From Polymer Gel Nanoparticles to Nanostructured Bulk Gels

Size: px
Start display at page:

Download "From Polymer Gel Nanoparticles to Nanostructured Bulk Gels"

Transcription

1 From Polymer Gel Nanoparticles to Nanostructured Bulk Gels Zhibing Hu Departments of Physics and Chemistry, University of North Texas Denton, TX 76203, U. S. A. Phone: , FAX: , e -mail: zbhu@unt.edu This brief review will cover recent progresses in our group for the development of a class of nanostructured hydrogels. [1-6 ] The central idea is to first synthesize monodispersed hydrogel nanoparticles, then self -assemble them into a network, and covalently bond neighboring particles. The covalent bonding contributes to the structural stability, while self- assembling provides crystal structures that diffract light, resulting in a striking iridescence like opal. Self- assembling behavior of N- isopropylacrylamide (PNIPAM) nanoparticles in water as a model system has been studied in room temperature using light scattering and turbidity methods. [ 3 ] Two batches of NIPA microgel spheres were synthesized with their hydrodynamic radii of 132 and 216 nm in water at 25 C. The concentrations ranging from ~ 0.01 wt% to ~ 14 wt% were obtained by dilution/condensation of the dispersions. As polymer concentration increases, the microgel spheres in dispersions exhibit the liquid, the crystal and the glass states, while the optical appearance of the dispersions changes from transparent to cloudy, then to colored (pink, green, blue and purple gradually), and eventually to transparent. The formation of large colloidal crystals in a very narrow concentration range (ca. 3~5 wt%), at room temperature (18 ~ 22 C), yields iridescent patterns from typical Bragg diffraction. For a colored dispersion, the turbidity as the function of wavelength λ exhibits a sharp shoulder -shape increase at a certain λ c with decreasing wavelength. It is found that λ c shifts linearly to a lower wavelength with the decrease of inter- particle distance. The temperature dependent self-assembling behavior of PNIPAM nanoparticles dispersed in water is investigated using thermodynamic perturbation theory combined with light scatteri n g and spectrometer measurements. [ 4-5 ] It is shown that the volume transition of PNIPAM particles affects the interaction potential and determines a novel phase diagram that has not been observed in hard -sphere-like colloidal dispersions. Because both particle size and attractive potential depend on temperature, a PNIPAM aqueous dispersion exhibits phase transitions at a fixed particle density by either increasing or decreasing temperature. The phase behavior of nanoparticle dispersion resembles that f or hard spheres at temperatures below the volume transition temperature. However, at higher temperatures, the phase separation is obtained, driven by van der Waals attractions. We have proposed to synthesize bulk gels by covalently bonding self-assembled gel nanoparticles. [ 1-2 ] Such a nanostructured polymer gel should have a two -level structural hierarchy: the primary network consists of crosslinked polymer chains inside each nanoparticle, while the secondary network is a crosslinked system of the nanopart icles. The mesh sizes of the primary and the secondary networks are typically around 1-10 nm and nm respectively. However, it is difficult to measure gel nanoparticle networks with electron microscope techniques, since the inherent nanoparticle net work structure cannot be preserved during the sample preparation steps either by critical drying or freezing-dry methods. The rapid freezing of the water swollen gel and the subsequent fast evaporation in a vacuum often leads to the collapse

