Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved.

Size: px
Start display at page:

Download "Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved."

Transcription

1 Chemical Bonding 4.8 Valence Bond Theory Hybrid Orbital Theory Multiple Bonds

2 Valence Bond Theory Combines Lewis theory of filling octets by sharing pairs of electrons with the electron configuration of atomic orbitals. Valence Bond Theory states that bonding occurs when atomic orbital overlap.

3 Building BF 3 with Valence Bond Theory B: F: 1s 2s 2p 1s 2s 2p

4 Building BF 3 with Valence Bond Theory B: 1s 2s 2p Boron enters an excited state where an electron from the 2s orbital is promoted to the 2p y orbital.

5 Valence Bond Theory has problems with the shape F 2p y 2p x Valence Bond Theory Views bonding as an overlapping of atomic orbitals. B F 2s F Gets the bond angle wrong

6 Problems with Valence Bond Theory and BF 3 Problem (the bond angle is wrong) Valence Bond Theory says 90 o and a random angle for the fluorine bonded to the s-orbital. VSEPR theory says 120 o Solution (Hybrid Orbitals) When the electron is promoted, the 2s, 2p x, and 2p y orbitals of boron morph into three separate sp 2 hybrid orbitals that are identical in shape and size.

7 sp 2 Hybrid Orbitals F sp 2 sp 2 sp 2 F F The 2s and two 2p orbitals morph into three identical sp 2 hybrid orbitals

8 sp 2 Hybrid Orbitals sp 2 s + + p = p sp 2 sp 2

9 sp 3 Hybrid Orbitals (e.g. CH 4 ) H: C: 1s 1s 2s 2p

10 sp 3 Hybrid Orbitals (e.g. CH 4 ) H: 1s C: 1s 2s 2p Hybridization of Carbon C: 1s sp 3

11 sp 3 Hybrid Orbitals (e.g. CH 4 ) H sp 3 Bond Angle = o H sp 3 sp 3 sp 3 H H

12 Valence Bond Theory and Lone Pairs (e.g. H 2 O) Building H 2 O with Valence Bond Theory O: H: H: 1s 2s 2p 1s 1s Oxygen could accept one electron from one Hydrogen in its p y orbital and another from the other Hydrogen in its p z orbital.

13 Valence Bond Theory and Lone Pairs (e.g. H 2 O) Valence Bond Theory views bonding as an overlapping of atomic orbitals. p y H p y p z p x p z p x H Valence Bond Theory get the angle wrong again!

14 Problems with Valence Bond Theory in the H 2 O Example The bond angle is wrong. Valence Bond Theory predicts 90 o VSEPR Theory predicts o The orbital shape must be wrong. Shared electrons are not spending enough time with the Hydrogen.

15 Hybrid Orbital Theory and Lone Pairs (e.g. H 2 O) O: H: H: 1s 1s 1s sp 3 Electrons are not promoted here, but every orbital in the n = 2 energy level becomes hybridized.

16 sp 3 Hybrid Orbitals (H 2 O) sp 3 sp 3 sp 3 H Four sp 3 hybrid orbitals are formed sp 3 H Bond Angle = o

17 Hybrid Orbital Theory and 5 Charge Clouds! (e.g. PCl 5 ).. :Cl.. :Cl:.... :Cl:.. P Cl:.. :Cl:..

18 sp 3 d Hybrid Orbitals Atomic Orbitals P: 3s 3p 3d Promotion P: 3s 3p 3d Hybridization P: sp 3 d

19 Hybrid Orbital Theory and 6 Charge Clouds! (e.g. SF 6 ) :Ḟ... :F:.... :F: S :F:.... F:.. :F:..

20 sp 3 d 2 Hybrid Orbitals Atomic Orbitals S: 3s 3p 3d Promotion S: 3s 3p 3d Hybridization S: sp 3 d 2

21 Summary Charge Clouds Hybridization 2 sp 3 sp 2 4 sp 3 5 sp 3 d 6 sp 3 d 2

22 Double Bonds (e.g. C 2 H 4 ) H H C C H H Each carbon has 3 charge clouds. sp 2 hybrid orbitals

23 Double Bonds (e.g. C 2 H 4 ) Atomic Orbitals C: 2s 2p Promotion C: 2s 2p Hybridization C: sp 2 2p

24 Double Bond (C 2 H 4 ) H p sp 2 H H sp 2 sp 2 sp 2 σ Bond sp 2 p sp 2 H π Bond

25 Triple Bonds (e.g. C 2 H 2 ) H C C H Each carbon has two charge clouds. sp hybrid orbitals

26 Triple Bonds (e.g. C 2 H 2 ) Atomic Orbitals C: 2s 2p Promotion C: 2s 2p Hybridization C: sp 2p

27 Triple Bond (C 2 H 2 ) p σ Bond p sp p sp sp p sp Two π Bonds

Section 8.13 Molecular Hybridization Structure: The VSEPR Model

Section 8.13 Molecular Hybridization Structure: The VSEPR Model Molecular Hybridization Structure: The VSEPR Model Covalent bonds are formed by the sharing of electrons; orbitals overlap to allow for this sharing. The mixing of two or more atomic orbitals of an atom

