Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy:

Size: px
Start display at page:

Download "Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy:"

Transcription

1 BEE Prelm Soluton Problem #1 Known: All requred parameter. Schematc: Fnd: Depth of freezng a functon of tme. Strategy: In thee mplfed analy for freezng tme, a wa done n cla for a lab geometry, we equate the rate of heat tranfer through the already frozen layer to the rate at whch heat need to be removed to freeze an adonal layer. The analy here exactly ame a that done for a lab, wth the only dfference beng the retance here not jut of that of the frozen layer but alo the platc wrap n ere wth the frozen layer. Soluton: 1) Tm T dx H f A Lplatc x 1 k A k A ha platc frozen Tm T dx Hf Lplatc x 1 k k h platc frozen 1

2 BEE Prelm Soluton Tm T Lplatc x 1 dx H f k platc k frozen h t Lbo Tm T Lplatc x 1 dx H 0 f k 0 platc k frozen h T L m T platc x x t x H k k h f platc frozen T T L L L t m platc bo bo t Lbo H f k platc k frozen h freeze H f Lplatc Lbo L bo Lbo Tm T k platc k frozen h ) It wll add an extra layer of conductve retance that ncreae the tme to freeze.

3 BEE Prelm Soluton Problem # Known: Reflectvty = 0; T 1 =303 K; T =88 K; T g =93K; T =83K; I = 1000 W/m ; h o =5 W/m K Schematc: Fnd: h, T Strategy: There are two eparate problem here. Frt, we need to fnd the nde heat tranfer coeffcent. To calculate convectve heat tranfer coeffcent, we follow the tep provded n the courenote for th chapter. Although the urface nclned, equaton for vertcal urface can be ued, a mentoned. For the econd part of the problem, follow the tep provded n the courenote for olvng a radatve energy balance problem. Note the tranmvty gven for gla whch would be needed for all radatve exchange term. Soluton: 1) 3

4 BEE Prelm Soluton Nu Ra L L hl 0.387Ra 0.85 k / Pr Gr Pr Gr 3 g L T T K K L 4m 1/6 L 8/7 8/7 Properte hould be evaluated at ½(30+0) = 5, (.e. 98 K). Aume properte at 300 K for mplcty. Pr kg m 5 kg m W k 0.06 mk Gr Ra L h / W h.91 m K /16 1/ 6 8/ ) 5 F F F0 848 F , 1 1 Hence, the gla can be condered a black body 4

5 BEE Prelm Soluton An alternate way to ay th that max T=897.6 µmk. Thu, for the nde urface temperature around 303 K, max = 9.56 µm for whch the gla ha zero tranmvty and therefore an aborptvty of 1. 3) Solar radaton In-Out+Generaton-Conumpton=Storage h T T h T T F1 Tgla T3 F1 3 Tgla T forced gla ar natural gla ar F F Angle olar Gen Change n radaton make Fracton that Convectve lo Convectve lo Radatve lo Radatve lo torage wth gla get aborbed to outde to nde to ground to other gla urface In Out F F 1 n( ) F F Tar ) T=349.4K=76.4 C 5) Update the properte baed on the new flm temperature, ( )/=53. C, and then recalculate natural convecton heat tranfer coeffcent and then update new ar temperature. Repeat untl no change. We dd not expect you to do any calculaton at th tep. 5

6 BEE Prelm Soluton Problem #3 Known: Varou rate of generaton and elmnaton Schematc: Fnd: M n tomach, M n ntetne, M b (jut equaton for M b ) a functon of tme Strategy: Ue ma balance Soluton: Rate n Rate out + Rate of Generaton = Rate of change n Storage 1) 0 km 0 ln M k t C 0 M t 0 M M M exp k t ) 0 6

7 BEE Prelm Soluton km km kam 0 km 0 exp kt k ka M 0 k ka M km 0 exp kt c M P k k Q k M k t exp a 0 c exp P Q exp P D exp P P k ka k ka t P k ka k ka t exp exp exp exp exp exp M exp k ka t Q exp k ka t D exp k ka t a 0 a km 0 exp k ka k t km 0 exp k ka k t Q exp k k t k M exp k t exp k k t M k k k a km 0 exp k ka k t M exp k ka t D exp k ka t k ka k km 0 exp k t M k ka k D km 0 k k k a km 0 k k k D D exp k ka t a 0 exp 0 k k k k k k k M k t km M exp k ka t a a km k t exp k k t 0 exp a k ka k 7

