A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite

Size: px
Start display at page:

Download "A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite"

Transcription

1 A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite Yiming Xie, Jihuai Wu*, Jianming Lin, Yuelin Wei and Jinfeng Zhong Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian , China Received: 8 March 2006 Accepted: 12 June 2006 SUMMARY Poly(sodium acrylate)/montmorillonite superabsorbent composite was synthesised by an inverse suspension polymerisation method. A novel hydrogel electrolyte with conductivity of 100 ms cm -1 was prepared by immersing the superabsorbent composite in 1 M KCl aqueous solution. The conductivity of the hydrogel electrolyte was investigated, and it was found that the hydrogel electrolyte exhibits liquid-like ionic conductivity. The conductivity depends mainly on the ionic intensity of the solution in which it is immersed and on the water absorbency of the superabsorbent. 1. INTRODUCTION Hydrogel electrolytes have recently acquired special interest, both from the fundamental science and the application perspectives. This is because of their importance as electrolytes possessing liquid-like ionic conductivity while preserving the dimensional stability of a solid state. They are of potential use in fuel cells, electric double layer capacitors, dye sensitive solar cells and rechargeable lithium batteries 1-4. On the other hand, they are also natural and artificial biologically active systems, and being biocompatible, hydrogels have found numerous applications in pharmaceutics and in medicine production 5. Hydrogels are mixtures consisting of a substantial amount of water and highly swollen, cross-linked hydrophilic polymer networks. The polymer network occupies only a small fraction of the volume and it simply provides a structural framework that prevents the fluid from flowing away. Compared with ordinary hydrogels, superabsorbents are polymers with molecular chains *Fax: ; jhwu@hqu.edu.cn Rapra Technology, 2007 that are lightly crosslinked but have many hydrophilic groups on them. This means that hundreds or thousands of times more water is absorbed and the absorbed water flows away with more difficulty 6-8, so hydrogel electrolytes made from superabsorbents possess better electric properties. In order to enhance hydrogels strength and reduce their cost, mineral particles, such as montmorillonite ultrafine powders can be added 7-8. Here, a novel hydrogel electrolyte based on poly(sodium acrylate)/ montmorillonite superabsorbent composite was prepared, and the conductivity investigated. 2. EXPERIMENTAL 2.1 Preparation of Superabsorbent Composite Poly(sodium acrylate)/montmorillonite superabsorbent composite was synthesised by an inverse suspension polymerisation method. Acrylic acid monomer (15.78 g) was purified by active carbon absorbing and decompression pumping. Sodium acrylate monomer was prepared by partially neutralising acrylic acid monomer with a sodium hydroxide solution in an ice-bath. Montmorillonite ultrafine powder (1.50 g) was dissolved in 20 ml distilled water of with ultrasonic vibration for 5 min. The polymerisation was carried out in a three-necked flanged flask fitted with a stirrer, an efficient reflux condenser and nitrogen purging. Hexahydrobenzene (80 ml) together with dispersing agent (0.78 g) and auxiliary dispersing agent (0.16 g) was poured into the reactor, stirred and heated to 40 ºC. Then sodium acrylate monomer solution, montmorillonite solution, crosslinker (N, N - methylene-bisacrylamide) (0.002 g) and initiator (potassium persulphate) (0.1 g) were added to the reaction system in turn. Once all the compounds were added, the mixture was heated to 70 ºC and continuously stirred for another 90 min to complete the polymerisation reaction. 2.2 Measurement of Conductivity and Water Absorbency A powdered superabsorbent composite (0.5 g) was immersed in an electrolyte 29

2 Yiming Xie, Jihuai Wu, Jianming Lin, Yuelin Wei and Jinfeng Zhong solution (1000 ml) for 90 min at ambient temperature to reach swelling equilibrium, which resulted in the absorption of water by the superabsorbent and the formation of a hydrogel electrolyte. The unabsorbed water was removed by filtering with an 80-mesh stainless steel screen and the filtered swollen sample was hung up to drain for 25 min. The conductivity of the hydrogel was measured by placing a 30g sample in a cylinder and inserting a pocket conductivity meter (HANNA8733) into the hydrogel. The water absorbency (Q H2O ) of the superabsorbent composite was determined by weighing the swollen sample after centrifuging at 4000 r/min for 20 min. The Q H2O of the sample was calculated according to the following equation: QHO 2 = Wt( swollen sample) Wt( dried sample) Wt(dried sample) Obviously, with an increase in the molecular concentration, the ionic intensity of the solution increases, leading to an increase in the conductivity of the hydrogel. On the other hand, at a fixed molecular concentration, the ionic concentrations for NaCl, Na 2 and Na 3 are all different. The ionic intensity is I Na3PO4 > I Na2SO4 > I NaCl both in aqueous solution and in hydrogels, and the conductivity of the hydrogels is in the corresponding order: κ Na3PO4 > κ Na2SO4. Figure 2 shows the conductivities of hydrogels obtained by immersing a superabsorbent in LiCl, NaCl and KCl solutions. The conductivities were in the order: κ KCl > κ LiCl at the same molecular concentration and ionic intensity in the solution, which is in accordance with the three salts in aqueous solution 9. The reason is that although the radius of the three ions is R Li+ < R Na+ < R K+, the radii of the hydrated ions are in the order R Li+ > R Na+ > R K+. The larger hydrated ions mean a slower movement rate and a lower hydrogel conductivity. Hydrogels were made using the same cation but different anions from those in the electrolyte, i.e. KCl, KBr and KI. The relationship between the conductivity of the hydrogel and the concentration of the solution was measured and is shown in Figure 3. At the same molecular and ionic Figure 1. Influence of concentration of NaCl, Na 2 and Na 3 on conductivity of hydrogel where Q H2O is the water absorbency of the superabsorbent composite, Wt (swollen sample) is the weight of the swollen sample, and Wt (dried sample) is the weight of the dried sample. 3. RESULTS AND DISCUSSION 3.1 Influence of Electrolyte Solution on the Conductivity of the Hydrogel Figure 1 shows the conductivities of the hydrogels made by immersing a superabsorbent in sodium chloride (NaCl), sodium sulfate (Na 2 ) and sodium phosphate (Na 3 ) solutions. The conductivity increased with the concentration of the electrolyte solution with all three kinds of salt. At the same molecular concentrations, the conductivity of the hydrogels was in the order: κ Na3PO4 > κ Na2SO4. As is well known, the conductivity of a solution depends on its ionic intensity defined by I = 1/2 m i z 2, where m is i i the concentration of the electrolyte s ion, and Z i is its electric charge. Figure 2. Influence of concentration of LiCl, NaCl and KCl on the conductivity of the hydrogel 30