2 o f t h e p o r e structure due to ice crystal formation. To test the structure of a nanoparticle network, we have first attached vinyl groups on hydroxypropylcellulose (HPC) polymers. [ 6 ] The vinyl groups allowed for chemical linking of the HPC chains into nanoparticles through a free radical polymerization process above its low critical solution temperature (LCST). The residual vinyl groups on the terminus of attached functional groups on the exterior of the nanoparticles have been further linked together to form the nano particle network. The controlled release of biomolecules from this network was correlated with the primary structure that comprised crosslinked polymer chains in each individual particle and the secondary structure that was a system of crosslinked nanoparticles. References [1] Hu, Z. B.; Lu, X. H.; Gao, J.; Wang, C. J. Advanced Materials 2000, 1 2, [2] Hu, Z. B.; Lu, X. H.; Gao, J. Advanced Materials 2001, 1 3, [3] Gao, J.; Hu, Z. B. Langmuir 2002, 18, [4] Wu, J. Z.; Zhou, B.; Hu, Z. B. Phys. Rev. Lett. 2003, 90, [5] Wu, J. Z.; Huang, G.; Hu, Z. B. Macromolecules 2003, 36, 440. [6] Cai, T.; Hu, Z. B.; Ponder, B.; John, J. V.; Moro, D. Macromolecules 2003, 3 6,

3 From Polymer Gel Nanoparticles to Nanostructured Bulk Gels Zhibing Hu Departments of Physics, Chemistry and Materials Science University of North Texas Denton, TX 76203

4 Bulk gels and nanostructured bulk gels Bulk gels Microgels (1 µm-1000 µm) Gel nanoparticles (100 nm-1µm) Gel nanoparticle networks --Nanostructured bulk gels

5 Conceptual model: A nanostructured bulk gel consists of covalently bonded gel nanoparticles. It could have a randomly packed structure or a periodic structure. The left figure is adapted from Ref. 1.

6 Hydrodynamic radius distributions (f(r h )) of Poly-Nisopropylacrylamide PNIPAM microgel spheres in water at T = 25.0 o C (circle) and 40.0 o C (square), respectively, where C = g/g. The figure is adapted from Ref. 2.

7 Zimm plot of PNIPAM gel particles in water at 25.0 o C, where polymer concentration ranges from to g/g. The figure is adapted from Ref. 2.

8 Dynamic and static light scattering results of PNIPAM nanoparticles in water T <R h > <R g > <R g >/<R h > M w ρ B 2 ( o C) (nm) (nm) (10 8 g/mol) (g/cm 3 ) (10-5 mol ml/g 2 )

9 PNIPAM nanoparticle dispersions at 21 o C with different concentrations (C): A (0.064), B (1.47), C (3.0), D (3.4), E (4.2), F (4.6), G (5.95), H (7.92), I (13.7 wt%). The figure is adapted from Ref. 2. F E D C B A I H G F E D C B A

10 Schematic phase diagram of PNIPAM nanoparticle water dispersions. The figure is adapted from Ref. 2.

11 The turbidity curves with a peak from left to right correspond to C=4.47x10-2, 3.65x10-2, and 3.21x10-2 g/g. The curve without a peak corresponds to C= 1.99x10-2 g/g. The figure is adapted from Ref. 2.

12 Linear fitting: Bragg condition 2ndsinθ = mλ at θ = 90, slope = 2.04 The figure is adapted from Ref. 2.

13 Temperature dependent phase behavior of a PNIPAM nanoparticle dispersion with a polymer concentration of 16.9 g/l: a) 21 o C, b) 26 o C, c) 35 o C The figure is adapted from Ref. 3.

14 Reduced osmotic second virial coefficient (B 2 ) from the static light scattering (symbols) and from the calculation. The figure is adapted from Ref B2/B2 HS T ( o C)

15 The potential between hydrogel nanoparticle may be effectively represented by the Sutherland-like function (Dr. J. Z. Wu, UC-Riverside) σ σ σ σ σ < = + r r r T T kt r u n n ) ( Repulsive interaction van der Waals-like attraction

16 The phase diagram of aqueous dispersions of PNIPAM particles determined from turbidity measurements (symbols) and from the thermodynamic perturbation theory (lines). The figure is adapted from Ref Temperature ( o C) solution fluid-fluid phase transition crystal Microgel weight concentration (g/l)

17 Formation of hydrogel opals: two different building blocks of PNIPAM-derivative nanoparticles were synthesized 1. The N-isopropylacrylamide (PNIPAM) copolymerized with acrylic acid (AA) 2. The PNIPAM with 2-hydroxyethyl acrylate (HEAc). The NIPA had thermally responsive properties, while the AA and the HEAc provided carboxyl (-CH) and hydroxyl (-H) groups for the crosslinking sites.