8 BEE Prelm Soluton 3) b FkaM kel M b 0 k M Fk exp k t exp k k t k M 0 0 k k k 0 a a el b a b 8

9 BEE Prelm Soluton Problem #4 #1 Henry # At hgher alttude, there le oxygen nce lower preure. Therefore there lower amount of oxygen n lung due to a mall ambent concentraton #3 A the temperature ncreae, the olublty of carbon doxde decreae. Therefore, the CO come out of the oluton and the concentraton buld up n the head pace, ncreang the preure untl the can explode. #4 Hydrophobc nce Partton coeffcent = C drug n old (tue) /C drug n water #5 There le moture n the ar n the wnter o the kn urface comng to equlbrum wth ar alo ha le water. #6 E E C f C0 exp k0 exp t1 C0 exp k0 exp t RT1 RT E E exp t exp t RT 1 1 RT t E E E E exp / exp exp t1 RT1 RT RT1 RT t E 1 1 ln t1 R T1 T #7 p H x O o o p H x CO co co Compare xo and xco to ee whch one more oluble. 9

10 BEE Prelm Soluton #8 At the nterface of the two phae, the equlbrum reached frt. Th really fat, can be aumed ntantaneou for our purpoe. #9 c p RT #10 b) harder 10

On the SO 2 Problem in Thermal Power Plants. 2.Two-steps chemical absorption modeling

On the SO 2 Problem in Thermal Power Plants. 2.Two-steps chemical absorption modeling Internatonal Journal of Engneerng Reearch ISSN:39-689)(onlne),347-53(prnt) Volume No4, Iue No, pp : 557-56 Oct 5 On the SO Problem n Thermal Power Plant Two-tep chemcal aborpton modelng hr Boyadjev, P

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

CHAPTER X PHASE-CHANGE PROBLEMS

CHAPTER X PHASE-CHANGE PROBLEMS Chapter X Phae-Change Problem December 3, 18 917 CHAPER X PHASE-CHANGE PROBLEMS X.1 Introducton Clacal Stefan Problem Geometry of Phae Change Problem Interface Condton X. Analytcal Soluton for Soldfcaton

More information

ε (5) 4. Radiative Heat Transfer 4.1 Fundamentals of thermal radiation (1) W/m / K Stefan-Boltzmann-constant

ε (5) 4. Radiative Heat Transfer 4.1 Fundamentals of thermal radiation (1) W/m / K Stefan-Boltzmann-constant . Radatve Heat ranfer. Fundamental of thermal radaton 0 ( λ) q I dλ σ () max 8 σ 5,67 0 W/m / K Stefan-Boltzmann-contant λ ( λ) q I dλ () λ 0 emperature q λ / q Sun 6000 K 0, µm Hot materal 600 K 0 µm

More information

LECTURER: PM DR MAZLAN ABDUL WAHID PM Dr Mazlan Abdul Wahid

LECTURER: PM DR MAZLAN ABDUL WAHID  PM Dr Mazlan Abdul Wahid H E A R A N S F E R HEA RANSFER SME 4463 LECURER: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan C H A P E R 3 Dr Mazlan - SME 4463 H E A R A N S F E R Chapter 5 ranent Conducton PM Dr Mazlan Abdul

More information

Scattering cross section (scattering width)

Scattering cross section (scattering width) Scatterng cro ecton (catterng wdth) We aw n the begnnng how a catterng cro ecton defned for a fnte catterer n ter of the cattered power An nfnte cylnder, however, not a fnte object The feld radated by

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Imrovement on Warng Problem L An-Png Bejng 85, PR Chna al@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th aer, we wll gve ome mrovement for Warng roblem Keyword: Warng Problem, Hardy-Lttlewood

More information

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamc Sxth Edton CONTENT SUBSECTION PROB NO. Concept-Study Gude Problem 134-141 Steady Sngle Flow Devce

More information

PHYS 100 Worked Examples Week 05: Newton s 2 nd Law

PHYS 100 Worked Examples Week 05: Newton s 2 nd Law PHYS 00 Worked Eaple Week 05: ewton nd Law Poor Man Acceleroeter A drver hang an ar frehener fro ther rearvew rror wth a trng. When acceleratng onto the hghwa, the drver notce that the ar frehener ake

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible?