3 Figure 3. Influence of concentration of KCl, KBr and KI on the conductivity of the hydrogel Figure 4. Influence of ph of solution on the conductivity of hydrogel Figure 5. Influence of temperature on the conductivity of hydrogel concentration, the conductivity of the hydrogel immersed in KBr solution was slightly higher than that of the ones immersed in KCl and KI solutions, and the conductivities of the hydrogels immersed in KCl and KI solutions were approximately the same. Compared with Figure 2, the influence of the anion radius on the conductivity was less than that of the cation. This finding is similar to the one concerning the conductivity of the three salts in water solution Influence of ph and Temperature on the Conductivity The conductivity is affected by the ph of the aqueous solution adsorbed. Hydrogels with different ph values (adjusted by adding NaOH or HCl to distilled water) were made, and the conductivity was measured and shown in Figure 4. The conductivity decreased when the ph of the solution was increased from 1 to 4, but it increased in the ph range from 8 to 14, when the concentration of Na + and OH - ions increased, and it reached a minimum value at a solution ph of 4~8. Figure 5 shows the influence of temperature on the conductivity. The conductivity increased with the temperature. The reason is that with the elevation of temperature, the viscosities of the hydrogels decrease and the movement of ions in the hydrogel accelerates. 3.3 Relationship Between Conductivity of Hydrogel and Water Absorbency of Superabsorbent In order to know the relation between the conductivity of a hydrogel and the water absorbency of the superabsorbent, the latter (0.5 g) was immersed in 1000 ml distilled water, and the hydrogel was taken out at various times. The water absorbency of the superabsorbent and the conductivity of the hydrogel were measured. Meanwhile the conductivity 31

4 Yiming Xie, Jihuai Wu, Jianming Lin, Yuelin Wei and Jinfeng Zhong Figure 6. The relation between water absorbency of superabsorbent and conductivity of hydrogel of the filtrate was also measured, and the results are shown in Figure 6. With an increase in the water absorbency of the superabsorbent, the conductivity of the hydrogels decreases, and the conductivity of the filtrate increases. Eventually the conductivities of the hydrogel and the filtrate converge. Since there are very few ions in the distilled water, the conductivity of both the hydrogel and the filtrate comes mainly from the Na + and OH - ions in the superabsorbent. When a superabsorbent is immersed in distilled water, the water molecules gradually penetrate the polymer network, the water absorbency of the superabsorbent improves gradually, and the ion concentration in the hydrogel network decreases, which leads to a decrease in the conductivity of the hydrogels. Meanwhile, the Na + and OH - ions in the superabsorbent diffuse from the interior to the exterior of the polymer network, causing an increase in the ionic concentration and conductivity of the filtrate. After a period of time (80 mins in our experiment) for penetrating and diffusing, the ion concentrations inside the network (hydrogel) and outside it (filtrate) become equal, and the conductivities of the hydrogel and filtrate become very similar. 3.4 Influence of Superabsorbent Preparation Conditions on the Conductivity of the Hydrogel In order to understand the influence of the preparation condition used to make the superabsorbent on the conductivity of the hydrogel, a series of superabsorbents were synthesised under different conditions, varying such parameters as the amount of montmorillonite, crosslinker and NaOH. The water absorbency of the superabsorbent and the water content of hydrogel were controlled by putting a 0.5 g sample in distilled water for 90 min, which allowed the superabsorbent to swell adequately, whereupon the water absorbency of the superabsorbent and the conductivity of the hydrogels were measured. The conductivity of the hydrogel is shown in Table 1 for various amounts of NaOH and various water absorbency values of the superabsorbent. The same property is shown in Table 2 for various amounts of montmorillonite and various values of the water absorbency of the superabsorbent. Table 3 shows the same property for various amounts of crosslinker and various values of the water absorbency of the superabsorbent. According to the three Tables the conductivity of the hydrogel depends mainly on the water absorbency of the superabsorbent, instead of on the amount of montmorillonite, crosslinker or NaOH. It is well known that the conductivity is affected by the ion intensity of the hydrogels, more than the composition of the superabsorbent. The water absorbency Table 1. The conductivity (ms/cm) of gel versus. water absorbency of superabsorbent and amount of NaOH NaOH (%) Water absorbency (g/g) Table 2. The conductivity (ms/cm) of gel versuss the water absorbency and amount of montmorillonite amount Montmorillonite (%) Water absorbency (g/g) None

