.m wc uses te composte trpezodl rule to 5 compute f ( d wt from clculus: = 0.5 = 0.5 = = = f = s. Te ect soluto s kow f d = s d = cos = cos 0.5 cos = = 0.5 Te solute error from ts computto s out You c try te codes wt dfferet s of d see ow te error s reduced. Go troug Code\um_tegrto\smpso.m wc uses te composte Smpso rule to solve te ove prolem. Te solute error ow s reduced to Tlk out omework ssgmet. Prolem : use te ect of s d to compute te error. You c plot te error vs or. Prolem : compute rule. g s = + e d cos( s.5 for [ 0 4] 0 s wt te Composte Smpso s ote: MATLAB s ult- fuctos for umercl tegrto. TRAPZ Trpezodl umercl tegrto. QUAD umerclly evlute tegrl dptve Smpso qudrture. QUADL umerclly evlute tegrl dptve Lotto qudrture. QUADD umerclly evlute doule tegrl over plr rego. DBLQUAD umerclly evlute doule tegrl over rectgle. TRIPLEQUAD umerclly evlute trple tegrl. For te model prolem we c try te followg: >>=[0.5:0.0:]; >>y=s(; - 0 -

11 MA umercl Alyss >>trpz(y Or Dervto of trpezodl rule: For geerl tervl procedure s s follows. [ ] we c mke cge of vrles to mp t to ɶ = + = + [ ] mdpot of te tervl = + + dɶ = d / f ( d = f + + d ɶ ɶ / So we oly eed to cosder specl tervl.. Te def We use I[ f ]== f + f to ppromte f [ ] I f umercl ppromto / = f ( d + e( / Error Questo: How to determe d? / / / ( d. We ve Aswer: We requre tt I[ f ]= f ( d for f( = d f( = / / I[ ]= d ( + = + = / - -

12 MA umercl Alyss / I[ ]= d + = 0 = 0 / + = = 0 I [ f ]= f + f Questo: Wt s te order of e(? = = Aswer: Let us do error lyss. We use te Tylor epso of f( f( = f ( 0+ f ( 0 + f ( 0 otce tt ot I f / [ ] d f ( / / / e( = I[ f ] f ( d + d re ler terms of f(. / = I f ( 0 + f ( 0 + f ( 0 + f ( 0 + f ( 0 + f ( 0 + d / = f ( 0 I[ ] d / + f 0 / / / I[ ] d + f ( 0 I[ ] / d + / Te frst two terms o te rgt d sde re zero. Te trd term s / I[ ] d = / e( = f ( 0 + = O Tus we derved + / / = 6 f + f = f ( d + e( / Error umercl ppromto e( = O Apply ts to [ ] we ve / - -

13 MA umercl Alyss ( f + f = f ( d + e ( Error umercl ppromto f = f ( ( = O( e Ts s te trpezodl rule. A possle wekess te trpezodl rule c e ferred from te T f ove lyss. If f ( does ot ve two cotuous dervtves o [ ] te does coverge more slowly? Te swer s yes for some fuctos especlly f te frst dervtve s ot cotuous. Sme sttemet s true for Smpsos rule s we wll see te smple code (Codes\Estmte_order\emple_4f.m Dervto of Smpso s rule: def We use I[ f ]== f + f ( 0+ f 0 to ppromte f [ ] I f umercl ppromto / = f ( d + e( / Error Questo: How to determe 0 d? / - - / / ( d. We ve Aswer: we requre tt I[ f ]= f ( d for f( = f( = d f( = / / I[ ]= d ( = = / / I[ ]= d + = 0 = 0 / / I[ ]= d / = = 0 + = + = = 6 0 = 4 6 = 6 + =

14 MA umercl Alyss I [ f ]= 6 f + 4 f( 0 + f Let us do error lyss. / e( = I[ f ] f ( d / / = I f ( 0 + f ( 0 + f ( 0 + f ( 0 + f ( 0 + f ( 0 + d / = f ( 0 I[ ] d / + f 0 / + f ( ( 0 I[ ] 6 d / / / / I[ ] d + f ( 0 I[ ] / d / + f ( 4 ( 0 4 / I[ 4 ] 4 d + / Te frst tree terms o te rgt d sde re zero. Te fourt term s lso zero ecuse s odd fucto. Te fft term s / I[ 4 ] 4 d = 6 / e( = f ( 4 ( = O 5 Tus we derved / 5 / = f + 4 f ( 0+ f = f ( d + e( / Error e( = O 5 umercl ppromto Applyg ts to [ ] we ve / ( 6 f + 4 f + f / = f ( d + e ( Error umercl ppromto f = f ( f / = f ( = + / / e ( = O 5 Ts s te Smpso s rule