18 Epichlorohydrin was used to bond PNIPAM-AA nanoparticles in acetone, while divinylsulfone (DVS) was use to bond PNIPAM-Heac nanoparticles in an aqueous solution (ph 12) Scheme 1 NIPA C H CH2 CH CH2 Cl H C NIPA NIPA C CH2 CH CH 2 C NIPA Scheme 2 H NIPA H CH 2 CH S 2 CH CH2 H NIPA H- NIPA CH 2 CH 2 S2 CH CH2 NIPA 2

19 The average hydrodynamic radii for the two red samples (left) and the two green samples (right) in water at room temperature were 175 and 150 nm, respectively. The figure is adapted from Ref. 5 R=175 nm R=150 nm wt%

20 A PNIPAM- HEAc crystal hydrogel in a test tube is transparent and exhibited colored speckles at 21 o C until the temperature was raised to 50 o C. The figure is adapted from Ref o C 50 o C

21 New approach: PNIPAM-allylamine nanoparticle dispersions at various polymer concentrations at 23 o C. The figure is adapted from Ref. 6.

22 The turbidity versus wavelength curves. The Bragg diffraction peak shifts to lower wavelength as the polymer concentration increases. The figure is adapted from Ref c=3.5 wt.-% c=3.0 wt.-% c=2.5 wt.-% c=2.0 wt.-% Turbidity (cm -1 ) Wavelength (nm)

23 The phase diagram of the PNIPAM-allylamine nanoparticle dispersions The figure is adapted from Ref Liquid Phase Separation T ( o C) T m T g Crystal Glass C (wt.-%)

24 The PNIPAM-allylamine crystal hydrogel changes its iridescent colors with the temperature. The diameter of the vial is 2.73 The figure is adapted from Ref. 6.

25 Two levels of structural hierarchy of the polymer gel nanoparticle network and controlled dug delivery Hydrogel nanoparticle networks have two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The interstitial space between particles (mesh size) within the network can be adjusted by changing the particle size. This can be used to control the release rate of drugs that are entrapped between the particles

26 Nanoparticles of hydroxypropyl cellulose (HPC) as building blocks. The figure is adapted from Ref. 7. Cl H H H ( + H Dimethylacetamide, r.t., 48 h H H ( ( H H ( H H H Scheme 1

27 A hydroxypropylcellulose (HPC) nanoparticle network was formed with a small molecule (bromocresol green) (BCG) entrapped within the particles and a large chemical entity (BSA) entrapped between the particles 35 Model Compound Release (%) BSA BCG Time (h) The figure is adapted from Ref. 7.

28 Developing hydrogel nanoparticle networks based on physical crosslinks (Dr. X. H. Xia) Chemically crosslinked nanoparticle networks: Covalent bond, Permanent structure Physically crosslinked nanoparticle networks: Hydrophobic interaction, Reversible structure Synthesis of PNIPAM-PAA interpenetrating networks (IPN) nanoparticles. The IPN dispersion exhibits the inverse thermoreversible gelation.

29 Acknowledgments This work is supported by NSF, AR and Texas Advanced Technology Program T. Cai, Dr. J. Gao, G. Huang, Dr. X. H. Lu Dr. X. H. Xia, B. Zhou Prof. J. Z. Wu (UC-Riverside) Dr. J. V. John, D. Moro and B. Ponder (Access Pharmaceuticals)

