TURN-ON SIMULATION OF FIELD-CONTROLLED THYRISTOR

Size: px
Start display at page:

Download "TURN-ON SIMULATION OF FIELD-CONTROLLED THYRISTOR"

Transcription

1 SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vl. 4 Edited by W. Fichtner, D. Aetnmer - Zurich (Switzerland) September 12-14, Hartung-Grre TURN-ON SIMULATION OF FIELD-CONTROLLED THYRISTOR Adrian Zuckerberger,Hrst Griining,Kenneth Jhanssn ASEA BROWN BOVERI,Crprate Research,CH-5405 Baden, Switzerland ABSTRACT The turn-n prcess f a field-cntrlled thyristr (FCTh) and the turn-ff f its clamping dide in a real circuit (snubberless clamped inductive lad including stray inductrs) was analyzed thrugh simultaneus 2D-device simulatin (ABBPISCES) f bth devices. Full understanding f FCTh turn-n transient behavir, the dide's turn-ff and the drive requirements has been achieved. Expnential current grwth under cnstant clamping vltage, a turn-n time cnstant less than 100 ns and high vercurrent capability f the FCTh have been bserved. The simulated results are in gd accrdance with experiments. Fr the first time a cmplete descriptin f the interactin between pwer devices (FCTh and dide) and external circuit thus is presented. The desire t better understand and utilize pwer electrnic devices and circuits has required imprved simulatin tls which are capable t deal widi the system dwn t the level f the silicn structure. The ABBPISCES sftware package [1] based n the device simulatr PISCES [2,3] has such capabilities; it is able t carry ut simulatins f electrical circuits cmprising silicn devices 2D (tw dimensinal) mdelled. Thrugh these simulatins the researcher/engineer can analyze the device behavir during transient and steady-state peratin. Its interactins with the different cmpnents f the circuit can be fully understd, and the circuit can be designed and ptimized till its perfrmances better fit t the required specificatins. Extended labratry activities thus will shrink t a minimum necessary fr a validatin f the prpsed device structures and circuitry. The present cntributin deals with the turn-n transient behavir f a fieldcntrlled thyristr (FCTh) [4,5,6] perating in a real circuit cnfiguratin shwn in Fig.l The cmpnents f the circuit are: the FCTh (SD-Switching Device), the clamping dide (Dclamp)> the pure inductive lad represented by means f a cnstant current surce (Ind. Lad), a clamping vltage surce and a gate unit cmprising a resistr (Rgate) an d a vltage surce (Vgate) ramped frm -15V (blcking cnditin) t 5V in 200ns. Als shwn in the figure are the parasitic cmpnents Lpara and Rpara- Such a cnfiguratin, equipped with different switching devices (GTO, IGBT, BJT, Pwer Fet) can be encuntered in many pwer electrnic applicatins, e.g. pwer supplies, industrial electric drives, tractin systems and thers, cvering a pwer range frm few watts t megawatts.

2 360 Lpara. Rpara Vclamp Rgate A v Dclamp SD e Ind.Lad Vgate Fig. 1 Simulated and tested circuit The whle circuit was simulated by means f ABBPISCES with bth switching devices mdelled 2D in silicn. 1.Simulatin Different turn-n simulatins f a 3.5kV blcking FCTh were carried ut at Vclamp=1000V. Figure 2 shws the ande current, ande vltage, gate current and gate vltage with an initial dide current density f 15 A/cm2. 5 I.IK-II -11 «.S1 > a.sa 1.1* 1.5" a (unci Z.ia I.sa «.5«-»l S 5_ a.iae-ai a " f.hc-tl 'I 1 f j l.uc-il a a.aacaa -a.iac-ai -a.sa i.sa si in 1.1» I.sa luaacl 2.1a z.sa 2.a.ilf-n (- 2-.( f><3 3.» < 2.» 1.a!.., C-«J a.iac- a.aaf-aar -a.sa a.aa a.sa l.ia 1.3a 2.ia a.a ta :::r IO- a.sa a.ja a.sa 1 U«a. a i.sa 2.1a 2.5a Fig.2 Current and vltage transients during FCTh turn-n prcess.

