positive definite (symmetric with positive eigenvalues) positive semi definite (symmetric with nonnegative eigenvalues)

Size: px
Start display at page:

Download "positive definite (symmetric with positive eigenvalues) positive semi definite (symmetric with nonnegative eigenvalues)"

Transcription

1 Chter Liner Qudrtic Regultor Problem inimize the cot function J given by J x' Qx u' Ru dt R > Q oitive definite ymmetric with oitive eigenvlue oitive emi definite ymmetric with nonnegtive eigenvlue ubject to x x y Cx Bu LQR SOLUTION: Find the oitive-definite olution P of the RE lgebric Rictti Eqution ' P P Q PBR B' P u Kx where K R B' P The oitive-definite olution of the RE reult in n ymtoticlly tble cloed-loo ytem if: the ytem i controllble R > Q C C q q where Cq, i obervble Thee condition re necery nd ufficient We cn define nother outut z where z C x controlled or regulted outut q Therefore LQR deign of double integrtor B C q ume Q R Q C ' C q q

2 , B i controllble C q, i obervble RE: olving 4 P ' P B R K The cloed loo ytem mtrix become BK Cloed loo root re: j dming rtio i.77 note P i ymmetric

3 The loo trnfer function i: K B K I B 65 he mrgin infinite gin mrgin R + - B + + C K mg L L j.77 j.77 j.44 z.77 c

4 .44 L jc.44 c c he Phe@ ω c = - c -8 tn.77 he m rg in -8 z z Phe mrgin = tn tn 6.4 USIN TLB TO ET EXCT RESULTS tlb num = qrt*[ qrt/ ] den = [ ] reult: mrginnum,den gm= ω=.554 Proertie of LQR deign From the RE we cn derive the reltion L j q j * i clr where L K B -loo gin I nd Q C ' C C B q q q q From * we ee L j Thi imlie tht the Nyquit lot of the loo trnfer function of n LQR deign lwy ty outide of unit circle centered t -,. 4

5 In SISO ce, LQR deign h > 6 he mrgin, infinite gin mrgin nd gin reduction tolernce of -6dB i.e. the gin cn be reduced by fctor of before intbility occur. Recll ole lcement doe not gurntee tbility mrgin. igh-frequency roll-off rte Cloed loo trnfer function T j K ji BK B lim T j KB R B' PB j j -db/dec roll off rte t high frequencie - not good for noie ureion Otiml Oberver Klmn Filter Stte etimtion lnt rereented x x Bu roce y Cx v meurement noie noie The otiml filter i given by xˆ xˆ Bu L y Cxˆ 5

6 where L C' R where i the oitive definite olution of ' Q C' R C Q o nd R o re noie covrince mtrice, which rereent the intenity of the roce nd enor noie inut. Require Q, R nd ytem to be obervble. If we combine the Klmn-Bucy Filter otiml etimtor with LQR deign, we hve LQ Liner Qudrtic uin. Let do LQ deign for double integrtor lnt. We lredy hve the LQR deign. For Klmn filter, ume nd R Solving Rictti eqution with b b c we find b b c b nd L C' R Trnfer function of comentor i given by Comrion of LQR nd LQ -LQR h gurnteed tbility mrgin -LQ h no gurnteed tbility mrgin 6

7 -high freq. roll off in LQ cn be > db/dec exhibited by LQR greter noie filtering in LQ -LQ i not robut uncertinty in lnt my cue ytem to go untble Loo Trnfer Recovery LTR LQR > 6 he mrgin infinite gin mrgin LQ no gurnteed mrgin The roertie of LQR cn be recovered ymtoticlly by uing Q o nd R tuning rmeter LQR loo gin, L K B K I B LQ Xˆ BK LC Xˆ LY ˆ I BK LC Y X loo gin, L LQ K I BK LC LC B L 7