30 Acknowledgments Prof. Mitsuhiro Shibayama Prof. Haruma Kawaguchi

31 References 1. Z. B. Hu, X. H. Lu, J. Gao and C. Wang, Polymer gel nanoparticle networks, Advanced Materials 12, 1173 (2000). 2. J. Gao and Z. B. Hu, ptical properties of N-isopropylacrylamide microgel spheres in water, Langmuir 18, (2002). 3. J. Z. Wu, B. Zhou and Z. B. Hu, Phase Behavior of Thermally Responsive Microgel Colloids, Phys. Rev. Lett. 90, (2003). 4. J. Z. Wu, G. Huang, Z. B. Hu, Inter-particle potential and the phase behavior of temperature-sensitive microgel dispersions, Macromolecules 36, 440 (2003). Z. B. Hu, X. H. Lu and J. Gao, 5. Hydrogel opals, Advanced Materials 13 (Cover), 1708 (2001). 6. Z. B. Hu and G. Huang, A new route to crystalline hydrogels as guided by a phase diagram, Angewandte Chemie, Int. Ed. 42, 4799 (2003). 7. T. Cai, Z. B. Hu, B. Ponder, J. V. John, and D. Moro, Synthesis and study of and controlled release from nanoparticles and their networks based on functionalized hydroxypropylcellulose, Macromolecules 36, (2003).

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures Dr. Coates 14.1 Introduction Naturally occurring polymers Wood, rubber, cotton, wool, leather, silk Synthetic polymers Plastics,

More information

Programmable and Bidirectional Bending of Soft Actuators. Based on Janus Structure with Sticky Tough PAA-clay Hydrogel

Programmable and Bidirectional Bending of Soft Actuators. Based on Janus Structure with Sticky Tough PAA-clay Hydrogel Supporting Information Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-clay Hydrogel Lei Zhao, Jiahe Huang, Yuancheng Zhang, Tao Wang,*, Weixiang

More information

Material Chemistry KJM 3100/4100. Synthetic Polymers (e.g., Polystyrene, Poly(vinyl chloride), Poly(ethylene oxide))

Material Chemistry KJM 3100/4100. Synthetic Polymers (e.g., Polystyrene, Poly(vinyl chloride), Poly(ethylene oxide)) Material Chemistry KJM 3100/4100 Lecture 1. Soft Materials: Synthetic Polymers (e.g., Polystyrene, Poly(vinyl chloride), Poly(ethylene oxide)) Biopolymers (e.g., Cellulose derivatives, Polysaccharides,

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

Hydrogen Bonding in Colloidal Polymer Materials

Hydrogen Bonding in Colloidal Polymer Materials Hydrogen Bonding in Colloidal Polymer Materials 5 4 10 3 5 µm 2 0 nm -5 1-10 0 0 1 2 µm 3 4 5 Nicholas Ballard Bon Polymer Colloids Group UK PharmSci 2012 Background chemistry Outline Synthesis of monodisperse

More information

SYNTHESIS AND STUDY OF CRYSTALLINE HYDROGELS, GUIDED BY A PHASE DIAGRAM. Gang Huang, B.E., M.E. Dissertation Prepared for the Degree of

SYNTHESIS AND STUDY OF CRYSTALLINE HYDROGELS, GUIDED BY A PHASE DIAGRAM. Gang Huang, B.E., M.E. Dissertation Prepared for the Degree of SYNTHESIS AND STUDY OF CRYSTALLINE HYDROGELS, GUIDED BY A PHASE DIAGRAM Gang Huang, B.E., M.E. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS December 2004 APPROVED:

More information

Important practical questions:

Important practical questions: Colloidal stability Important practical questions: - Does dispersion change when T, P or... is changed? - If T, P or... is changed and the dispersion phase separates, what are then the final products?