3 Based n Figure 2 ne may bserve the fllwing phases during the FCTh turn-n prcess : *Phase 1-At t=0.0m-s a cnstant current flws thrugh the dide, and the FCTh blcks the clamping vltage Vclamp=1000V. The vltage surce Vgate is ramped up t 5V in 200 ns. A capacitive current flws int the gate-cathde junctin f the sftdriven FCTh and the gate vltage increases almst linearly up t the pinch-ff vltage f -2V.The time cnstant f the gate circuit is jxs (with Rgate=15 kq. and a gate-cathde junctin capacitance f 100 pf). In ne time cnstant the gate vltage will reach the pinch-ff vltage. During this perid the ptential barrier in the fingers decreases (see Fig.3a), and electrns are allwed t leave the cathde (see Fig. 3b). ABBP1SCES Pt»n. t=1320 ns t=1180 ns t=691 ns t=286 ns ABBP1SCES K.. 2iL (_ C 8 t u c O 7 C 53 B "8 u t=1320 ns t=l 180 ns S.BB IS s tanca (um) IS D 1 s tnc!um) Fig.3 Ptential and electrn cncentratin in the middle f FCTh's cell. *Phase 2-At t=1.5(is, the FCTh behaves like a uniplar device, nly its JFET part is in peratin. Hles are injected by the ande, and due t the gate's lw ptential,they are cllected first by it (the gate). Cnsequently, its vltage increases mre rapidly and after the saturatin f gate-cathde dide the biplar peratin f the FCTh begins. *Phase 3-At t=1.6(is with saturated gate vltage the FCTh is behaving like a P-i-N dide fed by a vltage surce f 1000V. The current f the FCTh increases expnentially accrding t the law: I(t)=I(t=1.6 is) exp [(t-1.6ns) / x] (1)

4 362 In Figure 4 the ande current f the FCTh is presented. The calculated % was =80ns I I time (usee) Fig.4 Lgarithmic plt f ande current during turn-n(simulatin). *Phase 4-At t= 1.74ns the whle surce current flws int the FCTh (10A/cm 2 ). The dide current is zer, but still a lt f carriers are present in the pwer dide. Cnsequendy the current reverses: the dide enters the reverse recvery state. *Phase 5- Due t its high reverse current the excess carriers in the dide are swept ut at t=1.9jis and its vltage increases rapidly. Sme ringing is bserved between the parasitic inductance and the dide's variable capacitance ( due t the space charge regin). Depending n the value f Lpara. current and vltage scillatins will ccur and in many cases vervltages are expected. Only careful lay-ut design f such a circuit can avid the vervltages and a pssible device destructin. Simulated results are presented in Fig.5 fr tw different final current densities in the FCTh : J lf =10A/cm 2 and J 2f =135A/cm E*03 Current Dens. FCTh (A/cm 2 ) a.i 2E -e«r Ande vltage FCTh (V) a.sae-as J.SBE* E» E*33 3.2BE*03 a.tbe*83 H 3.33E*30; l.sa 1.73 l.aa i.aa a.sa 2.ia z time (usee) S time (usee) Fig.5 Simulated results at Jif=10A/cm 2 and J2f=135A/cm 2

5 As seen in Fig.5 the turn-n prcess is almst identical fr the tw cases with a time cnstant f T=80ns. High vercurrent due t the reverse recvery f the clamping dide and high dv/dt ver the FCTh because f the snappy behavir f the dide are als bserved. With a maximum current density f 660 A/cm 2 sme scillatins are present in the FCTh's vltage. 2.Experimental 10A and 200A, 2.5kV FCTh were fabricated and tested in ne and multi-pulse peratin. Fr bth devices the measured turn-n time cnstant was in the range ns [5]. In Figure 6 the turn-n current f a 10A device is shwn (with current n lgarithmic scale) and % was 105 ns. CE +-> C QJ _ i_ 3 U OJ "D O C I ime Cns ] Fig.6 Lgarithmic plt f ande current during tum-n(experiment). In Figure 7, the vltage and current f the FCTh perated in a circuit cnfiguratin as per Figure 1, are presented.the steady state current density was 60 A/cm 2 and the clamping vltage was 1000 V. The stray inductance was very lw (n vltage scillatins present) but sme parasitic capacitance caused by the windings f the "inductive lad" was bserved.