5 Table 3. Conductivity (ms/cm) of gel versuss. the water absorbency of the superabsorbent and amount of crosslinker Crosslinker (%) Water absorbency (g/g) of the superabsorbent has a major effect on the ion intensity of the hydrogels. Consequently, the water absorbency of the superabsorbent affects the conductivity of the hydrogel to a similar extent. 4. CONCLUSIONS 1. A novel conductive hydrogel was prepared by immersing poly(sodium acrylate)/ montmorillonite superabsorbent in a 1 M KCl aqueous solution. Poly(sodium acrylate)/ montmorillonite superabsorbent composite was synthesised by an inverse suspension polymerisation method. 2. The hydrogel exhibits liquidlike ionic conductivity, and the conductivity of the hydrogel electrolyte depends mainly on the ionic intensity, the ph and the temperature of the solution in which it is immersed. 3. The water absorbency of the superabsorbent has a great impact on the conductivity of the hydrogel. But the conditions of preparation of the superabsorbent also have a small influence on the conductivity of the hydrogel electrolyte. REFERENCES 1. P. Pissis and A. Kyritsis, Solid State Ionics, 97 (1997), X-G. Sun, G. Liu, J-B. Xie, Y-B. Han and J.B. Kerr, Solid State Ionics, 175 (2004), H. Wada, S. Nohara, N. Furukawa and C. Iwakura, Electrochimica Acta, 49 (2004), A. Lewandowski, M. Zajder, E. Frackowiak and F. Beguin, Electrochim. Acta, 46 (2001), A.A. Konsta, D. Daoukaki, P. Pissis and K. Vartzeli, Solid State Ionics, 125 (1999), J-H. Wu, Y-L. Wei, J-M. Lin and S- B. Lin, Polymer, 44 (2003), J-H. Wu, J-M. Lin and M. Zhou, Macromol. Rapid Commun., 21 (2000), J-M. Lin, J-H. Wu, Z-F. Yang and M- L. Pu, Macromol. Rapid Commun., 22 (2001), W.J. Moore, Physical Chemistry, 5th ed, London, Longman Group Limited, ACKNOWLEDGEMENTS The authors thank jointly the support by the National Natural Science Foundation of China (No and No ) and the Key Scientific Technology Program of Fujian, China (No. 2002H002 and No. 2004HZ01-3). 33

PREPARATION OF MACROPOROUS CELLULOSE-BASED SUPERABSORBENT POLYMER THROUGH THE PRECIPITATION METHOD

PREPARATION OF MACROPOROUS CELLULOSE-BASED SUPERABSORBENT POLYMER THROUGH THE PRECIPITATION METHOD PREPARATION OF MACROPOROUS CELLULOSE-BASED SUPERABSORBENT POLYMER THROUGH THE PRECIPITATION METHOD Yu Chen,* Yun-fei Liu, and Hui-min Tan Superabsorbent polymer was prepared by graft polymerization of

More information

Effect of ph, and Salinity onto Swelling Properties of Hydrogels Based on H-alginate-g-poly(AMPS)

Effect of ph, and Salinity onto Swelling Properties of Hydrogels Based on H-alginate-g-poly(AMPS) BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, April 2014. Vol. 11(1), 205-209 Effect of ph, and Salinity onto Swelling Properties of Hydrogels Based on H-alginate-g-poly(AMPS) Sahar Mirdarikvande*, Hossein

More information

Preparation, Swelling and Water-retention Properties of Crosslinked. Superabsorbent Hydrogels Based on Guar Gum

Preparation, Swelling and Water-retention Properties of Crosslinked. Superabsorbent Hydrogels Based on Guar Gum Advanced Materials Research Vol. 96 (2010) pp 177-182 (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.96.177 Preparation, Swelling and Water-retention Properties of Crosslinked

More information

Notes. Modification of a Crosslinked Poly(acrylic acid) Based New Dehumidifying Agent and Its Moisture Absorbing Characteristics.