15 MA umercl Alyss Te trpezodl rule s te preferred tegrto rule we we re delg wt smoot perodc tegrds. Guss umercl Itegrto Guss umercl tegrto metod s umercl metod tt s sed o te ect tegrto of polyomls of cresg degree; o sudvso of te tegrto tervl s used. To llustrte te dervtve of suc tegrto formuls we restrct our tted to te tegrl I ( f = f ( d. Its relto to tegrls over [ ] For tegrl over [ ] s s follows. I f = f d troduce te ler cge of + + t vrle = t trsformg te tegrl to + + t ( I ( f = f dt ew tegrd fucto So we cosder I f w f j j j= I f = f d. Te tegrto formul s to ve te geerl form = d we requre tt te odes [ ] d wegts [ w w w ] so cose tt I ( f = I ( f for ll polyomls f Cse = : Te tegrto formul s te form f ( d w f ( [cse] We eed to fd w. It s to e ect for polyomls of s lrge degree s possle. Usg f ( d forcg equlty [cse] gve us = w ow use f ( = d g force equlty (cse. Te 0 = w = 0 sce w = 0. Tus [cse] ecomes f ( d f ( 0 = I ( f [cse_] e of s lrge degree s possle

16 MA umercl Alyss Ts s te mdpot formul wc s ect for ll ler polyomls. To see tt [cse] s ot ect for qudrtcs let f ( =. Te te error [cse_] s gve y d ( 0 = 0. Cse : = Te tegrto formul s + f d w f w f eed to determe four uspecfed quttes: w w. To determe tese we requre t to e ect for te four moomls: = f Ts leds to te four equtos = w + w 0 = w + w 0 = w + w = w + w Ts s oler system four ukows; ts soluto c e sow to e w = w = = = log wt oe sed o reversg te sgs of d. Ts yelds te tegrto formul: f d f f I f + = From eg ect for te moomls oe c sow ts formul wll e ect for ll polyomls of degree. It c lso e sow y drect clculto to ot e ect for te 4 degree 4 polyoml f ( =. Emple: Appromte = = I e d e e Usg cse formul we get I e e / / = I I Te error s qute smll for usg suc smll umer of ode pots

17 MA umercl Alyss Cse > : We seek te formul I ( f wj f ( j = (Guss umercl tegrto j= metod wc s uspecfed prmeters w w y forcg te tegrto formul to e ect for te polyomls = f I tur ts forces I ( f I ( f = for ll polyomls f of degree. Ts leds to te followg system of oler equtos ukows: = w + w + + w 0 = w + w + + w 0 = w + w + + w = w + w + + w = w + + w 0 = w + + w Te resultg formul s of te order (-. Solvg ts system s formdle prolem. w ve ee clculted d collected tles for te Tkfully te odes { } most commoly used s of. d wegts { } Tere s lso oter pproc to te developmet of te umercl tegrto formul I f = w f usg te teory of ortogol polyomls. From tt teory t c e j j j= sow tt te odes [ ] re te zeros of te Legedre polyoml P o te tervl [ ] d ts wegts re gve y w = ( P Sce te Legedre polyomls re well-kow te odes [ ] of degree c e foud wtout y recourse to te oler system. We lst odes d wegts for severl cses elow

18 MA umercl Alyss umer of pots Pots Wegts w 0 ± ± ± 6 / 5 / 7 ± + 6 / 5 / / ± 5 0 / ± / Legedre polyomls: P0 ( = P ( = ( + P ( = ( + P ( P ( + Te frst few Legedre polyomls re: 0 P ( ( ( + 5 ( + (Boet s recurso formul Te grps of tese polyomls (up to = 5 re sow elow: - 8 -

19 MA umercl Alyss Guss Lotto rules Also kow s Lotto qudrture med fter Dutc mtemtc Reuel Lotto. It s smlr to Guss qudrture wt te followg dffereces:. Te tegrto pots clude te ed pots of te tegrto tervl.. It s ccurte for polyomls up to degree were s te umer of tegrto pots. Lotto qudrture of fucto f( o tervl [ +]: Ascsss: s te ( st zero of P' (. Wegts: Remder: - 9 -