6 ns/dlv 30A/cm 2 /dh/ Fig.7 Experimental results - ande vltage and current at turn-n. 3.Cnclusins Fr the first time such a study, cmprising bth 2D simulatin f a cntrlled switching device at turn-n and a pwer dide has been carried ut. It seems wrth nting that the silicn devices are perated in a real circuit cnfiguratin and the simulatins were dne by means f ABBPISCES sftware package. The main cnclusins frm this wrk are: *At turn-n the FCTh current grws expnentially with a time cnstant f t=80ns. This time cnstant is independent f the gate-unit vltage/current wavefrms (this is nt the case with GTO's). *Due t the gate vltage saturatin a stable and unifrm turn-n will ccur even at current density gradients >2kA/(cm 2 *jis). *Sme disagreements between simulated and experimental results were bserved: ** Jmax/Jf(sini)=4.88 and J max /Jf(ex)=2.35. **V an d e wavefrm at high current density (J2f=135A/cm 2 ) differs frm the measured ne. **The experimental set-up cmprises a higher stray inductance and sme additinal parasitic capacitance than the simulated ne.

7 *Mre care thus wuld have been necessary in rder t adjust the dide's carrier lifetime (and lifetime prfiles), in particular.and, f curse, a number f different cases have t be studied in the future, and perhaps then even sme fine-tuning f Si-parameters may becme mandatry. 4.References [l]abbpisces-prgram reference manual,abb-internal Publ. [2]M. R. Pint et. al. " Pisces-2 Pissn and cntinuity equatin slver " Tech. Rep. Stanfrd Univ [3]M. R. Pint et. al. "Pisces-2 supplementary reprt" Tech.Rep.Stanfrd Univ [4]H. Griming et. al. " Prperties f a high-pwer field cntrlled thyristr " Prc. IEDM [5]H. Griining et. al." Snubberless superfast high pwer mdule.."ieee PESC [6]K. Jhanssn et. al" System simulatin and realizatin f a resnant inverter with a FCTh " Trans, n Pwer Electrnics,Vl.6, N.2, April 1991.

A Novel Isolated Buck-Boost Converter

A Novel Isolated Buck-Boost Converter vel slated uck-st Cnverter S-Sek Kim *,WOO-J JG,JOOG-HO SOG, Ok-K Kang, and Hee-Jn Kim ept. f Electrical Eng., Seul atinal University f Technlgy, Krea Schl f Electrical and Cmputer Eng., Hanyang University,

More information

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit. EEL6246 Pwer Electrnics II Chapter 6 Lecture 6 Dr. Sam Abdel-Rahman ZVS Bst Cnverter The quasi-resnant bst cnverter by using the M-type switch as shwn in Fig. 6.29(a) with its simplified circuit shwn in

More information

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS J.e. Sprtt PLP 924 September 1984 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Lecture 02 CSE 40547/60547 Computing at the Nanoscale PN Junctin Ntes: Lecture 02 CSE 40547/60547 Cmputing at the Nanscale Letʼs start with a (very) shrt review f semi-cnducting materials: - N-type material: Obtained by adding impurity with 5 valence elements

More information

A Novel Electro-thermal Simulation Approach to Power IGBT Modules for Automotive Traction Applications

A Novel Electro-thermal Simulation Approach to Power IGBT Modules for Automotive Traction Applications Special Issue Recent R&D Activities f Pwer Devices fr Hybrid Electric Vehicles 27 Research Reprt A Nvel Electr-thermal Simulatin Apprach t Pwer IGBT Mdules fr Autmtive Tractin Applicatins Takashi Kjima,

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

OP AMP CHARACTERISTICS

OP AMP CHARACTERISTICS O AM CHAACTESTCS Static p amp limitatins EFEENCE: Chapter 5 textbk (ESS) EOS CAUSED BY THE NUT BAS CUENT AND THE NUT OFFSET CUENT Op Amp t functin shuld have fr the input terminals a DC path thrugh which

More information

ANALYSIS OF FILL FACTOR LOSSES IN THIN FILM CdS/CdTe PHOTOVOLTAIC DEVICES

ANALYSIS OF FILL FACTOR LOSSES IN THIN FILM CdS/CdTe PHOTOVOLTAIC DEVICES ANALYSIS OF FILL FACTOR LOSSES IN THIN FILM CdS/CdTe PHOTOVOLTAIC DEVICES T. Ptlg, N. Spalatu, V. Cibanu,. Hiie *, A. Mere *, V. Mikli *, V. Valdna * Department Physics, Mldva State University, 60, A.

