Q(s, t) = S M = S M [ G 1 (t) G 2 (t) G 3 1(t) G 4 (t) ] T

Size: px
Start display at page:

Download "Q(s, t) = S M = S M [ G 1 (t) G 2 (t) G 3 1(t) G 4 (t) ] T"

Transcription

1 Curves an Surfaces: Parametric Bicubic Surfaces - Intro Surfaces are generalizations of curves Use s in place of t in parametric equation: Q(s) = S M G where S equivalent to T in Q(t) = T M G If G is parameterize in terms of t, have surface representation: Q(s, t) = S M G(t) = S M [ G 1 (t) G 2 (t) G 3 1(t) G 4 (t) ] T For fie t, Q(s, t) is a curve because G(t) is constant Family of curves - a surface - efine by 0 t 1 If G i (t) are cubic, resulting surface is parametric bicubic surface where G i = [ g i1 g i2 g i3 g i4 ] T G i (t) = T M G i G i (t) = G T i M T T T = [ g i1 g i2 g i3 g i4 ] M T T T So Q(s, t) = S M g 11 g 12 g 13 g 14 g 21 g 22 g 23 g 24 g 31 g 32 g 33 g 34 g 41 g 42 g 43 g 44 M T T T for 0 s, t 1 = S M G M T T T Above can be written separately for, y, an z 1

2 Curves an Surfaces: Hermite Surfaces Formulation of G H parallels formulation of general case alreay iscusse (s) = S M H G H (s, t) = S M H G H (t) = S M H [ P 1 (t) P 4 (t) R 1 (t) R 4 (t) ] T For every value of t, have 2 en points an 2 tangent vectors P 1 (t) = T M H [ g 11 g 12 g 13 g 14 ] T P 4 (t) = T M H [ g 21 g 22 g 23 g 24 ] T R 1 (t) = T M H [ g 31 g 32 g 33 g 34 ] T R 4 (t) = T M H [ g 41 g 42 g 43 g 44 ] T [ P1 (t) P 4 (t) R 1 (t) R 4 (t) ] = T M H G T H where Therefore, G H = [ P1 (t) P 4 (t) R 1 (t) R 4 (t) ] T g 11 g 12 g 13 g 14 g 21 g 22 g 23 g 24 g 31 g 32 g 33 g 34 g 41 g 42 g 43 g 44 = g 11 g 12 g 13 g 14 g 21 g 22 g 23 g 24 g 31 g 32 g 33 g 34 g 41 g 42 g 43 g 44 = G H M T H T T M T H T T So, (s, t) = S M H G H M T H T T 2

3 Curves an Surfaces: Hermite Surfaces (2) In G H g 11 represents (0, 0), the starting point for P 1 (t), which starts (s, 0) g 12 represents (0, 1), the ening point for P 1 (t), which starts (s, 1) g 13 represents t (0, 0), the starting tangent vector at P 1(t), which starts (s, 0) g 14 represents 2 t 2 (0, 0), the starting tangent vector of R 1 (t) G H = (0, 0) (0, 1) t(0, 0) (1, 0) (1, 1) t(1, 0) s(0, 0) s(1, 0) t(0, 1) t(1, 1) s (0, 1) 2 st (0, 0) 2 st(0, 1) s (1, 1) 2 st (1, 0) 2 st(1, 1) Upper-left 2 2 quarant represents 4 corners of patch Upper-right an lower-left 2 2 quarants represent coorinates of tangent vectors along each parametric irection Lower-right 2 2 quarant represents partial erivatives wrt s an t This represents amount of twist at corners 3

4 Curves an Surfaces: Hermite Surfaces (3) Hermite bicubic patch allows C 1 an G 1 continuity across patches To have C 0 continuity across ege, 2 ege curves must be the same I.e., have same CPs To have C 1 continuity across ege, twist an tangent vectors must be the same To have G 1 continuity across ege, tangent vectors must have the same irection 4

5 Curves an Surfaces: Bézier Surfaces Formulation same as for Hermite (s, t) = S M B G B MB T T T Has 16 CPs Continuity conitions: To have C 0 an G 0 continuity across ege, 4 common CPs must be the same To have G 1 continuity across ege, 4 CPs on either sie of the ege must be colinear with the ege CPs 5