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible? Chapter 5-6 (where we are gong) Ideal gae and lqud (today) Dente Partal preure Non-deal gae (next tme) Eqn. of tate Reduced preure and temperature Compreblty chart (z) Vapor-lqud ytem (Ch. 6) Vapor preure

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible?

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible? Survey Reult Chapter 5-6 (where we are gong) % of Student 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Hour Spent on ChE 273 1-2 3-4 5-6 7-8 9-10 11+ Hour/Week 2008 2009 2010 2011 2012 2013 2014 2015 2017 F17

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79. hapter 7: 17, 0,, 5,, 5, 7, 0, 7, 66 and 79. 77 A power tranitor mounted on the wall diipate 0.18 W. he urface temperature of the tranitor i to be determined. Aumption 1 Steady operating condition exit.

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

APPLICATIONS: CHEMICAL AND PHASE EQUILIBRIA

APPLICATIONS: CHEMICAL AND PHASE EQUILIBRIA 5.60 Sprn 2007 Lecture #28 pae PPLICTIOS: CHMICL D PHS QUILIBRI pply tattcal mechanc to develop mcrocopc model for problem you ve treated o far wth macrocopc thermodynamc 0 Product Reactant Separated atom

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g SPH3UW Unt.5 Projectle Moton Pae 1 of 10 Note Phc Inventor Parabolc Moton curved oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object,

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

8 Waves in Uniform Magnetized Media

8 Waves in Uniform Magnetized Media 8 Wave n Unform Magnetzed Meda 81 Suceptblte The frt order current can be wrtten j = j = q d 3 p v f 1 ( r, p, t) = ɛ 0 χ E For Maxwellan dtrbuton Y n (λ) = f 0 (v, v ) = 1 πvth exp (v V ) v th 1 πv th

More information

H = d d q 1 d d q N d d p 1 d d p N exp

H = d d q 1 d d q N d d p 1 d d p N exp 8333: Sacal Mechanc I roblem Se # 7 Soluon Fall 3 Canoncal Enemble Non-harmonc Ga: The Hamlonan for a ga of N non neracng parcle n a d dmenonal box ha he form H A p a The paron funcon gven by ZN T d d

More information

ChE 512: Topic 1 Reactions at a fluid non-porous solid interface. P.A. Ramachandran

ChE 512: Topic 1 Reactions at a fluid non-porous solid interface. P.A. Ramachandran he 512: Topc 1 Reactons at a flud non-porous sold nterface P.. Ramachandran rama@wustl.edu OUTLIE External Transport: Flm oncept Mass transfer coeffcents Effect of transport on reacton multaneous heat

More information

Design of Recursive Digital Filters IIR

Design of Recursive Digital Filters IIR Degn of Recurve Dgtal Flter IIR The outut from a recurve dgtal flter deend on one or more revou outut value, a well a on nut t nvolve feedbac. A recurve flter ha an nfnte mule reone (IIR). The mulve reone

More information

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE The dfferent part of the dc machne manetc crcut / pole are yoke, pole, ar ap, armature teeth and armature core. Therefore, the ampere-turn /pole to etablh the

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

AP Statistics Ch 3 Examining Relationships

AP Statistics Ch 3 Examining Relationships Introducton To tud relatonhp between varable, we mut meaure the varable on the ame group of ndvdual. If we thnk a varable ma eplan or even caue change n another varable, then the eplanator varable and

More information

Chapter 5: Root Locus

Chapter 5: Root Locus Chater 5: Root Locu ey condton for Plottng Root Locu g n G Gven oen-loo tranfer functon G Charactertc equaton n g,,.., n Magntude Condton and Arguent Condton 5-3 Rule for Plottng Root Locu 5.3. Rule Rule

More information

Si Oxidation. SiO 2. ! A method of forming SiO 2

Si Oxidation. SiO 2. ! A method of forming SiO 2 S Oxatn! A met f frmn SO wc ue a Ma (e.., fr n mplantatn) Oxe n MOSFET Surface pavatn! Frm perfect S-SO nterface S S ( ) ( ) O ( ) ( ) SO ( ) H O SO H ( ) ( ) SO S O Oxant ffue tru te SO flm Reactn tae