Notes. Modification of a Crosslinked Poly(acrylic acid) Based New Dehumidifying Agent and Its Moisture Absorbing Characteristics. Macromolecular Research, Vol. 17, No.7, pp 544-548 (2009) Notes Modification of a Crosslinked Poly(acrylic acid) Based New Dehumidifying Agent and Its Moisture Absorbing Characteristics Jun-Kyu Kim, Byeong-Gyu

More information

Synthesis and swelling behavior of poly (acrylic acid-acryl amide- 2-acrylamido-2-methyl-propansulfonic acid) superabsorbent copolymer

Synthesis and swelling behavior of poly (acrylic acid-acryl amide- 2-acrylamido-2-methyl-propansulfonic acid) superabsorbent copolymer J Petrol Explor Prod Technol (2017) 7:69 75 DOI 10.1007/s13202-016-0237-7 ORIGINAL PAPER - EXPLORATION ENGINEERING Synthesis and swelling behavior of poly (acrylic acid-acryl amide- 2-acrylamido-2-methyl-propansulfonic

More information

Preparation of a Crosslinked Poly(acrylic acid) Based New Dehydrating Agent by Using the Taguchi Method

Preparation of a Crosslinked Poly(acrylic acid) Based New Dehydrating Agent by Using the Taguchi Method Macromolecular Research, Vol. 6, No. 8, pp 74-7 (8) Preparation of a Crosslinked Poly(acrylic acid) Based New Dehydrating Agent by Using the Taguchi Method Jun-Kyu Kim and Yang-Kyoo Han* Department of

More information

Synthesis and Characterization of Cellulose Based Superabsorbent Polymer Composites

Synthesis and Characterization of Cellulose Based Superabsorbent Polymer Composites Synthesis and Characterization of Cellulose Based Superabsorbent Polymer Composites Ahmad Zainal Abidin a, N. M. T. P. Sastra a, G. Susanto a, H.P.R.Graha a Abstract Superabsorbent polymer composite (SAPC)

More information

Interactions Between Surface Treated Ultrafine Mineral Filler and Silicone Rubber Matrix

Interactions Between Surface Treated Ultrafine Mineral Filler and Silicone Rubber Matrix Interactions Between Surface Treated Ultrafine Filler and Silicone Rubber Matrix Interactions Between Surface Treated Ultrafine Filler and Silicone Rubber Matrix Jihuai Wu*, Zhen Shen, Congrong Wei, Yike

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Supporting Information

Supporting Information Supporting Information Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide Xuandong Li,* Meirong Kang, Xijiang Han, Jingyu Wang, and Ping Xu

More information

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion AP Chemistry - Problem Drill 08: Chemical Reactions No. 1 of 10 1. What type is the following reaction: H 2 CO 3 (aq) + Ca(OH) 2 (aq) CaCO 3 (aq) + 2 H 2 O (l)? (A) Composition (B) Decomposition (C) Single

More information

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture 1 The results of some tests on a colourless liquid X are shown. oiling point = 102 Universal Indicator turns green What is X? ethanol hydrochloric acid pure water sodium chloride (salt) solution 2 blue

More information

Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake

Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake Link download full: http://testbankair.com/download/test-bank-for-chemistry-an-introduction-to-general-organic-and-biological-chemistry-12th-edition-by-timberlak

More information

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date...

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date... IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date... 1 Winston Churchill, a British Prime Minister, had his false teeth electroplated with gold. The teeth were coated with a thin layer of carbon and were then placed

More information

1.22 Concentration of Solutions

1.22 Concentration of Solutions 1.22 Concentration of Solutions A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be

More information

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid Jianjian Wang, Wenjie Xu, Jiawen Ren*, Xiaohui Liu, Guanzhong Lu,

More information

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Table of Contents (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) (6.8) Water, the common solvent The nature of aqueous solutions: Strong

More information

Studies on Water Absorbency of Polyacrylamide Hydrogels

Studies on Water Absorbency of Polyacrylamide Hydrogels Journal of Materials Science and Engineering B 5 (11-12) (2015) 399-405 doi: 10.17265/2161-6221/2015.11-12.001 D DAVID PUBLISHING Studies on Water Absorbency of Polyacrylamide Hydrogels Bhadani Reena 1*

More information

9.1 Water. Chapter 9 Solutions. Water. Water in Foods

9.1 Water. Chapter 9 Solutions. Water. Water in Foods Chapter 9 s 9.1 Water 9.1 Properties of Water 9.2 s 9.3 Electrolytes and Nonelectrolytes 9.6 Percent Concentration 9.7 Molarity Water is the most common solvent. The water molecule is polar. Hydrogen bonds

More information

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects.

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. 14.1 General Properties of Solutions 14.2 Solubility 14.3 Rate of Dissolving Solids 14.4 Concentration

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

Properties of Compounds

Properties of Compounds Chapter 6. Properties of Compounds Comparing properties of elements and compounds Compounds are formed when elements combine together in fixed proportions. The compound formed will often have properties

More information

Solution-processable graphene nanomeshes with controlled

Solution-processable graphene nanomeshes with controlled Supporting online materials for Solution-processable graphene nanomeshes with controlled pore structures Xiluan Wang, 1 Liying Jiao, 1 Kaixuan Sheng, 1 Chun Li, 1 Liming Dai 2, * & Gaoquan Shi 1, * 1 Department

More information

Unit 5 Part 2 Acids, Bases and Salts Titrations, Indicators and the ph Scale UNIT 5 ACIDS, BASES AND SALTS