6 Curves an Surfaces: B-spline Surfaces Formulation: (s, t) = S M BS G BS M T BS T T Continuity conitions: C 2 across ege automatic 6

7 Curves an Surfaces: Surface Normals Surface efine by Q(s, t) = S M G M T T T, 0 s, t 1 s tangent vector efine by t tangent vector efine by s Q(s, t) = s (S M G M T T T ) = s (S) M G M T T T = [ 3s 2 2s 1 0 ] M G M T T T t Q(s, t) = t (S M G M T T T ) = S M G M T t (T T ) = S M G M T [ 3t 2 2t 1 0 ] T Normal is the Cartesian prouct of the above 2 tangent vectors Normal is biquinitic: A fifth egree polynomial with 2 variables 7

8 Curves an Surfaces: Drawing Surfaces Approaches use to rawing curves apply to surfaces as well 1. Iterative evaluation Draw curves of fie s along t Draw curves of fie t along s (a) Brute force O(n 2 ), where n is number of increments in s, t (b) Forwar ifferences Nee to apply forwar ifference to generate curve i + 1 from curve i From curve case, have D = E(δ) C DD = E(δ s ) A E(δ t ) T where DD is a 4 4 matri, an A is a 4 4 matri of coefficients for (s, t) First row of DD consists of (0, 0), t (0, 0), 2 t (0, 0), an 3 t (0, 0) where t is forwar ifference base on t This can be use to compute (0, t) Nee to compute (δ s, t) in terms of forwar ifferences Row 2 of DD consists of first forwar ifference on s of R 1 Row 3 of DD consists of secon forwar ifference on s of R 1 Row 4 of DD consists of thir forwar ifference on s of R 1 Using Row 1 = row 1 + row 2 Row 2 = row 2 + row 3 Row 3 = row 3 + row 4 generates (δs, 0), t (δs, 0), 2 t (δs, 0), an 3 t (δs, 0) in first row These are use to compute (δs, t) using forwar ifferences This is iteratively applie to generate (2δs, t), (3δs, t),... These are curves of constant s To generate curves of constant t, iterate on columns: Column 1 = column 1 + column 2 Column 2 = column 2 + column 3 Column 3 = column 3 + column 4 which results in (s, δt), s (s, δt), 2 s(s, δt), an 3 s(s, δt) in first column 8

9 Curves an Surfaces: Drawing Surfaces (3) 2. Recursive subivision (using Bézier) Principle: (a) Split surface along one parameter (b) Then split along the other Surface ivie into 4 patches: Base case etermine by either (a) Flatness Compute plane through 3 of the 4 corner vertices Distance of other 13 must be less than some ɛ (b) Depth of recursion Problems: (a) Gaps may appear between patches Result of ifferent levels of subivision in ajacent patches Solution: Recurse to fie epth or use small ɛ 9

10 Quarics are surfaces efine by Curves an Surfaces: Quarics f(, y, z) = a 2 + by 2 + cz 2 + 2y + 2eyz + 2fz + 2g + 2hy + 2iz + j = 0 Can also be represente as P T Q P = 0 where Q = a f g b e h f e c i g h i j an P = [ y z 1 ] T Normal to surface at (, y, z) given by [ f/ f/y f/z ] T Given a transform M, where M is translation or scale Q = (M 1 ) T Q M 1 Avantages of quarics: 1. Ease of surface normal computation 2. Ease of testing whether point lies on surface 3. z computable from known an y 4. Ease of computation of surface intersection 10

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Q( t) = T C T =! " t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples

Q( t) = T C T =!  t 3,t 2,t,1# Q( t) T = C T T T. Announcements. Bezier Curves and Splines. Review: Third Order Curves. Review: Cubic Examples Bezier Curves an Splines December 1, 2015 Announcements PA4 ue one week from toay Submit your most fun test cases, too! Infinitely thin planes with parallel sies μ oesn t matter Term Paper ue one week

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (1) April 13, 2017 Kenshi Takayama Parametric curves X & Y coordinates defined by parameter t ( time) Example: Cycloid x t = t sin t y t = 1 cos t Tangent (aka.