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Technical Information

Technical Information Предлагаем продукцию SEMIKRON и другие ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ (радиодетали) СО СКЛАДА И ПОД ЗАКАЗ Беларусь г.минск т ел./факс 8(017)00-56-46 SEMiSTART Prducts Technical Infrmatin Melanie Gill December

More information

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units l Advanced Prcess Technlgy l Dynamic dv/dt Rating l 175 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Lead-Free Descriptin Fifth Generatin HEXFETs frm Internatinal Rectifier utilize

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) l l l l l l Advanced Prcess Technlgy Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fully Avalanche Rated Lead-Free Descriptin Fifth Generatin HEXFET Pwer MOSFETs frm Internatinal Rectifier

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units l l l l l Advanced Prcess Technlgy Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fully Avalanche Rated Descriptin Fifth Generatin HEXFETs frm Internatinal Rectifier utilize advanced prcessing

More information

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink American Jurnal f Engineering Research (AJER) 016 American Jurnal f Engineering Research (AJER) e-issn: 30-0847 p-issn : 30-0936 Vlume-5, Issue-, pp-9-36 www.ajer.rg Research Paper Open Access Design and

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Simulation of Push-pull Multi-output Quasi-resonant Converter

Simulation of Push-pull Multi-output Quasi-resonant Converter IOSR Jurnal f Electrical and Electrnics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 3-3331, Vlue 9, Issue 1 Ver. V (Feb. 14), PP 19-4 Siulatin f Push-pull Multi-utput Quasi-resnant Cnverter T.Anitha

More information

Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors

Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors Indian Jurnal f Pure & Applied Physics Vl. 49 July 20 pp. 494-498 Current/vltage-mde third rder quadrature scillatr emplying tw multiple utputs CCIIs and grunded capacitrs Jiun-Wei Hrng Department f Electrnic

More information

A Non-Insulated Resonant Boost Converter

A Non-Insulated Resonant Boost Converter A Nn-Insulated Resnant Bst Cnverter Peng Shuai, Yales R. De Nvaes, Francisc Canales and Iv Barbi ISEA-Institute fr Pwer Electrnics and Electrical Drives, RWTH-Aachen University, Aachen, Germany Email:

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975 OTHER USES OF THE ICRH COUPL ING CO IL J. C. Sprtt Nvember 1975 -I,," PLP 663 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Linearization of the Output of a Wheatstone Bridge for Single Active Sensor. Madhu Mohan N., Geetha T., Sankaran P. and Jagadeesh Kumar V.

Linearization of the Output of a Wheatstone Bridge for Single Active Sensor. Madhu Mohan N., Geetha T., Sankaran P. and Jagadeesh Kumar V. Linearizatin f the Output f a Wheatstne Bridge fr Single Active Sensr Madhu Mhan N., Geetha T., Sankaran P. and Jagadeesh Kumar V. Dept. f Electrical Engineering, Indian Institute f Technlgy Madras, Chennai

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet EXAMLE HERMAL DAMING wrk in air sealed utlet A BIYLE UM WIH HE OULE EALED When the pistn is depressed, a fixed mass f air is cmpressed mechanical wrk is dne he mechanical wrk dne n the air is cnerted t

More information

ECE 545 Project Deliverables

ECE 545 Project Deliverables ECE 545 Prject Deliverables Tp-level flder: _ Secnd-level flders: 1_assumptins 2_blck_diagrams 3_interface 4_ASM_charts 5_surce_cde 6_verificatin 7_timing_analysis 8_results

More information

DF452. Fast Recovery Diode DF452 APPLICATIONS KEY PARAMETERS V RRM 1600V I F(AV) 540A I FSM. 5000A Q r t rr FEATURES VOLTAGE RATINGS

DF452. Fast Recovery Diode DF452 APPLICATIONS KEY PARAMETERS V RRM 1600V I F(AV) 540A I FSM. 5000A Q r t rr FEATURES VOLTAGE RATINGS Fast Recvery Dide Replaces January 2000 versin, DS4213-4.0 DS4213-5.0 June 2004 APPLICATIONS Inductin Heating A.C. Mtr Drives Inverters And Chppers Welding High Frequency Rectificatin UPS KEY PARAMETERS

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

1.1 The main transmission network of Eskom The classical two generator model 11

1.1 The main transmission network of Eskom The classical two generator model 11 LIST OF FIGURS Figure Page 1.1 The main transmissin netwrk f skm 4 2.1 The classical tw generatr mdel 11 2.2 Obtaining the lcatin f the electrical centre. The line cnnecting A with B represents the netwrk