Unit 5 Part 2 Acids, Bases and Salts Titrations, Indicators and the ph Scale UNIT 5 ACIDS, BASES AND SALTS UNIT 5 ACIDS, BASES AND SALTS PART 2 TITRATIONS, INDICATORS AND THE PH SCALE Contents 1. The ph scale 2. Indicators 3. Acid-Base Titrations Key words: acidic, alkaline, neutral, ph, indicator, litmus,

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved

Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved Like dissolves Like Ionic & polar compounds dissolve each other. Nonpolar dissolves

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Unit 5 Part 1 Acids, Bases and Salts Properties of Acids, Bases and Salts UNIT 5 ACIDS, BASES AND SALTS PART 1 PROPERTIES OF ACIDS, BASES AND SALTS

Unit 5 Part 1 Acids, Bases and Salts Properties of Acids, Bases and Salts UNIT 5 ACIDS, BASES AND SALTS PART 1 PROPERTIES OF ACIDS, BASES AND SALTS UNIT 5 ACIDS, BASES AND SALTS PART 1 PROPERTIES OF ACIDS, BASES AND SALTS Contents 1. Acids, Bases, Salts and Neutralisation 2. Physical Properties of Acids, Bases and Salts 3. Strong and Weak Acids and

More information

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex Supporting Information Simple Bacterial Detection and High-Throughput Drug Screening Based on Graphene-Enzyme Complex Juan-Li, Ling-Jie Wu, Shan-Shan Guo, Hua-E Fu, Guo-Nan Chen* and Huang-Hao Yang* The

More information

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS 17 CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS WHAT IS A CHEMICAL EQUATION? A chemical equation is a way of representing a chemical reaction in symbolic form. For example, when hydrochloric acid

More information

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid Mixtures Chapters 12/13: Solutions and Colligative Properties Solution - a homogeneous mixture of two or more substances in a single phase Soluble - capable of being dissolved Solutions - 2 Parts Solvent

More information

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C CHEMISTRY Ch. 13 Notes: Water and Its Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 13.1 Notes I. Water Molecule Characteristics POLAR molecule (a

More information

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples:

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples: Ionic equations, calculations involving concentrations, stoichiometry MUDr. Jan Pláteník, PhD Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds

More information

Ions in Solution. Solvent and Solute

Ions in Solution. Solvent and Solute Adapted from Peer-led Team Learning Begin at the beginning and go on till you come to the end: then stop." Early ideas of atoms and compounds, developed primarily through the reactions of solids and gases,

More information

SOLUTIONS CHAPTER 13

SOLUTIONS CHAPTER 13 SOLUTIONS CHAPTER 13 SOLUTIONS Solutions, also known as homogeneous mixtures, are composed of two components: solute and solvent. In a sugar-water solution, water acts as a solvent (dissolving medium);

More information

Ch. 4 In-Class Exercise. sodium chloride, glucose, ethanol, lead nitrate, sucrose, methanol

Ch. 4 In-Class Exercise. sodium chloride, glucose, ethanol, lead nitrate, sucrose, methanol Chemistry 121 Ch. 4 In-Class Exercise In this exercise we will discuss solutions. Since water is the most common solvent, we will focus on aqueous solutions. Solutes (the minor components of solutions)

More information

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Preview Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Section 1 Types of Mixtures Objectives Distinguish between electrolytes and nonelectrolytes. List three different

More information

Mixtures and Solutions

Mixtures and Solutions Mixtures and Solutions Section 14.1 Heterogeneous and Homogeneous Mixtures In your textbook, read about suspensions and colloids. For each statement below, write true or false. 1. A solution is a mixture

More information

2 nd exam of the 1 st term for 2 nd ESO G. 1. Look at the following picture:

2 nd exam of the 1 st term for 2 nd ESO G. 1. Look at the following picture: 2 nd exam of the 1 st term for 2 nd ESO G Name: 1. Look at the following picture: Date: What is the name of the separation technique that you see? What type of substances you separate with this technique?

More information

May 09, Ksp.notebook. Ksp = [Li + ] [F + ] Find the Ksp for the above reaction.

May 09, Ksp.notebook. Ksp = [Li + ] [F + ] Find the Ksp for the above reaction. example: Constant Product K sp Solubility Product Constant Some compounds dissolve in water Some compounds dissolve better than others The more that a compound can dissolve, the more soluble the compound

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Copyright 2004 by houghton Mifflin Company. Reactions in Aqueous Solutions Chapter 7 All rights reserved. 1 7.1 Predicting if a Rxn Will Occur When chemicals are mixed and one of these driving forces can

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission Coimisiún na Scrúduithe Stáit State Examinations Commission M. 33 LEAVING CERTIFICATE EXAMINATION, 2006 CHEMISTRY - ORDINARY LEVEL TUESDAY, 20 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions

More information

IB Chemistry Solutions Gasses and Energy

IB Chemistry Solutions Gasses and Energy Solutions A solution is a homogeneous mixture it looks like one substance. An aqueous solution will be a clear mixture with only one visible phase. Be careful with the definitions of clear and colourless.