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

13.1: Vector-Valued Functions and Motion in Space, 14.1: Functions of Several Variables, and 14.2: Limits and Continuity in Higher Dimensions

13.1: Vector-Valued Functions and Motion in Space, 14.1: Functions of Several Variables, and 14.2: Limits and Continuity in Higher Dimensions 13.1: Vector-Value Functions an Motion in Space, 14.1: Functions of Several Variables, an 14.2: Limits an Continuity in Higher Dimensions TA: Sam Fleischer November 3 Section 13.1: Vector-Value Functions

More information

Mathematical Review Problems

Mathematical Review Problems Fall 6 Louis Scuiero Mathematical Review Problems I. Polynomial Equations an Graphs (Barrante--Chap. ). First egree equation an graph y f() x mx b where m is the slope of the line an b is the line's intercept

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Day 4: Motion Along a Curve Vectors

Day 4: Motion Along a Curve Vectors Day 4: Motion Along a Curve Vectors I give my stuents the following list of terms an formulas to know. Parametric Equations, Vectors, an Calculus Terms an Formulas to Know: If a smooth curve C is given

More information

THE ACCURATE ELEMENT METHOD: A NEW PARADIGM FOR NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

THE ACCURATE ELEMENT METHOD: A NEW PARADIGM FOR NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS THE PUBISHING HOUSE PROCEEDINGS O THE ROMANIAN ACADEMY, Series A, O THE ROMANIAN ACADEMY Volume, Number /, pp. 6 THE ACCURATE EEMENT METHOD: A NEW PARADIGM OR NUMERICA SOUTION O ORDINARY DIERENTIA EQUATIONS

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector Multivariable Calculus: Chapter 13: Topic Guie an Formulas (pgs 800 851) * line segment notation above a variable inicates vector The 3D Coorinate System: Distance Formula: (x 2 x ) 2 1 + ( y ) ) 2 y 2

More information

Lecture 20: Bezier Curves & Splines

Lecture 20: Bezier Curves & Splines Lecture 20: Bezier Curves & Splines December 6, 2016 12/6/16 CSU CS410 Bruce Draper & J. Ross Beveridge 1 Review: The Pen Metaphore Think of putting a pen to paper Pen position described by time t Seeing

More information

CALCULUS 4 QUIZ #2 REVIEW / SPRING 09

CALCULUS 4 QUIZ #2 REVIEW / SPRING 09 CALCULUS QUIZ # REVIEW / SPRING 09 (.) Determine the following about the given quaric surfaces. (a.) Ientif & Sketch the quaric surface: +. 9 In planes parallel to the -plane an planes parallel to the

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10 Some vector algebra an the generalize chain rule Ross Bannister Data Assimilation Research Centre University of Reaing UK Last upate 10/06/10 1. Introuction an notation As we shall see in these notes the

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Lecture 5. Symmetric Shearer s Lemma

Lecture 5. Symmetric Shearer s Lemma Stanfor University Spring 208 Math 233: Non-constructive methos in combinatorics Instructor: Jan Vonrák Lecture ate: January 23, 208 Original scribe: Erik Bates Lecture 5 Symmetric Shearer s Lemma Here

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

MATH 13200/58: Trigonometry

MATH 13200/58: Trigonometry MATH 00/58: Trigonometry Minh-Tam Trinh For the trigonometry unit, we will cover the equivalent of 0.7,.4,.4 in Purcell Rigon Varberg.. Right Triangles Trigonometry is the stuy of triangles in the plane

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

Calculus Class Notes for the Combined Calculus and Physics Course Semester I

Calculus Class Notes for the Combined Calculus and Physics Course Semester I Calculus Class Notes for the Combine Calculus an Physics Course Semester I Kelly Black December 14, 2001 Support provie by the National Science Founation - NSF-DUE-9752485 1 Section 0 2 Contents 1 Average

More information

On-Line Geometric Modeling Notes

On-Line Geometric Modeling Notes On-Line Geometric Modeling Notes CUBIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve representation

More information

Solutions to MATH 271 Test #3H

Solutions to MATH 271 Test #3H Solutions to MATH 71 Test #3H This is the :4 class s version of the test. See pages 4 7 for the 4:4 class s. (1) (5 points) Let a k = ( 1)k. Is a k increasing? Decreasing? Boune above? Boune k below? Convergant