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL Bullet of te Trslv Uversty of Brşov Vol 5 (54-1 Seres 1: Specl Issue No 1 MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL M BOTIŞ 1 Astrct: I te ler lyss of structures troug modl

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numerl Alss Dr Murrem Merme INTEROLATION ELM Numerl Alss Some of te otets re dopted from Luree V. Fusett Appled Numerl Alss usg MATLAB. rete Hll I. 999 ELM Numerl Alss Dr Murrem Merme Tod s leture

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 7/8 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 7 MASA : 3 JAM KOD KURSUS : KKKQ33/KKKF33 TAJUK : PENGIRAAN BERANGKA ARAHAN :.

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Численные методы. Учебно-методическое пособие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Численные методы. Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им. Н.И. Лобачевского Численные методы К.А.Баркалов Учебно-методическое пособие Рекомендовано методической

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations.

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations. Amerc Jorl of Egeerg Reserch (AJER) 04 Amerc Jorl of Egeerg Reserch (AJER) e-iss : 30-0847 p-iss : 30-0936 Volme-03, Isse-08, pp-43-47 www.jer.org Reserch Pper Ope Access mercl Solto of Hgher Order Ler

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

Calculating the Values of Multiple Integrals by Replacing the Integrands Interpolation by Interpolation Polynomial

Calculating the Values of Multiple Integrals by Replacing the Integrands Interpolation by Interpolation Polynomial Jour o omputtos & Modeg vo o -5 ISSN: 79-75 prt 79-5 oe Scepress Ltd cutg te Vues o Mutpe Itegrs by Repcg te Itegrds Iterpoto by Iterpoto Poyom S Nzrov d bduzzov bstrct Te or des t te costructo o mutdmeso

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY UPB c Bull, eres D, Vol 8, No, 00 A METHOD FOR THE RAPD NUMERAL ALULATON OF PARTAL UM OF GENERALZED HARMONAL ERE WTH PRERBED AURAY BERBENTE e roue o etodă ouă etru clculul rd l suelor rţle le serlor roce

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Spectrum Estimation by Several Interpolation Methods

Spectrum Estimation by Several Interpolation Methods IJCSNS Itertol Jourl o Computer Scece d Network Securty VOL.6 No.A Februry 006 05 Spectrum Estmto by Severl Iterpolto Metods Mbu Isr Oym Ntol College o Tecology Oym-S Tocg 33-0806 JAPAN Summry I ts pper

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

INTEGRATION TECHNIQUES FOR TWO DIMENSIONAL DOMAINS

INTEGRATION TECHNIQUES FOR TWO DIMENSIONAL DOMAINS IJRET: Itertol Jourl of Reserch Egeerg d Techolog eissn: 9-6 pissn: -78 INTEGRATION TECHNIQUES FOR TWO DIMENSIONAL DOMAINS Logh Peruml Lecturer, Fcult of Egeerg d Techolog, Multmed Uverst, Mlcc, Mls Astrct

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Some Unbiased Classes of Estimators of Finite Population Mean

Some Unbiased Classes of Estimators of Finite Population Mean Itertol Jourl O Mtemtcs Ad ttstcs Iveto (IJMI) E-IN: 3 4767 P-IN: 3-4759 Www.Ijms.Org Volume Issue 09 etember. 04 PP-3-37 ome Ubsed lsses o Estmtors o Fte Poulto Me Prvee Kumr Msr d s Bus. Dertmet o ttstcs,

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

Chapter 1. Introduction. Fundamental Concepts. Introduction. Historical background. Historical background. Fundamental Concepts

Chapter 1. Introduction. Fundamental Concepts. Introduction. Historical background. Historical background. Fundamental Concepts Chpter udmetl Cocepts Lecture Notes Dr Mohd Afed Uverst Mlys Perls N67 te lemet Alyss Itroducto A or sometmes referred s M, hs ecome powerful tool for umercl soluto of wde rge of egeerg prolems A s computtol

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS Jourl o Mtemtcl Sceces: Advces d Alctos Volume Number - Pges -9 FRMULAE FR FINITE DIFFERENCE APPRXIMATINS QUADRATURE AND LINEAR MULTISTEP METHDS RAMESH KUMAR MUTHUMALAI Dertmet o Mtemtcs D G Vsv College

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information