8 If the following two condition hold then LQR loo roertie cn be recovered if Then it cn be hown i minimum he R = nd Q =q BB lim L LQ q L The vrible y tht i recovered my be different from the vrible z tht i to be controlled where y Cx nd z C x q Loo Shing Ste Determine the controlled vrible nd et Q=C C nd Q=C q C q et deired loo gin in LQR deign. Ue R tuning rmeter. Select clr q nd olve the filter Rictti eqution ' q BB' C' C L C' 4 Incree q until the reulting loo trnfer function i cloe to the LQR deign Do not mke q too high ince lrge gin in L re required the undeirble -db/dec high freq. roll-off of LQR will be recovered Exmle Double integrtor ytem with Q R= ve 65 he mrgin for LQR deign 8

9 9

10

11 Robutne Robut tbility tble in the fce of lnt uncertintie Robut erformnce erformnce met even in the fce of lnt uncertintie Two imortnt roertie of feedbck enitivity reduction diturbnce rejection enerl feedbck ytem N D R Y Trcking error y - r e N D R E ctutor outut i.e. lnt inut i given by N D R U note: U E E U Define the following term J return difference S enitivity T comlementry enitivity note: T S Uing thee definition ytem outut: N R T D S Y trcking error: N D R S E

12 lnt inut: U S R D N From thee exreion we ee tht we need Diturbnce rejection: From Y exreion we ee we require S mll >> ince SD Trcking: S mll Noie ureion: From Y we hve TN require T mll 4 ctutor limit: From U exreion wnt S bounded Trcking nd Diturbnce rejection require mll S Noie ureion require mll T however S + T = however commnd inut nd diturbnce re low frequency where meurement noie i high frequency ignl kee S mll in low frequency rnge nd T mll in high frequency rnge lo S T mking T mll we reduce control energy Loo in Proertie Low Frequency id. Frequency igh Frequency Performnce R igh in Smooth Trnition for good mrgin Diturbnce Rejection D igh in Noie Sureion N Low in Uncertinty odeling Two ctegorie -- tructured uncertinty untructured uncertinty We will del with untructured uncertinty

13 ~ dditive uncertinty: ctul model ~ model uncertinty or error ultilictive uncertinty: ~ m inut uncertinty outut uncertinty Robut Stbility We y comentor robutly tbilize ytem if the cloed-loo ytem remin tble for the true ~ lnt. Robutne reult cn be derived uing the mll gin theorem. Smll in Theorem The cloed-loo ytem will remin tble if no ince

14 then cloed-loo tbility i gurnteed if There i no oibility of encirclement of -, oint by Nyquit lot. Two eqution tht the mll gin theorem cn hel u to nwer iven tht the uncertinty i tble nd bounded, will the cloed-loo ytem be tble for the given uncertinty? For given ytem, wht i the mllet uncertinty tht will detbilize the ytem? To nwer thee quetion we firt do ome block digrm mniultion With multilictive outut uncertinty where Determine, the trnfer function een by m 4

15 By mll gin theorem, cloed-loo ytem will be robutly tble if m i.e. m T comlementry enitivity T If the uncertinty i bounded by o tht m then the cloed-loo ytem will be tble if T or T Thi nwer the firt quetion Second quetion: find the ize of the mllet tble uncertinty tht will detbilize the ytem Becue the uncertinty mut be mller tht /T, it mut be mller tht the minimum of /T. We mut find the mximum of T. Define r ut j u = uremum let uer bound Then the mllet detbilizing uncertinty, we cll thi the multilictive tbility mrgin or S, i given by S r For dditive uncertinty cloed-loo will be robutly tble if or S 5

16 if uncertinty i tble nd bounded by then we gurntee cloed-loo tbility if S or S we cn define dditive tbility mrgin S by S u j S j Exmle 5, he mrgin: 8 gin mrgin:.8 9dB Find S nd S: S Find ek of T comlementry enitivity function ek =.5 S =.65 the ytem will be robutly tble gint unmodelled multilictive uncertintie with trnfer function mgnitude <.65 6

17 7 Problem.9. m ~ ~ m m b. c. ST: m m m

18 8 dditive uncertinty ~ ~ ST:

19 9

20 Bic Bode gnitude Plot o o -db/dec o o o +db/dec o Q Q Q o -4dB/dec Q o o Q Q +4dB/dec o If Q < then root re rel. Fctor the exreion nd ue the reulting roduct of two firt order trnfer function to find mgnitude reone. o Q o

21 Exmle Q o o o o o Q Q Q o Q o

22 Exmle The tructure of ytem h been determined to be given by Q where nd Determine the condition under which robut tbility i ured. nwer By ST we require or From the bove digrm we cn ee tht we require nd Q o o Q Q or

23

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Design Using the Root Locus

CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Design Using the Root Locus CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Deign Uing the Root Locu 1 Purpoe The purpoe of thi lbortory i to deign cruie control ytem for cr uing the root locu. 2 Introduction Diturbnce D( ) = d

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

STABILITY and Routh-Hurwitz Stability Criterion

STABILITY and Routh-Hurwitz Stability Criterion Krdeniz Technicl Univerity Deprtment of Electricl nd Electronic Engineering 6080 Trbzon, Turkey Chpter 8- nd Routh-Hurwitz Stbility Criterion Bu der notlrı dece bu deri ln öğrencilerin kullnımın çık olup,

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

PHYSICS 211 MIDTERM I 22 October 2003

PHYSICS 211 MIDTERM I 22 October 2003 PHYSICS MIDTERM I October 3 Exm i cloed book, cloed note. Ue onl our formul heet. Write ll work nd nwer in exm booklet. The bck of pge will not be grded unle ou o requet on the front of the pge. Show ll

More information

VSS CONTROL OF STRIP STEERING FOR HOT ROLLING MILLS. M.Okada, K.Murayama, Y.Anabuki, Y.Hayashi

VSS CONTROL OF STRIP STEERING FOR HOT ROLLING MILLS. M.Okada, K.Murayama, Y.Anabuki, Y.Hayashi V ONTROL OF TRIP TEERING FOR OT ROLLING MILL M.Okd.Murym Y.Anbuki Y.yhi Wet Jpn Work (urhiki Ditrict) JFE teel orportion wkidori -chome Mizuhim urhiki 7-85 Jpn Abtrct: trip teering i one of the mot eriou

More information

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems (6) Fluid nd Mechnicl Engineering Sytem 008086. ) Cvittion in orifice In hydrulic ytem cvittion occur downtrem orifice with high preure drop. For n orifice with contnt inlet preure of p = 00 br cvittion

More information

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM Interntionl Crpthin Control Conference ICCC 00 ALENOVICE, CZEC REPUBLIC y 7-30, 00 COOSING TE NUBER OF ODELS OF TE REFERENCE ODEL USING ULTIPLE ODELS ADAPTIVE CONTROL SYSTE rin BICĂ, Victor-Vleriu PATRICIU

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes The Trnform nd it Invere 2.2 Introduction In thi Section we formlly introduce the Lplce trnform. The trnform i only pplied to cul function which were introduced in Section 2.1. We find the Lplce trnform

More information

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form 5 Solving Kepler eqution Conider the Kepler eqution ωt = ψ e in ψ We wih to find Fourier expnion of e in ψ o tht the olution cn be written in the form ψωt = ωt + A n innωt, n= where A n re the Fourier

More information

Transfer Functions. Chapter 5. Transfer Functions. Derivation of a Transfer Function. Transfer Functions

Transfer Functions. Chapter 5. Transfer Functions. Derivation of a Transfer Function. Transfer Functions 5/4/6 PM : Trnfer Function Chpter 5 Trnfer Function Defined G() = Y()/U() preent normlized model of proce, i.e., cn be ued with n input. Y() nd U() re both written in devition vrible form. The form of

More information

Artificial Intelligence Markov Decision Problems

Artificial Intelligence Markov Decision Problems rtificil Intelligence Mrkov eciion Problem ilon - briefly mentioned in hpter Ruell nd orvig - hpter 7 Mrkov eciion Problem; pge of Mrkov eciion Problem; pge of exmple: probbilitic blockworld ction outcome

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Mechanical Systems Part A: State-Space Systems Lecture AL10. State estimation Compensator design