More information

Personalised Learning Checklists Edexcel Combined: Chemistry Paper 1

Personalised Learning Checklists Edexcel Combined: Chemistry Paper 1 Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 1 (Topic 1 parts a&b) Topic Student Checklist R A G Describe how the Dalton model of an atom has changed over time because of the discovery

More information

Electronic Supplementary Information for the Manuscript

Electronic Supplementary Information for the Manuscript Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information for the Manuscript Enhancing the visible

More information

Introduction to Work in Laboratory

Introduction to Work in Laboratory INSTITUTE OF MEDICAL BIOCHEMISTRY AND LABORATORY MEDICINE Introduction to Work in Measuring volumes, filtration, centrifugation, solubility, separation Practical in Medical Biochemistry General Medicine

More information

MOST of the reactions are carried out at atmospheric pressure, hence

MOST of the reactions are carried out at atmospheric pressure, hence MOST of the reactions are carried out at atmospheric pressure, hence heat changes noted for these reactions are enthalpy changes. Enthalpy changes are directly related to the temperature changes by the

More information

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals Zhenkun Sun,, Yong Liu, Bin Li, Jing Wei, Minghong Wang, Qin Yue, Yonghui Deng,

More information

The Solution Process. Section 2. Increasing the Surface Area of the Solute

The Solution Process. Section 2. Increasing the Surface Area of the Solute The Solution Process Key Terms solution equilibrium solubility Henry s Law saturated solution hydration effervescence unsaturated solution immiscible solvated supersaturated solution miscible enthalpy

More information

Novel fungus-titanate bio-nano composites as high performance. absorbents for the efficient removal of radioactive ions from.

Novel fungus-titanate bio-nano composites as high performance. absorbents for the efficient removal of radioactive ions from. This journal is The Royal Society of Chemistry 0 Electronic Supplementary Information For Novel fungus-titanate bio-nano composites as high performance absorbents for the efficient removal of radioactive

More information

Solubility of KHT and Common ion Effect

Solubility of KHT and Common ion Effect Solubility of KHT and Common ion Effect v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 16.5, pp 783-788 (Solubility Equilibria

More information

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 14.1 notes I. Types of mixtures (mixture a physical blend of substances)

More information

Name period AP chemistry Unit 4 worksheet

Name period AP chemistry Unit 4 worksheet Name period AP chemistry Unit 4 worksheet 1. The formation of glucose, C6H12O6 produces ethyl alcohol, C2H5OH and CO2: C6H12O6 2C2H5OH + 2CO2 a. How many moles of carbon dioxide are produced when 0.300

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A solution containing a large concentration of dissolved ions can be classified as a(n).

More information

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water.

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water. 10. Group 2 Atomic radius Atomic radius increases down the Group. As one goes down the group, the atoms have more shells of electrons making the atom bigger. Melting points Down the group the melting points

More information

CHAPTER 12 REVIEW. Solutions. Answer the following questions in the space provided. b. sea water. c. water-absorbing super gels

CHAPTER 12 REVIEW. Solutions. Answer the following questions in the space provided. b. sea water. c. water-absorbing super gels CHAPTER 12 REVIEW Solutions SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Match the type of mixture on the left to its representative particle diameter on the right. c

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Name: Period: Date: solution

Name: Period: Date: solution Name: Period: Date: ID: A Solutions Test A Matching Use the choices below to answer the following 5 questions. a. Hydrogen bond d. Electrolyte b. Polar molecule e. Nonelectrolyte c. Nonpolar molecule 1.

More information

Name Date Class PROPERTIES OF SOLUTIONS

Name Date Class PROPERTIES OF SOLUTIONS 16.1 PROPERTIES OF SOLUTIONS Section Review Objectives Identify the factors that determine the rate at which a solute dissolves Identify the units usually used to express the solubility of a solute Calculate

More information

A salt is a neutral ionic compound composed of cations and anions. It is the result of an acid-base neutralisation reaction.

A salt is a neutral ionic compound composed of cations and anions. It is the result of an acid-base neutralisation reaction. Acid-base reactions When an acid and a base react, they form a salt. If the base contains hydroxide (OH ) ions, then water will also be formed. The word salt is a general term which applies to the products

More information

Reactions in aqueous solutions Precipitation Reactions

Reactions in aqueous solutions Precipitation Reactions Reactions in aqueous solutions Precipitation Reactions Aqueous solutions Chemical reactions that occur in water are responsible for creation of cenotes. When carbon dioxide, CO2, dissolves in water, the

More information

CHEMISTRY - MCMURRY 7E CH.12 - SOLUTIONS AND THEIR PROPERTIES.