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Chemical Engineering Seminar Series

Chemical Engineering Seminar Series Effect of Reaction Conditions on Copolymer Properties Loretta Idowu Keywords: copolymer composition distribution; radical polymerization kinetics; semi-batch starved feed; hydroxyl-functionality Non-functional

More information

Colloidal Crystals of Responsive Hydrogels. L. Andrew Lyon, Associate Professor School of Chemistry and Biochemistry Georgia Institute of Technology

Colloidal Crystals of Responsive Hydrogels. L. Andrew Lyon, Associate Professor School of Chemistry and Biochemistry Georgia Institute of Technology Colloidal Crystals of Responsive Hydrogels L. Andrew Lyon, Associate Professor School of Chemistry and Biochemistry Georgia Institute of Technology Opals: Structure and Optics Assembly Structure Optics

More information

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004 arxiv:physics/0407001v2 [physics.chem-ph] 8 Dec 2004 Size Information Obtained Using Static Light Scattering Technique Yong Sun February 2, 2008 Abstract Detailed investigation of static light scattering

More information

Figure 1. Principle of crosslinking emulsion copolymers by using hexaallylamino-cyclo-triphosphazene

Figure 1. Principle of crosslinking emulsion copolymers by using hexaallylamino-cyclo-triphosphazene COATING BINDERS BASED ON STRUCTURED SELF-CROSSLINKING LATEXES Rückerová A., Machotová J., Kalendová A., Puková K. University of Pardubice, Institute of Chemistry and Technology of Macromolecular Materials,

More information

THE SYNTHESIS AND STUDY OF POLY(N-ISOPROPYLACRYLAMIDE)/ POLY(ACRYLIC ACID) INTERPENETRATING POLYMER NETWORK NANOPARTICLE HYDROGELS

THE SYNTHESIS AND STUDY OF POLY(N-ISOPROPYLACRYLAMIDE)/ POLY(ACRYLIC ACID) INTERPENETRATING POLYMER NETWORK NANOPARTICLE HYDROGELS THE SYNTHESIS AND STUDY OF POLY(N-ISOPROPYLACRYLAMIDE)/ POLY(ACRYLIC ACID) INTERPENETRATING POLYMER NETWORK NANOPARTICLE HYDROGELS Stephen Wallace Crouch, B.S. Thesis Prepared for the Degree of MASTER

More information

Intermolecular Forces & Condensed Phases

Intermolecular Forces & Condensed Phases Intermolecular Forces & Condensed Phases CHEM 107 T. Hughbanks READING We will discuss some of Chapter 5 that we skipped earlier (Van der Waals equation, pp. 145-8), but this is just a segue into intermolecular

More information

Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites

Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites Daniel H. Builes, Hugo Hernández, Laida Cano, Agnieszka Tercjak Group Materials + Technologies Polymeric

More information

Light-Controlled Shrinkage of Large-Area Gold Nanoparticles Monolayer Film for Tunable SERS Activity

Light-Controlled Shrinkage of Large-Area Gold Nanoparticles Monolayer Film for Tunable SERS Activity Light-Controlled Shrinkage of Large-Area Gold Nanoparticles Monolayer Film for Tunable SERS Activity Xuefei Lu a,b, Youju Huang b,c,d, *, Baoqing Liu a,b, Lei Zhang b,c, Liping Song b,c, Jiawei Zhang b,c,

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution A. Wittemann, B. Haupt, University of Bayreuth E. Breininger, T. Neumann, M. Rastätter, N. Dingenouts, University of Karlsruhe

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. D E Whitehead, M Bardosova and M E Pemble Tyndall National Institute, University College Cork Ireland Introduction:

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions ZengjiangWei, a,b Jie He, b Tony Liang, b Jasmin Athas, b Hyuntaek Oh,

More information

Innovative. Technologies. Chemie des Klebens Chemistry of Adhesives. Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013

Innovative. Technologies. Chemie des Klebens Chemistry of Adhesives. Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013 Chemie des Klebens Chemistry of Adhesives Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013 Innovative Technologies 1 Overview Chemie des Klebens Chemistry of Adhesives Introduction

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

Ellipsoidal Hybrid Magnetic Microgel Particles with Thermally Tunable Aspect Ratios

Ellipsoidal Hybrid Magnetic Microgel Particles with Thermally Tunable Aspect Ratios 12. July 2011 Ellipsoidal Hybrid Magnetic Microgel Particles with Thermally Tunable Aspect Ratios Hervé Dietsch, Particles 2011 Conference 9-12 July 2011 Adolphe Merkle Institute Université de Fribourg