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance Verificatin f Quality Parameters f a Slar Panel and Mdificatin in Frmulae f its Series Resistance Sanika Gawhane Pune-411037-India Onkar Hule Pune-411037- India Chinmy Kulkarni Pune-411037-India Ojas Pandav

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

Series and Parallel Resonances

Series and Parallel Resonances Series and Parallel esnances Series esnance Cnsider the series circuit shwn in the frequency dmain. The input impedance is Z Vs jl jl I jc C H s esnance ccurs when the imaginary part f the transfer functin

More information

IB Sports, Exercise and Health Science Summer Assignment. Mrs. Christina Doyle Seneca Valley High School

IB Sports, Exercise and Health Science Summer Assignment. Mrs. Christina Doyle Seneca Valley High School IB Sprts, Exercise and Health Science Summer Assignment Mrs. Christina Dyle Seneca Valley High Schl Welcme t IB Sprts, Exercise and Health Science! This curse incrprates the traditinal disciplines f anatmy

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit : TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BF996S N-channel dual-gate MOS-FET. Product specification File under Discrete Semiconductors, SC07

DISCRETE SEMICONDUCTORS DATA SHEET. BF996S N-channel dual-gate MOS-FET. Product specification File under Discrete Semiconductors, SC07 DISCRETE SEMICONDUCTORS DATA SHEET File under Discrete Semicnductrs, SC7 April 1991 FEATURES Prtected against excessive input vltage surges by integrated back-t-back dides between gates and surce. DESCRIPTION

More information

ENG2410 Digital Design Sequential Circuits: Part A

ENG2410 Digital Design Sequential Circuits: Part A ENG2410 Digital Design Sequential Circuits: Part A Fall 2017 S. Areibi Schl f Engineering University f Guelph Week #6 Tpics Sequential Circuit Definitins Latches Flip-Flps Delays in Sequential Circuits

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Circuit Analysis Lessn 6 Chapter 4 Sec 4., 4.5, 4.7 Series LC Circuit C Lw Pass Filter Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 00 Circuit Analysis Lessn 5 Chapter 9 &

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

BASD HIGH SCHOOL FORMAL LAB REPORT

BASD HIGH SCHOOL FORMAL LAB REPORT BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used

More information

Biocomputers. [edit]scientific Background

Biocomputers. [edit]scientific Background Bicmputers Frm Wikipedia, the free encyclpedia Bicmputers use systems f bilgically derived mlecules, such as DNA and prteins, t perfrm cmputatinal calculatins invlving string, retrieving, and prcessing

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Engineering Approach to Modelling Metal THz Structures

Engineering Approach to Modelling Metal THz Structures Terahertz Science and Technlgy, ISSN 1941-7411 Vl.4, N.1, March 11 Invited Paper ngineering Apprach t Mdelling Metal THz Structures Stepan Lucyszyn * and Yun Zhu Department f, Imperial Cllege Lndn, xhibitin

More information

Photocoupler Product Data Sheet MOC3083 SERIES Spec No.: DS Effective Date: 11/30/2016 LITE-ON DCC RELEASE

Photocoupler Product Data Sheet MOC3083 SERIES Spec No.: DS Effective Date: 11/30/2016 LITE-ON DCC RELEASE Phtcupler Prduct Data Sheet MOC3083 SERIES Spec N.: DS70-2001-027 Effective Date: 11/30/2016 Revisin: E LITE-ON DCC RELEASE BNS-OD-FC001/A4 LITE-ON Technlgy Crp. / Optelectrnics N.90,Chien 1 Rad, Chung

More information

Increasing Heat Transfer in Microchannels with Surface Acoustic Waves*

Increasing Heat Transfer in Microchannels with Surface Acoustic Waves* Increasing Heat Transfer in Micrchannels with Surface Acustic Waves* Shaun Berry 0/9/04 *This wrk was spnsred by the Department f the Air Frce under Air Frce Cntract #FA87-05-C-000. Opinins, interpretatins,

More information

3D FE Modeling Simulation of Cold Rotary Forging with Double Symmetry Rolls X. H. Han 1, a, L. Hua 1, b, Y. M. Zhao 1, c