CHEMISTRY - MCMURRY 7E CH.12 - SOLUTIONS AND THEIR PROPERTIES. !! www.clutchprep.com CONCEPT: LATTICE ENERGY APPLICATION Lattice Energy represents the energy released when 1 mole of an ionic crystal is formed from its gaseous ions. Mg 2+ (g) + O 2 (g) MgO (s) ΔH =

More information

not to be republished NCERT MOST of the reactions are carried out at atmospheric pressure, hence THERMOCHEMICAL MEASUREMENT UNIT-3

not to be republished NCERT MOST of the reactions are carried out at atmospheric pressure, hence THERMOCHEMICAL MEASUREMENT UNIT-3 UNIT-3 THERMOCHEMICAL MEASUREMENT MOST of the reactions are carried out at atmospheric pressure, hence heat changes noted for these reactions are enthalpy changes. Enthalpy changes are directly related

More information

CHM Electrolytes and the Ionic Theory (r14) Charles Taylor 1/5

CHM Electrolytes and the Ionic Theory (r14) Charles Taylor 1/5 CHM 110 - Electrolytes and the Ionic Theory (r14) - 2014 Charles Taylor 1/5 Introduction In 1884, Arrhenius proposed that some substances broke up when dissolved in water to form freely moving ions. We've

More information

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms Warm UP 1) Write the neutral compound that forms between carbonate and lithium 2) How many valence electrons do the following elements have? a) Chlorine b) Neon c) Potassium 3) Name these compounds: a)

More information

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Supporting Information (SI) A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Xiaoya Li, Mingming Yu, Faliu Yang, Xingjiang

More information

SOLUTIONS. Solutions - page

SOLUTIONS. Solutions - page SOLUTIONS For gases in a liquid, as the temperature goes up the solubility goes. For gases in a liquid, as the pressure goes up the solubility goes. Example: What is the molarity of a solution with 2.0

More information

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

The solvent is the dissolving agent -- i.e., the most abundant component of the solution SOLUTIONS Definitions A solution is a system in which one or more substances are homogeneously mixed or dissolved in another substance homogeneous mixture -- uniform appearance -- similar properties throughout

More information

Conductivity of Electrolytes in Solution

Conductivity of Electrolytes in Solution Conductivity of Electrolytes in Solution Introduction: Electrical current can be thought of as the movement of electrons or ionic charges from an area of high potential to an area of low potential. Materials

More information

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE INTRODUCTION Electrolytes are compounds that are present in solution as ions. They are more likely to be soluble in water than in most other liquids

More information

Rheological properties of polymer micro-gel dispersions

Rheological properties of polymer micro-gel dispersions 294 DOI 10.1007/s12182-009-0047-3 Rheological properties of polymer micro-gel dispersions Dong Zhaoxia, Li Yahua, Lin Meiqin and Li Mingyuan Enhanced Oil Recovery Research Center, China University of Petroleum,

More information

Name: Regents Review Quiz #1 2016

Name: Regents Review Quiz #1 2016 Name: Regents Review Quiz #1 2016 1. Which two particle diagrams represent mixtures of diatomic elements? A) A and B B) A and C C) B and C D) B and D 2. At STP, which physical property of aluminum always

More information

Unit 10: Solutions. soluble: will dissolve in miscible: refers to two liquids that mix evenly in all proportions -- e.g., food coloring and water

Unit 10: Solutions. soluble: will dissolve in miscible: refers to two liquids that mix evenly in all proportions -- e.g., food coloring and water Unit 10: Solutions Name: Solution Definitions solution: a homogeneous mixture -- -- e.g., alloy: a solid solution of metals -- e.g., solvent: the substance that dissolves the solute soluble: will dissolve

More information

Solve the following problems, showing your work and using correct units and significant figures. 5 points each

Solve the following problems, showing your work and using correct units and significant figures. 5 points each Chemistry I Zimmer 5.7.13 Name QUIZ: PERCENT COMPOSITION & EMPIRICAL FORMULA Solve the following problems, showing your work and using correct units and significant figures. 5 points each 1. While mining

More information

Buffer Preparation. Learning Objectives:

Buffer Preparation. Learning Objectives: Proteomics Buffer Preparation Buffer Preparation Maintaining the optimum ph during the biological sample processing is to maintain the proper functional and structural aspects of the sample. It is important

More information

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A 1. Consider a balloon filled with 5 L of an ideal gas at 20 C. If the temperature of the balloon is increased by 70 C and the external pressure acting on the

More information

Supplementary Material (ESI) for Chemical Communication

Supplementary Material (ESI) for Chemical Communication Supplementary Material (ESI) for Chemical Communication Syntheses and Characterization of Polymer-Supported Organotrifluoroborates: Applications in Radioiodination Reactions Li Yong; Min-Liang Yao; James

More information

Preliminary Chemistry

Preliminary Chemistry Name: Preliminary Chemistry Lesson 6 Water In Theory. This booklet is your best friend. Success is Contagious. Synergy Chemistry. 0466 342 939 garyzhanghsc@gmaiil.com www.hscsynergyeducation.weebly.com

More information

Chemistry 1B Experiment 17 89

Chemistry 1B Experiment 17 89 Chemistry 1B Experiment 17 89 17 Thermodynamics of Borax Solubility Introduction In this experiment, you will determine the values of H and S for the reaction which occurs when borax (sodium tetraborate

More information

Semester 1 Review Chemistry

Semester 1 Review Chemistry Name Period Date Semester 1 Review Chemistry Units & Unit Conversions Ch. 3 (p. 73-94) PART A SI UNITS What type of measurement is indicated by each of the following units? Choices are in the last column.

More information

Solution Stoichiometry

Solution Stoichiometry Chapter 8 Solution Stoichiometry Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the

More information

Precipitation and Solubility

Precipitation and Solubility Precipitation and Solubility Purpose The purpose of this experiment is to determine a pattern for which ions react to produce precipitates. Introduction Many important reactions take place in water, such

More information

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts!