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Calculus 4 Final Exam Review / Winter 2009

Calculus 4 Final Exam Review / Winter 2009 Calculus 4 Final Eam Review / Winter 9 (.) Set-up an iterate triple integral for the volume of the soli enclose between the surfaces: 4 an 4. DO NOT EVALUATE THE INTEGRAL! [Hint: The graphs of both surfaces

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

THE DISPLACEMENT GRADIENT AND THE LAGRANGIAN STRAIN TENSOR Revision B

THE DISPLACEMENT GRADIENT AND THE LAGRANGIAN STRAIN TENSOR Revision B HE DISPLACEMEN GRADIEN AND HE LAGRANGIAN SRAIN ENSOR Revision B By om Irvine Email: tom@irvinemail.org Febrary, 05 Displacement Graient Sppose a boy having a particlar configration at some reference time

More information

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II)

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II) Laplace s Equation in Cylinrical Coorinates an Bessel s Equation (II Qualitative properties of Bessel functions of first an secon kin In the last lecture we foun the expression for the general solution

More information

4.2 First Differentiation Rules; Leibniz Notation

4.2 First Differentiation Rules; Leibniz Notation .. FIRST DIFFERENTIATION RULES; LEIBNIZ NOTATION 307. First Differentiation Rules; Leibniz Notation In this section we erive rules which let us quickly compute the erivative function f (x) for any polynomial

More information

AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD. Mathcad Release 13. Khyruddin Akbar Ansari, Ph.D., P.E.

AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD. Mathcad Release 13. Khyruddin Akbar Ansari, Ph.D., P.E. AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD Mathca Release 13 Khyruin Akbar Ansari, Ph.D., P.E. Professor of Mechanical Engineering School of Engineering Gonzaga University SDC PUBLICATIONS Schroff

More information

221A Lecture Notes Notes on Classica Mechanics I

221A Lecture Notes Notes on Classica Mechanics I 1A Lecture Notes Notes on Classica Mechanics I 1 Precursor: Fermat s Principle in Geometric Optics In geometric optics, you talk about how light rays go. In homogeneous meiums, the light rays go straight.

More information

Physics 121 for Majors

Physics 121 for Majors Physics 121 for Majors Scheule Do Post-Class Quiz #3 Do Pre-Class Quiz #4 HW #2 is ue Wenesay Quiz #1 is ue Saturay, Sept. 16 Lab #1 is set up now, ue Monay Some Department Resources Computers N-212 ESC

More information

A Second Time Dimension, Hidden in Plain Sight

A Second Time Dimension, Hidden in Plain Sight A Secon Time Dimension, Hien in Plain Sight Brett A Collins. In this paper I postulate the existence of a secon time imension, making five imensions, three space imensions an two time imensions. I will

More information

Consider for simplicity a 3rd-order IIR filter with a transfer function. where

Consider for simplicity a 3rd-order IIR filter with a transfer function. where Basic IIR Digital Filter The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient ifference equation

More information

Basic IIR Digital Filter Structures

Basic IIR Digital Filter Structures Basic IIR Digital Filter Structures The causal IIR igital filters we are concerne with in this course are characterie by a real rational transfer function of or, equivalently by a constant coefficient

More information

Lecture 23: Hermite and Bezier Curves

Lecture 23: Hermite and Bezier Curves Lecture 23: Hermite and Bezier Curves November 16, 2017 11/16/17 CSU CS410 Fall 2017, Ross Beveridge & Bruce Draper 1 Representing Curved Objects So far we ve seen Polygonal objects (triangles) and Spheres

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD. Mathcad Release 14. Khyruddin Akbar Ansari, Ph.D., P.E.

AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD. Mathcad Release 14. Khyruddin Akbar Ansari, Ph.D., P.E. AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD Mathca Release 14 Khyruin Akbar Ansari, Ph.D., P.E. Professor of Mechanical Engineering School of Engineering an Applie Science Gonzaga University SDC

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Optimization of Geometries by Energy Minimization

Optimization of Geometries by Energy Minimization Optimization of Geometries by Energy Minimization by Tracy P. Hamilton Department of Chemistry University of Alabama at Birmingham Birmingham, AL 3594-140 hamilton@uab.eu Copyright Tracy P. Hamilton, 1997.