3D FE Modeling Simulation of Cold Rotary Forging with Double Symmetry Rolls X. H. Han 1, a, L. Hua 1, b, Y. M. Zhao 1, c Materials Science Frum Online: 2009-08-31 ISSN: 1662-9752, Vls. 628-629, pp 623-628 di:10.4028/www.scientific.net/msf.628-629.623 2009 Trans Tech Publicatins, Switzerland 3D FE Mdeling Simulatin f Cld

More information

SMART TESTING BOMBARDIER THOUGHTS

SMART TESTING BOMBARDIER THOUGHTS Bmbardier Inc. u ses filiales. Tus drits réservés. BOMBARDIER THOUGHTS FAA Bmbardier Wrkshp Mntreal 15-18 th September 2015 Bmbardier Inc. u ses filiales. Tus drits réservés. LEVERAGING ANALYSIS METHODS

More information

Harmonic Motion (HM) Oscillation with Laminar Damping

Harmonic Motion (HM) Oscillation with Laminar Damping Harnic Mtin (HM) Oscillatin with Lainar Daping If yu dn t knw the units f a quantity yu prbably dn t understand its physical significance. Siple HM r r Hke' s Law: F k x definitins: f T / T / Bf x A sin

More information

Reliability of New SiC BJT Power Modules for Fully Electric Vehicles

Reliability of New SiC BJT Power Modules for Fully Electric Vehicles 18th Internatinal Frum n Advanced Micrsystems fr Autmtive Applicatins (AMAA 2014) Berlin, 24. June 2014 Reliability f New SiC BJT Pwer Mdules fr Fully Electric Vehicles 1, Eberhard Kaulfersch 2, Klas Brinkfeldt

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting. Summary

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting. Summary CO elcity Measurements and Mdels r Temperatures dwn t -10 C and up t 00 C and Pressures up t 100 MPa Min Sun* and De-hua Han, Rck Physics Lab, University Hustn Micheal Batzle, Clrad Schl Mines Summary

More information

FIELD QUALITY IN ACCELERATOR MAGNETS

FIELD QUALITY IN ACCELERATOR MAGNETS FIELD QUALITY IN ACCELERATOR MAGNETS S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract The field quality in the supercnducting magnets is expressed in terms f the cefficients f the Furier series

More information

LITE-ON TECHNOLOGY CORPORATION

LITE-ON TECHNOLOGY CORPORATION FEATURES 1. This specificatin shall be applied t phtcupler. Mdel N. LTV-816 as an ptin. 2. Applicable Mdels (Business dealing name) * Dual-in-line package : LTV816-V : 1-channel type / LTV826-V : 2-channel

More information

Multi Level Reinjection ac/dc Converters for HVDC

Multi Level Reinjection ac/dc Converters for HVDC Multi Level Reinjectin ac/dc Cnverters fr HVDC Lasantha Bernard Perera A thesis presented fr the degree f Dctr f Philsphy in Electrical and Cmputer Engineering at the University f Canterbury, Christchurch,

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

SFDMB3638F. Specifications and Applications Information. orce LED Driver. Mass: 7 grams typ. 10/15/08 Preliminary. Package Configuration

SFDMB3638F. Specifications and Applications Information. orce LED Driver. Mass: 7 grams typ. 10/15/08 Preliminary. Package Configuration Specificatins and Applicatins Infrmatin 1/1/8 Prelimary Smart Fr rce LED Driver The ERG Smart Frce Series f LED Drivers are specifically designed fr applicatins which require high efficiency, small ftprt

More information

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967 Measurement f Radial Lss and Lifetime f Micrwave Plasma in the Octup1e J. C. Sprtt PLP 165 Plasma Studies University f Wiscnsin DEC 1967 1 The number f particles in the tridal ctuple was measured as a

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

List... Package outline... Features Mechanical data... Maximum ratings... Electrical characteristics... Rating and characteristic curves...