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements 1. Mid-term grades will be posted soon (just used scaled exam 1 score

More information

1. Which substance will conduct the current in the solid state? 1. Diamond 2.Graphite 3.Iodine 4.Sodium chloride.

1. Which substance will conduct the current in the solid state? 1. Diamond 2.Graphite 3.Iodine 4.Sodium chloride. CHAPTER :SOLIDS 1. Which substance will conduct the current in the solid state? 1. Diamond 2.Graphite 3.Iodine 4.Sodium chloride. 2. Molten sodium chloride conducts electricity due to the presence of ions:

More information

Chapter 4. Solutions and Solution Stoichiometry

Chapter 4. Solutions and Solution Stoichiometry Chapter 4 Solutions and Solution Stoichiometry Solutions Homogeneous mixtures are called solutions. The component of the solution that changes state is called the solute. The component that keeps its state

More information

Solutions: Multiple Choice Review PSI AP Chemistry. 1. Which of the following would be FALSE regarding mixtures?

Solutions: Multiple Choice Review PSI AP Chemistry. 1. Which of the following would be FALSE regarding mixtures? Solutions: Multiple Choice Review PSI AP Chemistry Name Part A: Mixtures, Solubility, and Concentration 1. Which of the following would be FALSE regarding mixtures? (A) Mixtures do not obey the law of

More information

Supporting Information for

Supporting Information for Supporting Information for Preparation of Stimulus-Responsive Liquid Marbles Using A Polyacid-Stabilised Polystyrene Latex Damien Dupin, Kate L. Thompson and Steven P. Armes* Experimental Section Synthesis

More information

UNIT 7: SOLUTIONS STUDY GUIDE REGENTS CHEMISTRY Unit 7 Exam will be on Thursday 2/16

UNIT 7: SOLUTIONS STUDY GUIDE REGENTS CHEMISTRY Unit 7 Exam will be on Thursday 2/16 UNIT 7: SOLUTIONS STUDY GUIDE Name REGENTS CHEMISTRY Unit 7 Exam will be on Thursday 2/16 Vocabulary- Match the terms to the correct definitions. 1. colligative properties 2. concentration 3. electrolyte

More information

Wen-Fu Lee, Lin-Gi Yang. Department of Chemical Engineering, Tatung University, Taipei, Taiwan, Republic of China

Wen-Fu Lee, Lin-Gi Yang. Department of Chemical Engineering, Tatung University, Taipei, Taiwan, Republic of China Superabsorbent Polymeric Materials. XII. Effect of Montmorillonite on Water Absorbency for Poly(Sodium Acrylate) and Montmorillonite Nanocomposite Superabsorbents Wen-Fu Lee, Lin-Gi Yang Department of

More information

100 C = 100 X = X = 218 g will fit in this solution. 25 C = 100 X = 3640 X = 36.4 g will fit in this solution.

100 C = 100 X = X = 218 g will fit in this solution. 25 C = 100 X = 3640 X = 36.4 g will fit in this solution. 58 Questions for Solutions - You should be able to do ALL of these problems. Use a calculator, write all formulas, watch SF, and find the answers online at Arbuiso.com on the SOLUTIONS page. This is great

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Uniform and Rich Wrinkled Electrophoretic Deposited Graphene Film: A Robust Electrochemical Platform for TNT Sensing Longhua Tang, Hongbin Feng, Jinsheng Cheng and

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

HonorsChemistry 2nd Semester Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

HonorsChemistry 2nd Semester Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name HonorsChemistry 2nd Semester Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which process releases energy? 1) A) bond formation

More information

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun DOUBLE DISPLACEMENT REACTIONS Double your pleasure, double your fun Industrial processes produce unwanted by-products. Dissolved toxic metal ions-copper, mercury, and cadmium-are common leftovers in the

More information

Chemistry 101 Chapter 4 STOICHIOMETRY

Chemistry 101 Chapter 4 STOICHIOMETRY STOICHIOMETRY Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation. Stoichiometry allows chemists to predict how much of a reactant is necessary

More information

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications Babak Karimi* a, Majid Vafaeezadeh a a Department of Chemistry,

More information

Unit 10: Part 1: Polarity and Intermolecular Forces

Unit 10: Part 1: Polarity and Intermolecular Forces Unit 10: Part 1: Polarity and Intermolecular Forces Name: Block: Intermolecular Forces of Attraction and Phase Changes Intramolecular Bonding: attractive forces that occur between atoms WITHIN a molecule;

More information

Name: Midterm Review Date:

Name: Midterm Review Date: Name: Midterm Review Date: 1. Which statement concerning elements is true? A) Different elements must have different numbers of isotopes. B) Different elements must have different numbers of neutrons.

More information

Distinguish Describe Explain Describe demonstrate Slide 2 of 29

Distinguish Describe Explain Describe demonstrate Slide 2 of 29 1 of 29 Distinguish between a solvent and a solute. Describe what happens in the process of solvation. Explain why all ionic compounds are electrolytes. Describe hydrates and demonstrate how the formula

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information