Mechanical Systems Part A: State-Space Systems Lecture AL10. State estimation Compensator design : 46-4 Mechnicl Stem Prt : Stte-Spce Stem ectre Stte etimtion ompentor deign combintion of control l nd etimtor eprtion principle Stte etimtion We re ble to plce the P rbitrril b feeding bck ll the tte:

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/11/5 ection_4_4_e-field_clcultion_uing_coulomb_lw_empty.doc 1/1 4-4 E-field Clcultion uing Coulomb Lw Reding Aignment: pp. 9-98 Specificlly: 1. HO: The Uniform, Infinite Line Chrge. HO: The Uniform Dik

More information

Linear predictive coding

Linear predictive coding Liner predictive coding Thi ethod cobine liner proceing with clr quntiztion. The in ide of the ethod i to predict the vlue of the current ple by liner cobintion of previou lredy recontructed ple nd then

More information

APPLIED THERMODYNAMICS TUTORIAL 6 AIR-VAPOUR MIXTURES

APPLIED THERMODYNAMICS TUTORIAL 6 AIR-VAPOUR MIXTURES APPLIED THERMODYNAMICS TUTORIAL 6 AIR-APOUR MIXTURES In thi tutoril you will do the following. Revie the UNIERSAL GAS LAW Lern DALTONS LAW OF PARTIAL PRESSURES Aly thee lw to mixture of wter vour nd ir.

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT Bjop ol. o. Decemer 008 Byero Journl of Pure nd Applied Science, ():70 75 Received: Octoer, 008 Accepted: Decemer, 008 SIMULATIO OF TRASIET EQUILIBRIUM DECAY USIG AALOGUE CIRCUIT *Adullhi,.., Ango U.S.

More information

Midterm 3 Review Solutions by CC

Midterm 3 Review Solutions by CC Midterm Review Solution by CC Problem Set u (but do not evaluate) the iterated integral to rereent each of the following. (a) The volume of the olid encloed by the arabaloid z x + y and the lane z, x :

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

ELECTRICAL CIRCUITS 10. PART II BAND PASS BUTTERWORTH AND CHEBYSHEV

ELECTRICAL CIRCUITS 10. PART II BAND PASS BUTTERWORTH AND CHEBYSHEV 45 ELECTRICAL CIRCUITS 0. PART II BAND PASS BUTTERWRTH AND CHEBYSHEV Introduction Bnd p ctive filter re different enough from the low p nd high p ctive filter tht the ubject will be treted eprte prt. Thi

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

Multivariable Control Systems

Multivariable Control Systems Lecture Multivariable Control Sytem Ali Karimpour Aociate Profeor Ferdowi Univerity of Mahhad Lecture Reference are appeared in the lat lide. Dr. Ali Karimpour May 6 Uncertainty in Multivariable Sytem

More information

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Systems Analysis. Prof. Cesar de Prada ISA-UVA Sytem Analyi Prof. Cear de Prada ISAUVA rada@autom.uva.e Aim Learn how to infer the dynamic behaviour of a cloed loo ytem from it model. Learn how to infer the change in the dynamic of a cloed loo ytem

More information

Approximation of continuous-time systems with discrete-time systems

Approximation of continuous-time systems with discrete-time systems Approximtion of continuou-time ytem with icrete-time ytem he continuou-time ytem re replce by icrete-time ytem even for the proceing of continuou-time ignl.. Impule invrince metho 2. Step invrince metho

More information

Reinforcement learning

Reinforcement learning Reinforcement lerning Regulr MDP Given: Trnition model P Rewrd function R Find: Policy π Reinforcement lerning Trnition model nd rewrd function initilly unknown Still need to find the right policy Lern

More information

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year 1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method TP 0:Importnce Smpling-The Metropoli Algorithm-The Iing Model-The Jckknife Method June, 200 The Cnonicl Enemble We conider phyicl ytem which re in therml contct with n environment. The environment i uully

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Reinforcement Learning and Policy Reuse