More information

Recapitulation of Mathematics

Recapitulation of Mathematics Unit I Recapitulation of Mathematics Basics of Differentiation Rolle s an Lagrange s Theorem Tangent an Normal Inefinite an Definite Integral Engineering Mathematics I Basics of Differentiation CHAPTER

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

Lecture 3: Development of the Truss Equations.

Lecture 3: Development of the Truss Equations. 3.1 Derivation of the Stiffness Matrix for a Bar in Local Coorinates. In 3.1 we will perform Steps 1-4 of Logan s FEM. Derive the truss element equations. 1. Set the element type. 2. Select a isplacement

More information

A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks

A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks A PAC-Bayesian Approach to Spectrally-Normalize Margin Bouns for Neural Networks Behnam Neyshabur, Srinah Bhojanapalli, Davi McAllester, Nathan Srebro Toyota Technological Institute at Chicago {bneyshabur,

More information

SHORT-CUTS TO DIFFERENTIATION

SHORT-CUTS TO DIFFERENTIATION Chapter Three SHORT-CUTS TO DIFFERENTIATION In Chapter, we efine the erivative function f () = lim h 0 f( + h) f() h an saw how the erivative represents a slope an a rate of change. We learne how to approimate

More information

Cable holds system BUT at t=0 it breaks!! θ=20. Copyright Luis San Andrés (2010) 1

Cable holds system BUT at t=0 it breaks!! θ=20. Copyright Luis San Andrés (2010) 1 EAMPLE # for MEEN 363 SPRING 6 Objectives: a) To erive EOMS of a DOF system b) To unerstan concept of static equilibrium c) To learn the correct usage of physical units (US system) ) To calculate natural

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Implicit Differentiation an Relate Rates Up until now ou have been fining the erivatives of functions that have alrea been solve for their epenent variable. However, there are some functions that cannot

More information

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim.

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim. Math 7 Solutions for Spring 5 Final Exam ) We are gien an infinite sequence for which the general term is a n 3 + 5n n + n an are 3 + 5n aske to fin the limit of the sequence. This is equialent to ealuating

More information

Monopoly Part III: Multiple Local Equilibria and Adaptive Search

Monopoly Part III: Multiple Local Equilibria and Adaptive Search FH-Kiel University of Applie Sciences Prof Dr Anreas Thiemer, 00 e-mail: anreasthiemer@fh-kiele Monopoly Part III: Multiple Local Equilibria an Aaptive Search Summary: The information about market eman

More information

The Three-dimensional Schödinger Equation

The Three-dimensional Schödinger Equation The Three-imensional Schöinger Equation R. L. Herman November 7, 016 Schröinger Equation in Spherical Coorinates We seek to solve the Schröinger equation with spherical symmetry using the metho of separation

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations Diophantine Approximations: Examining the Farey Process an its Metho on Proucing Best Approximations Kelly Bowen Introuction When a person hears the phrase irrational number, one oes not think of anything

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

MATHEMATICS C1-C4 and FP1-FP3

MATHEMATICS C1-C4 and FP1-FP3 MS WELSH JOINT EDUCATION COMMITTEE. CYD-BWYLLGOR ADDYSG CYMRU General Certificate of Eucation Avance Subsiiary/Avance Tystysgrif Aysg Gyffreinol Uwch Gyfrannol/Uwch MARKING SCHEMES SUMMER 6 MATHEMATICS

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx Math 53 Notes on turm-liouville equations Many problems in physics, engineering, an chemistry fall in a general class of equations of the form w(x)p(x) u ] + (q(x) λ) u = w(x) on an interval a, b], plus

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

160 Chapter 3: Differentiation

160 Chapter 3: Differentiation 3. Differentiation Rules 159 3. Differentiation Rules Tis section introuces a few rules tat allow us to ifferentiate a great variety of functions. By proving tese rules ere, we can ifferentiate functions

More information

Introduction to variational calculus: Lecture notes 1

Introduction to variational calculus: Lecture notes 1 October 10, 2006 Introuction to variational calculus: Lecture notes 1 Ewin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-106 91 Stockholm, Sween Abstract I give an informal summary of variational

More information