More information

Fast Deswelling of Microporous Cellulose Ether Gel Prepared by Freeze-drying

Fast Deswelling of Microporous Cellulose Ether Gel Prepared by Freeze-drying Fast Deswelling of Microporous Cellulose Ether Gel Prepared by Freeze-drying N. Kato, 1 H. Suzuki, 1 Y. Sakai, 1 and S. H. Gehrke 2 1 Department of Applied Chemistry, Faculty of Engineering, Utsunomiya

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

Lecture 2. Fundamentals and Theories of Self-Assembly

Lecture 2. Fundamentals and Theories of Self-Assembly 10.524 Lecture 2. Fundamentals and Theories of Self-Assembly Instructor: Prof. Zhiyong Gu (Chemical Engineering & UML CHN/NCOE Nanomanufacturing Center) Lecture 2: Fundamentals and Theories of Self-Assembly

More information

Solids, Liquids and Gases

Solids, Liquids and Gases WHY? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I

More information

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical Subject PHYSICAL Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 34, Method for determining molar mass - I CHE_P6_M34 Table of Contents 1. Learning Outcomes 2. Introduction

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials

NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials NRT-16, Quarterly report, Mar2009-May2009, Page 1 of 9 NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials Aasheesh Srivastava and Galen D. Stucky Background and Motivation: The commercial

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Lecture 8. Polymers and Gels

Lecture 8. Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Many of physical properties of polymers have universal characteristic related to

More information

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265 Superparamagnetic nanoparticle arrays for magnetically tunable photonics Josh Kurzman Materials 265 Superparamagnetism In SPM regime, thermal energy sufficient to overcome spin reversal barrier T B Below

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Chapter 2: INTERMOLECULAR BONDING (4rd session)

Chapter 2: INTERMOLECULAR BONDING (4rd session) Chapter 2: INTERMOLECULAR BONDING (4rd session) ISSUES TO ADDRESS... Secondary bonding The structure of crystalline solids 1 REVIEW OF PREVIOUS SESSION Bonding forces & energies Interatomic vs. intermolecular

More information

Atomic structure & interatomic bonding. Chapter two

Atomic structure & interatomic bonding. Chapter two Atomic structure & interatomic bonding Chapter two 1 Atomic Structure Mass Charge Proton 1.67 х 10-27 kg + 1.60 х 10-19 C Neutron 1.67 х 10-27 kg Neutral Electron 9.11 х 10-31 kg - 1.60 х 10-19 C Electron

More information

Anirban Som

Anirban Som Anirban Som 01-11-14 Introduction Supramolecular chemistry generates complex structures over a range of length scales. Structures such as DNA origami, supramolecular polymers etc. are formed via multiple

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

Chapter 10: Liquids, Solids, and Phase Changes

Chapter 10: Liquids, Solids, and Phase Changes Chapter 10: Liquids, Solids, and Phase Changes In-chapter exercises: 10.1 10.6, 10.11; End-of-chapter Problems: 10.26, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36, 10.39, 10.40, 10.42, 10.44, 10.45, 10.66,

More information

Model Solutions Spring 2003

Model Solutions Spring 2003 Exam I BE.462J/3.962J Model Solutions Spring 2003 (60 points total) 1. (5 points) Explain the following observation: autocatalysis generally has a smaller influence on the degradation rate of surface-eroding

More information

Chapter 10 Liquids, Solids, and Intermolecular Forces

Chapter 10 Liquids, Solids, and Intermolecular Forces Chapter 10 Liquids, Solids, and Intermolecular Forces The Three Phases of Matter (A Macroscopic Comparison) State of Matter Shape and volume Compressibility Ability to Flow Solid Retains its own shape

More information

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Gold-poly(N-isopropylacrylamide) core-shell colloids with

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Biocompatible and Functionalized Silk Opals Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, Hu Tao, David L. Kaplan, and Fiorenzo G. Omenetto (*) (*) To whom