Reinforcement Learning and Policy Reuse Reinforcement Lerning nd Policy Reue Mnuel M. Veloo PEL Fll 206 Reding: Reinforcement Lerning: An Introduction R. Sutton nd A. Brto Probbilitic policy reue in reinforcement lerning gent Fernndo Fernndez

More information

State-space feedback 5 Tutorial examples and use of MATLAB

State-space feedback 5 Tutorial examples and use of MATLAB State-pace feedback 5 Tutorial example and ue of MTLB J Roiter Introduction The previou video howed how tate feedback can place pole preciely a long a the ytem u fully controllable. x u x Kx Bu Thi video

More information

x with A given by (6.2.1). The control ( ) ( )

x with A given by (6.2.1). The control ( ) ( ) Homework 5 Sring 9 AerE33 Due 4/(F) SOLUTION PROBLEM (3t) In thi roblem we will invetigate the longitudinal dynamic of the B747 airlane a decribed in Etkin 66 The tate model i x Ax Bu where the tate vector

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

SPACE VECTOR PULSE- WIDTH-MODULATED (SV-PWM) INVERTERS

SPACE VECTOR PULSE- WIDTH-MODULATED (SV-PWM) INVERTERS CHAPTER 7 SPACE VECTOR PULSE- WIDTH-MODULATED (SV-PWM) INVERTERS 7-1 INTRODUCTION In Chpter 5, we briefly icue current-regulte PWM inverter uing current-hyterei control, in which the witching frequency

More information

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5 Accelertor Phyic G. A. Krfft Jefferon L Old Dominion Univerity Lecture 5 ODU Accelertor Phyic Spring 15 Inhomogeneou Hill Eqution Fundmentl trnvere eqution of motion in prticle ccelertor for mll devition

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Anlyi of Vrince nd Deign of Experiment-II MODULE VI LECTURE - 7 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr. Shlbh Deprtment of Mthemtic & Sttitic Indin Intitute of Technology Knpur Anlyi of covrince ith one

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad LINEAR CONTROL SYSTEMS Ali Karimour Aoiate Profeor Ferdowi Univerity of Mahhad Leture 0 Leture 0 Frequeny domain hart Toi to be overed inlude: Relative tability meaure for minimum hae ytem. ain margin.

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Internal Model Control

Internal Model Control Internal Model Control Part o a et o leture note on Introdution to Robut Control by Ming T. Tham 2002 The Internal Model Prinile The Internal Model Control hiloohy relie on the Internal Model Prinile,

More information

Flexible Beam. Objectives

Flexible Beam. Objectives Flexile Bem Ojectives The ojective of this l is to lern out the chllenges posed y resonnces in feedck systems. An intuitive understnding will e gined through the mnul control of flexile em resemling lrge

More information

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below. Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We re IntechOpen, the world leding publiher of Open Acce book Built by cientit, for cientit,500 108,000 1.7 M Open cce book vilble Interntionl uthor nd editor Downlod Our uthor re mong the 151 Countrie

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Steady-state tracking & sys. types

Steady-state tracking & sys. types Sty-tt trcking & y. ty Unity fck control: um CL tl lnt r C y - r - o.l. y y r ol ol o.l. m m n n n N N N N N, N,, ut N N, m, ol.. clo-loo: y r ol.. trcking rror: r y r ty-tt trcking: t r ol.. ol.. For

More information

Measurement and Instrumentation Lecture Note: Strain Measurement

Measurement and Instrumentation Lecture Note: Strain Measurement 0-60 Meurement nd Intrumenttin Lecture Nte: Strin Meurement eview f Stre nd Strin Figure : Structure under tenin Frm Fig., xil tre σ, xil trin, trnvere trin t, Pin' rti ν, nd Yung mdulu E re σ F A, dl

More information

Operational transconductance amplifier based voltage-mode universal filter

Operational transconductance amplifier based voltage-mode universal filter Indian Journal of Pure & Alied Phyic ol. 4, etember 005,. 74-79 Oerational tranconductance amlifier baed voltage-mode univeral filter Naeem Ahmad & M R Khan Deartment of Electronic and Communication Engineering,

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Mon 2:04:28 PM. Introduction

Mon 2:04:28 PM. Introduction Mon 2:04:28 PM Slide Nr. 0 of 18 Slide Introduction Air in the tmohere normlly contin ome wter vor (or moiture) nd i referred to tmoheric ir. By contrt, ir tht contin no wter vor i clled dry ir. It i often

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Singular Value Analysis of Linear- Quadratic Systems!