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory)

Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory) AP Chemistry Ms. Ye Name Date Block Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory) Go to bit.ly/vseprshapes Introduction Atoms bond to satisfy their need for more electrons.

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Localized electron model A bond is made when a half-filled orbital of one atom overlaps with a half-filled orbital of another.! Bond: orbitals overlap straight on p

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron pair repulsion (VSEPR)

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison Matter and Materials ATOMIC BONDS Grade 11 2018 Sutherland high school Mrs. Harrison 1. Chemical Bonds Why would atoms want to bond? Atoms are not generally found alone. They are found as components of

More information

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

More information

Valence electrons octet rule. Lewis structure Lewis structures

Valence electrons octet rule. Lewis structure Lewis structures Lewis Dot Diagrams Valence electrons are the electrons in the outermost energy level of an atom. An element with a full octet of valence electrons has a stable configuration. The tendency of bonded atoms

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

Chemical Bonds, Orbital Shapes, and Orbital Hybridization

Chemical Bonds, Orbital Shapes, and Orbital Hybridization Chemical Bonds, Orbital Shapes, and Orbital Hybridization PRELAB ASSIGNMENT Read the entire laboratory write up. Write an objective and answer the following questions in your laboratory notebook before

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Activity Hybrid Atomic Orbitals

Activity Hybrid Atomic Orbitals Activity 201 8 Hybrid Atomic Orbitals Directions: This Guided Learning Activity (GLA) discusses Hybrid Atomic Orbitals, which are the basis for Valence Bond Theory. Part A introduces σ- and π-bonds. Part

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED

Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201 General Chemistry and Laboratory I Unit #4 Take Home Test Due December 13, 2018 Please pass in only this completed answer sheet on the day of the test. LATE SUBMISSIONS WILL NOT BE ACCEPTED CHM-201

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Chemical Bonding Outline 1. Lewis Dot Structures 2. Bonds 3. Formal Charges 4. VSEPR (Molecular Geometry and Hybridzation) 5. Common Resonance Structures and Dimerization Review 1. Lewis Dot Structures

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry VSEPR Theory VSEPR Theory Shapes of Molecules Molecular Structure or Molecular Geometry The 3-dimensional arrangement of the atoms that make-up a molecule. Determines several properties of a substance,

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

Carbon Compounds. Chemical Bonding Part 1b

Carbon Compounds. Chemical Bonding Part 1b Carbon Compounds Chemical Bonding Part 1b Board Notes Introduction to VSEPR Organic Formulas Various Representations " dimethyl ether C 2 H 6 O " propyl alcohol C 3 H 8 O 3D representations " Wedges and

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Lewis Structures & Resonance Structures Last chapter we studied ionic compounds. In ionic compounds electrons are gained or lost. In this chapter we are going to study covalent

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

CHEMICAL BONDS A CHEMICAL BOND IS A FORCE OF ATTRACTION HOLDING THE ATOMS OR IONS TOGETHER.

CHEMICAL BONDS A CHEMICAL BOND IS A FORCE OF ATTRACTION HOLDING THE ATOMS OR IONS TOGETHER. CHEMICAL BONDS A CHEMICAL BOND IS A FORCE OF ATTRACTION HOLDING THE ATOMS OR IONS TOGETHER. q Elements tend to enter into chemical reaction to gain stability q This is satisfied by completing the octet

More information

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds Molecular Shapes VSEPR Model Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds They repel each other and stay as far away from each other as

More information

Essential Organic Chemistry. Chapter 1

Essential Organic Chemistry. Chapter 1 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 1 Electronic Structure and Covalent Bonding Periodic Table of the Elements 1.1 The Structure of an Atom Atoms have an internal structure consisting

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Valence Bond Model and Hybridization

Valence Bond Model and Hybridization Valence Bond Model and ybridization APPENDIX 4 1 Concepts The key ideas required to understand this section are: Concept Book page reference VSEPR theory 65 More advanced ideas about electronic structure

More information

Chapter 12. Molecular Structure

Chapter 12. Molecular Structure Chapter 12 Molecular Structure Chapter Map Models Advantages and Disadvantages (1) They help us to visualize, explain, and predict chemical changes. Because a model is a simplified version of what we think

More information

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment LESSON 10 Glossary: Molecular Geometry Dipole moment Electronegativity Molecular geometry Pi bond Polar covalent bond Sigma bond Valence-shell electronpair repulsion (VSEPR) model a quantitative measure

More information

Chapter 6 PRETEST: Chemical Bonding

Chapter 6 PRETEST: Chemical Bonding Chapter 6 PRETEST: Chemical In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.The charge on an ion is a. always positive.