More information

Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure

Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure Mina Namvari 1,2, Chandra S. Biswas 1,2, Massimiliano

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Supplementary Information:

Supplementary Information: Supplementary Information: Self assembly of tetrahedral CdSe nanocrystals: effective patchiness via anisotropic steric interaction Michael A. Boles and Dmitri V. Talapin Department of Chemistry and James

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

Formation of valine microcrystals through rapid antisolvent precipitation

Formation of valine microcrystals through rapid antisolvent precipitation Formation of valine microcrystals through rapid antisolvent precipitation Miroslav Variny a, Sandra Alvarez de Miguel b, Barry D. Moore c, Jan Sefcik b a Department of Chemical and Biochemical Engineering,

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 SUPPORTING INFORMATION Preparation of colloidal photonic crystal containing CuO nanoparticles

More information

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13 AP* Chapter 10 Liquids and Solids AP Learning Objectives LO 1.11 The student can analyze data, based on periodicity and the properties of binary compounds, to identify patterns and generate hypotheses

More information

Hydrogel thermodynamics (continued) Physical hydrogels

Hydrogel thermodynamics (continued) Physical hydrogels Hydrogel thermodynamics (continued) Physical hydrogels Last Day: bioengineering applications of hydrogels thermodynamics of hydrogel swelling Today: Structure, physical chemistry, and thermodynamics of

More information

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES DIFFERENT TYPES OF INTEMOLECULAR FORCES Do all the exercises in your studyguide COMPARISON OF THE THREE PHASES OF MATTER. Matter is anything that occupy space and has mass. There are three states of matter:

More information

A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite

A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite Yiming Xie, Jihuai Wu*, Jianming Lin, Yuelin Wei and Jinfeng Zhong Institute of Materials Physical Chemistry, Huaqiao

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

Lecture 2: Bonding in solids

Lecture 2: Bonding in solids Lecture 2: Bonding in solids Electronegativity Van Arkel-Ketalaar Triangles Atomic and ionic radii Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonds in Reciprocal space

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies Review of Intermolecular Forces & Liquids (Chapter 12) CEM 102 T. ughbanks READIG We will very briefly review the underlying concepts from Chapters 12 on intermolecular forces since it is relevant to Chapter

More information

A Hydrophilic/Hydrophobic Janus Inverse-Opal

A Hydrophilic/Hydrophobic Janus Inverse-Opal Supporting information A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration Dajie Zhang #, Jie Liu //#, Bo Chen *, Yong Zhao, Jingxia Wang * //, Tomiki Ikeda, Lei Jiang //. CAS

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Aqueous solutions. Solubility of different compounds in water

Aqueous solutions. Solubility of different compounds in water Aqueous solutions Solubility of different compounds in water The dissolution of molecules into water (in any solvent actually) causes a volume change of the solution; the size of this volume change is

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr.

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr. : Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior

More information

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties Intermolecular Forces, Liquids, Solids Interactions Between Molecules: What does it take to separate two (or more) molecules from one another? or What holds molecules close to one another? Structure/Property

More information

Supplementary Material for Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes

Supplementary Material for Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes Supplementary Material for Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes Takanori Fukushima, * Atsuko Kosaka, Yoji Ishimura, Takashi Yamamoto, Toshikazu Takigawa,

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Simulations of Self-Assembly of Polypeptide-Based Copolymers

Simulations of Self-Assembly of Polypeptide-Based Copolymers East China University of Science and Technology Theory, Algorithms and Applications of Dissipative Particle Dynamics Simulations of Self-Assembly of Polypeptide-Based Copolymers Jiaping LIN ( 林嘉平 ) East

More information

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol) Ch 11 (Sections 11.1 11.5) Liquid Phase Volume and Density - Liquid and solid are condensed phases and their volumes are not simple to calculate. - This is different from gases, which have volumes that