Singular Value Analysis of Linear- Quadratic Systems! Singular Value Analyi of Linear- Quadratic Sytem! Robert Stengel! Optimal Control and Etimation MAE 546! Princeton Univerity, 2017!! Multivariable Nyquit Stability Criterion!! Matrix Norm and Singular

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Low-order simultaneous stabilization of linear bicycle models at different forward speeds

Low-order simultaneous stabilization of linear bicycle models at different forward speeds 203 Americn Control Conference (ACC) Whington, DC, USA, June 7-9, 203 Low-order imultneou tbiliztion of liner bicycle model t different forwrd peed A. N. Gündeş nd A. Nnngud 2 Abtrct Liner model of bicycle

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE

RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE XVII IMEKO World Congre Metrology in the 3rd Millennium June 22 27, 2003, Dubrovnik, Croatia RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE Tohru Iuchi, Tohru Furukawa and Nobuharu Sato Deartment

More information

MA FINAL EXAM INSTRUCTIONS

MA FINAL EXAM INSTRUCTIONS MA 33 FINAL EXAM INSTRUCTIONS NAME INSTRUCTOR. Intructor nme: Chen, Dong, Howrd, or Lundberg 2. Coure number: MA33. 3. SECTION NUMBERS: 6 for MWF :3AM-:2AM REC 33 cl by Erik Lundberg 7 for MWF :3AM-:2AM

More information

The Root Locus Method

The Root Locus Method The Root Locu Method MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis MEM 355 Performance Enhancement of Dynamical Sytem Root Locu Analyi Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan in

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Observer based adaptive tuned mass damper with a controllable MR damper

Observer based adaptive tuned mass damper with a controllable MR damper Proceeding of the 9th Interntionl Conference on Structurl Dynmic, EURODYN 014 Porto, Portugl, 30 June - July 014 A. Cunh, E. Cetno, P. Ribeiro, G. Müller (ed.) ISSN: 311-900; ISBN: 978-97-75-165-4 Oberver

More information

PRIMES AND QUADRATIC RECIPROCITY

PRIMES AND QUADRATIC RECIPROCITY PRIMES AND QUADRATIC RECIPROCITY ANGELICA WONG Abstrct We discuss number theory with the ultimte gol of understnding udrtic recirocity We begin by discussing Fermt s Little Theorem, the Chinese Reminder

More information

HQPD - ALGEBRA I TEST Record your answers on the answer sheet.

HQPD - ALGEBRA I TEST Record your answers on the answer sheet. HQPD - ALGEBRA I TEST Record your nswers on the nswer sheet. Choose the best nswer for ech. 1. If 7(2d ) = 5, then 14d 21 = 5 is justified by which property? A. ssocitive property B. commuttive property

More information

Problems (Show your work!)

Problems (Show your work!) Prctice Midter Multiple Choice 1. A. C 3. D 4. D 5. D 6. E 7. D 8. A 9. C 9. In word, 3.5*10 11 i E. 350 billion (I nubered 9 twice by itke!) 10. D 11. B 1. D 13. E 14. A 15. C 16. B 17. A 18. A 19. E

More information

ROOT LOCUS. Poles and Zeros

ROOT LOCUS. Poles and Zeros Automatic Control Sytem, 343 Deartment of Mechatronic Engineering, German Jordanian Univerity ROOT LOCUS The Root Locu i the ath of the root of the characteritic equation traced out in the - lane a a ytem