More information

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO: CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Lewis Structures. Difference in electronegativity is greater then 1.7.

Lewis Structures. Difference in electronegativity is greater then 1.7. Lewis Structures Lewis structures can be drawn for:!! Ionic Compounds! Molecular Compounds! Polyatomic Compounds Ionic Compounds Contains metallic and non-metallic ions. Difference in electronegativity

More information

HYBRIDIZATION THEORY

HYBRIDIZATION THEORY HYBRIDIZATION THEORY According to carbon's orbital diagram, it should only be able to form two bonds... 1s 2s 2p But we know carbon forms 4 bonds, not 2!!! Dec 5 8:19 PM HYBRIDIZATION THEORY Scientists

More information

14.1 Shapes of molecules and ions (HL)

14.1 Shapes of molecules and ions (HL) 14.1 Shapes of molecules and ions (HL) The octet is the most common electron arrangement because of its stability. Exceptions: a) Fewer electrons (incomplete octet) if the central atom is a small atoms,

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals.

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. CH 101/103 - Practice sheet 3/17/2014 Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. 1. Draw the 3D structures for the following molecules. You can omit the lone pairs on peripheral

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

AIM: HOW TO FORM COVALENT BONDS

AIM: HOW TO FORM COVALENT BONDS AIM: HOW TO FORM COVALENT BONDS DO NOW: EXPLAIN THE DIFFERENCE BETWEEN IONIC BONDING AND COVALENT BONDS. INCLUDE HOW THE PROPERTIES DIFFER IN SALTS AND MOLECULES, AND WHICH ELEMENTS ARE INVOLVED IN EACH

More information

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond.

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond. Chemical Bonding (II) Topic 4. Chemical Bonding (II) (II) 1 Contents 1. Basic Concepts. a) Molecular parameters b) Lewis Dot Symbols 2. The Covalent Bond a) Polar Covalent Bond b) Formal Charge c) Exceptions

More information

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Form J Chemistry 1441-023 Name (please print) Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Instructions: 1. This exam consists of 27 questions. 2. No scratch paper is allowed.

More information

5 Polyatomic molecules

5 Polyatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 5 Polyatomic molecules Answers to worked examples WE 5.1 Formal charges in N 2 (on p. 221 in Chemistry 3 ) Use formal charges to decide whether oxygen

More information

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure STD-XI-Science-Chemistry Chemical Bonding & Molecular structure Chemical Bonding Question 1 What is meant by the term chemical bond? How does Kessel-Lewis approach of bonding differ from the modern views?

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

PBr 3. EXAMPLES FOR DRAWING LEWIS STRUCTURES (see section 4.1 in the textbook for more details and examples)

PBr 3. EXAMPLES FOR DRAWING LEWIS STRUCTURES (see section 4.1 in the textbook for more details and examples) EXAMPLES FOR DRAWING LEWIS STRUCTURES (see section 4.1 in the textbook for more details and examples) Example 1: Draw the Lewis structure for a phosphorus tribromide PBr 3 The two remaining electrons are

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

3. Molecular structure

3. Molecular structure 3. Molecular structure 1. Molecular structure and covalent bonding theories Valance shell electron pair repulsion (VSEPR) Theory In a molecule composed of a central atom bonded covalently to several peripheral

More information

Find the difference in electronegativity between the hydrogen and chlorine atoms

Find the difference in electronegativity between the hydrogen and chlorine atoms Answers Questions 16.2 Molecular polarity 1. Write a dot diagram for the HCl molecule. Find the difference in electronegativity between the hydrogen and chlorine atoms Difference in electronegativity =

More information

Which of the following is the most polar bond?

Which of the following is the most polar bond? !"#$%&'()*++,*#-.$*/* ct 14, 2013 FRM A 1. A neutral atom has the following electron configuration. What is the maximum number of covalent bonds this atom could form with hydrogen atoms? 3. Which of the

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Chapter 9 Bonding - 1. Dr. Sapna Gupta

Chapter 9 Bonding - 1. Dr. Sapna Gupta Chapter 9 Bonding - 1 Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Molecular Geometry & Polarity Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. (i) [NF 3 and BF 3 ] [BF

More information