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler -T Sytem: Ung Bode Plot EEE 30 Sgnal & Sytem Pro. Mark Fowler Note Set #37 /3 Bode Plot Idea an Help Vualze What rcut Do Lowpa Flter Break Pont = / H ( ) j /3 Hghpa Flter c = / L Bandpa Flter n nn ( a)

More information

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0 1) Slcon oxde has a typcal surface potental n an aqueous medum of ϕ, = 7 mv n 5 mm l at ph 9. Whch concentraton of catons do you roughly expect close to the surface? What s the average dstance between

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Dynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y,

Dynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y, Dynamcs 46:23 Homework 8 Due: March 28, 28 Name: Please denote your answers clearly,.e., box n, star, etc., and wrte neatly. There are no ponts for small, messy, unreadable work... please use lots of paper.

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Massachusetts Institute of Technology. Problem Set 12 Solutions

Massachusetts Institute of Technology. Problem Set 12 Solutions Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence Department of Mechancal Engneerng 6.050J/2.0J Informaton and Entropy Sprng 2004 Problem Set 2 Solutons Soluton

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

Electric and magnetic field sensor and integrator equations

Electric and magnetic field sensor and integrator equations Techncal Note - TN12 Electrc and magnetc feld enor and ntegrator uaton Bertrand Da, montena technology, 1728 oen, Swtzerland Table of content 1. Equaton of the derate electrc feld enor... 1 2. Integraton

More information

Physics 120. Exam #1. April 15, 2011

Physics 120. Exam #1. April 15, 2011 Phyc 120 Exam #1 Aprl 15, 2011 Name Multple Choce /16 Problem #1 /28 Problem #2 /28 Problem #3 /28 Total /100 PartI:Multple Choce:Crclethebetanwertoeachqueton.Anyothermark wllnotbegvencredt.eachmultple

More information

Mathematical modeling for finding the thermal conductivity of solid materials

Mathematical modeling for finding the thermal conductivity of solid materials Mathematcal modelng for fndng the thermal conductvty of sold materals Farhan Babu 1, Akhlesh Lodwal 1 PG Scholar, Assstant Professor Mechancal Engneerng Department Dev AhlyaVshwavdyalaya, Indore, Inda

More information

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

Heat Transfer in Case of Water Injected Steam Cooling

Heat Transfer in Case of Water Injected Steam Cooling 6th IASME/WSEAS Internatonal Conference on EAT TRANSFER, TERMAL ENGINEERING and ENVIRONMENT (TE'8 Rhode, Greece, Augut -, 8 eat Tranfer n Cae of Water Injected Steam Coolng GYULA GRÓF, TAMÁS KÖRNYEY Deartment

More information

Non-Commercial Use Only

Non-Commercial Use Only Plottng P-x-y dagram for bnary system Acetone/water at temperatures 25,100,and 200 C usng UNIFAC method and comparng t wth expermental results. Unfac Method: The UNIFAC method s based on the UNIQUAC equaton,

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

A A Non-Constructible Equilibrium 1

A A Non-Constructible Equilibrium 1 A A Non-Contructbe Equbrum 1 The eampe depct a eparabe contet wth three payer and one prze of common vaue 1 (o v ( ) =1 c ( )). I contruct an equbrum (C, G, G) of the contet, n whch payer 1 bet-repone

More information

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal.

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal. Name ID # 1 CHEMISTRY 212, Lect. Sect. 002 Dr. G. L. Roberts Exam #1/Sprng 2000 Thursday, February 24, 2000 CLOSED BOOK EXM No notes or books allowed. Calculators may be used. tomc masses of nterest are

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

Lecture 2 Thermodynamics and stability October 30, 2009

Lecture 2 Thermodynamics and stability October 30, 2009 The tablty of thn (oft) flm Lecture 2 Thermodynamc and tablty October 30, 2009 Ian Morron 2009 Revew of Lecture 1 The djonng preure a jump n preure at the boundary. It doe not vary between the plate. 1

More information

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur odule 5 Cable and Arche Veron CE IIT, Kharagpur Leon 33 Two-nged Arch Veron CE IIT, Kharagpur Intructonal Objectve: After readng th chapter the tudent wll be able to 1. Compute horzontal reacton n two-hnged

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcut II (ECE33b) Applcaton of Laplace Tranform to Crcut Analy Anet Dounav The Unverty of Wetern Ontaro Faculty of Engneerng Scence Crcut Element Retance Tme Doman (t) v(t) R v(t) = R(t) Frequency