More information

Quadratic Residues. Chapter Quadratic residues

Quadratic Residues. Chapter Quadratic residues Chter 8 Qudrtic Residues 8. Qudrtic residues Let n>be given ositive integer, nd gcd, n. We sy tht Z n is qudrtic residue mod n if the congruence x mod n is solvble. Otherwise, is clled qudrtic nonresidue

More information

ELG3150 DGD 6 P9.5; P9.7; P9.13; P9.18; AP9.5; DP9.2

ELG3150 DGD 6 P9.5; P9.7; P9.13; P9.18; AP9.5; DP9.2 ELG3150 DGD 6 P9.5; P9.7; P9.13; P9.18; AP9.5; DP9.2 P9.5 A speed cntrl fr gsline engine is shwn in Figure P9.5 in the textbk. () Determine the necessry gin if the stedy-stte speed errr is required t be

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

Chapter Direct Method of Interpolation More Examples Chemical Engineering

Chapter Direct Method of Interpolation More Examples Chemical Engineering hter 5. Direct Method of Interoltion More Exmles hemicl Engineering Exmle To find how much het is required to bring kettle of wter to its boiling oint, you re sked to clculte the secific het of wter t

More information

THREE-DIMENSIONAL MODELING OF STRESS-STRAIN RELATIONSHIP OF SAND SUBJECT TO LARGE CYCLIC LOADING

THREE-DIMENSIONAL MODELING OF STRESS-STRAIN RELATIONSHIP OF SAND SUBJECT TO LARGE CYCLIC LOADING Per No. TMSNA THREE-DIMENSIONAL MODELING OF STRESS-STRAIN RELATIONSHIP OF SAND SUBJECT TO LARGE CYCLIC LOADING Tutomu NAMIKAWA, Junichi KOSEKI,Lddu Indik Nlin DE SILVA 3 ABSTRACT In order to redict ground

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

More information

Particle velocity and concentration characteristics in a horizontal dilute swirling flow pneumatic conveying

Particle velocity and concentration characteristics in a horizontal dilute swirling flow pneumatic conveying Ž. Powder Technology 17 2 144 152 www.elevier.comrlocterowtec Prticle velocity nd concentrtion chrcteritic in horizontl dilute wirling flow neumtic conveying Hui Li,), Yuji Tomit b Dertment of Mechnicl

More information

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES ABCM Sympoium Serie in Mechatronic - Vol. 3 - pp.87-96 Copyright c 8 by ABCM A PLC BASE MIMO PI CONOLLE FO MULIVAIABLE INUSIAL POCESSES Joé Maria Galvez, jmgalvez@ufmg.br epartment of Mechanical Engineering

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

Math Solutions to homework 1

Math Solutions to homework 1 Mth 75 - Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

We will see what is meant by standard form very shortly

We will see what is meant by standard form very shortly THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

MTH 4-16a Trigonometry

MTH 4-16a Trigonometry MTH 4-16 Trigonometry Level 4 [UNIT 5 REVISION SECTION ] I cn identify the opposite, djcent nd hypotenuse sides on right-ngled tringle. Identify the opposite, djcent nd hypotenuse in the following right-ngled

More information

Expectation and Variance

Expectation and Variance Expecttion nd Vrince : sum of two die rolls P(= P(= = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 P(=2) = 1/36 P(=3) = 1/18 P(=4) = 1/12 P(=5) = 1/9 P(=7) = 1/6 P(=13) =? 2 1/36 3 1/18 4 1/12 5 1/9 6 5/36 7 1/6

More information

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables

Chapter 2 Organizing and Summarizing Data. Chapter 3 Numerically Summarizing Data. Chapter 4 Describing the Relation between Two Variables Copyright 013 Peron Eduction, Inc. Tble nd Formul for Sullivn, Sttitic: Informed Deciion Uing Dt 013 Peron Eduction, Inc Chpter Orgnizing nd Summrizing Dt Reltive frequency = frequency um of ll frequencie

More information

Pusan National University

Pusan National University Chapter 12. DESIGN VIA STATE SPACE Puan National Univerity oratory Table of Content v v v v v v v v Introduction Controller Deign Controllability Alternative Approache to Controller Deign Oberver Deign

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

More information