More information

CHEM-102 EXAM I Name Fall 2004 Section

CHEM-102 EXAM I Name Fall 2004 Section CHEM-102 EXAM I Name Fall 2004 Section 10 11 12 Version A (Circle one) Instructions: 1. Put your name and section number on both page 1 and the answer key. Do not detach the answer key from the back of

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. The asymmetric unit in para-iodio-phenylalanine crystal. The 50% probability ellipsoid representation was prepared using the Mercury Software. Colors are as

More information

EQUATION OF STATE DEVELOPMENT

EQUATION OF STATE DEVELOPMENT EQUATION OF STATE DEVELOPMENT I. Nieuwoudt* & M du Rand Institute for Thermal Separation Technology, Department of Chemical Engineering, University of Stellenbosch, Private bag X1, Matieland, 760, South

More information

Modern Additive Technology - a view into the future

Modern Additive Technology - a view into the future Introduction Modern Additive Technology - a view into the future Dr. Jürgen Omeis, Dr. Guillaume Jaunky BYK-Chemie GmbH, Wesel, Germany Reviewing the current literature of colloids and interfacial materials,

More information

LS Spectrometer. The DLS and SLS system for sophisticated research

LS Spectrometer. The DLS and SLS system for sophisticated research LS Spectrometer The DLS and SLS system for sophisticated research P r o f e s s i o n a l L i g h t S c a t t e r i n g S o l u t i o n s LS INSTRUMENTS THE GLOBAL LEADER IN ADVANCED LIGHT SCATTERING TECHNOLOGIES

More information

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France Outline IV - FORMATION OF SOLIDS FROM SOLUTIONS 1) Glass

More information

Supplemental Activities. Module: States of Matter. Section: Intermolecular Forces - Key

Supplemental Activities. Module: States of Matter. Section: Intermolecular Forces - Key Supplemental Activities Module: States of Matter Section: Intermolecular Forces - Key Electrostatic Forces ACTIVITY 1 The purpose of this activity is to practice recognizing the nature of the forces important

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Structural Evolution of Aqueous Zirconium Acetate by Time-Resolved SAXS and Rheology. Yunjie Xu

Structural Evolution of Aqueous Zirconium Acetate by Time-Resolved SAXS and Rheology. Yunjie Xu Structural Evolution of Aqueous Zirconium Acetate by Time-Resolved SAXS and Rheology Yunjie Xu 1 Outline 1.Experiment Methods -Chemical synthesis -SAXS measurement 2. SAXS Modeling 3. Results 4. Conclusions

More information

Self-Oscillating Nano-Gel Particles

Self-Oscillating Nano-Gel Particles Self-Oscillating Nano-Gel Particles T. Sakai 1, R. Yoshida 1, S. Ito 2 and T. Yamaguchi 2 1 Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Self-Assembly of Coated Colloidal Particles for Optical Applications

Self-Assembly of Coated Colloidal Particles for Optical Applications Self-Assembly of Coated Colloidal Particles for Optical Applications Introduction Nearly two decades ago, theoretical predictions indicated the possibility of creating omnidirectional photonic-band-gap

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

Volume Transition of Nematic Gels

Volume Transition of Nematic Gels Volume Transition of ematic els K. Urayama, Y. Okuno* and. Kohjiya* Department of Material Chemistry, Kyoto University, ishikyo-ku, Kyoto 15-8510 *nstitute for Chemical Research, Kyoto University, Uji,

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

Supplemental Information for

Supplemental Information for Supplemental Information for Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates Yoshimasa

More information

Intermolecular forces

Intermolecular forces Intermolecular forces World of Chemistry, 2000 Updated: August 29, 2013 The attractions of molecules to each other are known as intermolecular forces to distinguish them from intramolecular forces, such

More information

Gelatine a physical gel

Gelatine a physical gel Gelatine a physical gel W. Babel, Chemie in unserer Zeit, 86 (1996) binder in jogurts, aspic, capsules for medical drugs silver halogenide photography preparation from fibrous collagen (from skin and bones)

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information