List... Package outline... Features Mechanical data... Maximum ratings... Electrical characteristics... Rating and characteristic curves... List List... Package utline... 1 2 Features... 2 Mechanical data... Maximum ratings... Electrical characteristics... Rating and characteristic curves... 2 2 3 4 Pinning infrmatin... 5 Marking... Suggested

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS AN 10-18 Applicatin Nte 10-18 PAYNE ENGINEERING TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS q = (h c + h r ) A (T s - T amb ) TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS Thyristr cntrls - mre cmmnly called

More information

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18 EE247B/ME218 Intrductin t MEMS Design Lecture 7m1 Lithgraphy, Etching, & Dping Dping f Semicnductrs Semicnductr Dping Semicnductrs are nt intrinsically cnductive T make them cnductive, replace silicn atms

More information

Property of Lite-on Only

Property of Lite-on Only Prperty f Lite-n Only FEATURES * Islatin vltage between input and utput V is : 5,V rms * 6pin DIP phtcupler, triac driver utput * High repetitive peak ff-state vltage V DRM : Min. 4V * High critical rate

More information

Modelling of NOLM Demultiplexers Employing Optical Soliton Control Pulse

Modelling of NOLM Demultiplexers Employing Optical Soliton Control Pulse Micwave and Optical Technlgy Letters, Vl. 1, N. 3, 1999. pp. 05-08 Mdelling f NOLM Demultiplexers Emplying Optical Slitn Cntrl Pulse Z. Ghassemly, C. Y. Cheung & A. K. Ray Electrnics Research Grup, Schl

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

PHYSICS Unit 3 Trial Examination

PHYSICS Unit 3 Trial Examination STAV Publishing Pty Ltd 005 PHYSICS Unit 3 Trial Examinatin SOLUTIONS BOOK Published by STAV Publishing Pty Ltd. STAV Huse, 5 Munr Street, Cburg VIC 3058 Australia. Phne: 6 + 3 9385 3999 Fax: 6 + 3 9386

More information

VHA6 Series 3.3V VCXO CMOS Oscillator Sep 2017

VHA6 Series 3.3V VCXO CMOS Oscillator Sep 2017 VCXO CMOS Oscillatr Sep 207 Pletrnics VHA6 Series is a vltage cntrlled crystal scillatr with a CMOS utput. This mdel uses fundamental mde crystals with n multiplicatin circuits. Tape and Reel r tube packaging

More information

CHEM 2400/2480. Lecture 19

CHEM 2400/2480. Lecture 19 Lecture 19 Metal In Indicatr - a cmpund whse clur changes when it binds t a metal in - t be useful, it must bind the metal less strngly than EDTA e.g. titratin f Mg 2+ with EDTA using erichrme black T

More information

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison Jurnal f Physics: Cnference Series OPEN ACCESS Aerdynamic Separability in Tip Speed Rati and Separability in Wind Speed- a Cmparisn T cite this article: M L Gala Sants et al 14 J. Phys.: Cnf. Ser. 555

More information

IXD4902. Three-Terminal Negative Voltage Regulator FEATURES DESCRIPTION APPLICATIONS

IXD4902. Three-Terminal Negative Voltage Regulator FEATURES DESCRIPTION APPLICATIONS Three-Terminal Negative Vltage Regulatr FEATURES Output Current up t 200 ma (350 ma max) Input Vltage Range -2.4 V - -16 V Output Vltage Range frm -2.5 V t -12 V (fixed values) Drput Vltage 400 mv @ 100

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

1/11. Photocoupler LTV-354T series 1. DESCRIPTION. 1.1 Features. 1.2 Applications

1/11. Photocoupler LTV-354T series 1. DESCRIPTION. 1.1 Features. 1.2 Applications Phtcupler 1. DESCRIPTION 1.1 Features AC input respnse Current transfer rati ( CTR : MIN. 2% at I F = ±1mA, V CE = 5V ) Current transfer rati ( CTR : 1% ~ 3% at I F = ±1mA, V CE = 5V ) High input-utput

More information

Capacitance. Applications of Electric Potential. Capacitors in Kodak Cameras 3/17/2014. AP Physics B

Capacitance. Applications of Electric Potential. Capacitors in Kodak Cameras 3/17/2014. AP Physics B 3/7/04 apacitance P Physics B pplicatins f Electric Ptential Is there any way we can use a set f plates with an electric fiel? YES! We can make what is calle a Parallel Plate apacitr an Stre harges between

More information

Optical property of Few-Mode Fiber with Non-uniform Refractive Index for Cylindrical Vector Beam Generation

Optical property of Few-Mode Fiber with Non-uniform Refractive Index for Cylindrical Vector Beam Generation Optical prperty f Few-Mde Fiber with Nn-unifrm Refractive Index fr ylindrical Vectr Beam Generatin Hngye Li a, Hngdan Wan* a, Zuxing Zhang* a, b, Bing Sun a, Lin Zhang a, b a Nanjing University f Psts

More information