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Two Approaches to Proving. Goldbach s Conjecture

Two Approaches to Proving. Goldbach s Conjecture Two Approache to Provng Goldbach Conecture By Bernard Farley Adved By Charle Parry May 3 rd 5 A Bref Introducton to Goldbach Conecture In 74 Goldbach made h mot famou contrbuton n mathematc wth the conecture

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Chapter 7 Four-Wave Mixing phenomena

Chapter 7 Four-Wave Mixing phenomena Chapter 7 Four-Wave Mx phenomena We wll dcu n th chapter the general nonlnear optcal procee wth four nteract electromagnetc wave n a NLO medum. Frt note that FWM procee are allowed n all meda (nveron or

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

A Result on a Cyclic Polynomials

A Result on a Cyclic Polynomials Gen. Math. Note, Vol. 6, No., Feruary 05, pp. 59-65 ISSN 9-78 Copyrght ICSRS Pulcaton, 05.-cr.org Avalale free onlne at http:.geman.n A Reult on a Cyclc Polynomal S.A. Wahd Department of Mathematc & Stattc

More information

2.3 Least-Square regressions

2.3 Least-Square regressions .3 Leat-Square regreon Eample.10 How do chldren grow? The pattern of growth vare from chld to chld, o we can bet undertandng the general pattern b followng the average heght of a number of chldren. Here

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

CANKAYA UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT ME 212 THERMODYNAMICS II CHAPTER 11 EXAMPLES SOLUTION

CANKAYA UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MECHANICAL ENGINEERING DEPARTMENT ME 212 THERMODYNAMICS II CHAPTER 11 EXAMPLES SOLUTION CANKAYA UNIVESIY FACULY OF ENGINEEING AND ACHIECUE MECHANICAL ENGINEEING DEPAMEN ME HEMODYNAMICS II CHAPE EXAMPLES SOLUION ) he reure wthn a. m tank hould not exeed 0 ar. Chek the reure wthn the tank f

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

Phys 402: Raman Scattering. Spring Introduction: Brillouin and Raman spectroscopy. Raman scattering: how does it look like?

Phys 402: Raman Scattering. Spring Introduction: Brillouin and Raman spectroscopy. Raman scattering: how does it look like? Phy 402: Raman Scatterng Sprng 2008 1 Introducton: Brlloun and Raman pectrocopy Inelatc lght catterng medated by the electronc polarzablty of the medum a materal or a molecule catter rradant lght from

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands The ChemSep Book Harry A. Koojman Consultant Ross Taylor Clarkson Unversty, Potsdam, New York Unversty of Twente, Enschede, The Netherlands Lbr Books on Demand www.bod.de Copyrght c 2000 by H.A. Koojman

More information

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2.

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2. Projectle Moton Phc Inentor Parabolc Moton cured oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object, where the horzontal coponent

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

MOUNT SAINT JOSEPH MILPERRA

MOUNT SAINT JOSEPH MILPERRA Student Name : MOUNT SAINT JOSEPH MILPERRA MOUNT SAINT JOSEPH I YEAR 8 MATHEMATICS 17th November 2006 70 MINUTES (plus 5 mnutes readng tme)... :... INSTRUCTIONS: > WRITE IN BLUE OR BLACK PEN ONLY > ALL

More information

Blackbody radiation. Main radiation laws. Sun as an energy source. Solar spectrum and solar constant.

Blackbody radiation. Main radiation laws. Sun as an energy source. Solar spectrum and solar constant. Lecture 3. lackbody radiation. Main radiation law. Sun a an energy ource. Solar pectrum and olar contant. Objective:. Concept of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium..

More information

This appendix presents the derivations and proofs omitted from the main text.

This appendix presents the derivations and proofs omitted from the main text. Onlne Appendx A Appendx: Omtted Dervaton and Proof Th appendx preent the dervaton and proof omtted from the man text A Omtted dervaton n Secton Mot of the analy provded n the man text Here, we formally

More information

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm Start Pont and Trajectory Analy for the Mnmal Tme Sytem Degn Algorthm ALEXANDER ZEMLIAK, PEDRO MIRANDA Department of Phyc and Mathematc Puebla Autonomou Unverty Av San Claudo /n, Puebla, 757 MEXICO Abtract:

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7 Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total

More information