Droser, M., Bottjer, D.J., A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology 56,

Size: px
Start display at page:

Download "Droser, M., Bottjer, D.J., A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology 56,"

Transcription

1 GSA Data Repository Chemosymbiont-dominated seafloor communities in modern and Cretaceous upwelling systems support a new, high-productivity variant of standard low-oxygen models Y. Edelman-Furstenberg and S. M. Kidwell REFERENCES CITED Bailey, G.W., 1991, Organic carbon flux and development of oxygen deficiency on the modern Benguela continental shelf south of 22 S: spatial and temporal variability, in Tyson, R.V., and Pearson, T.H., eds., Modern and Ancient Continental Shelf Anoxia: Geological Society [London] Special Publication 58, p Bremner, J.M., 1978, Sediments on the continental margin off South West Africa between latitudes 17º and 25ºS [Ph.D. thesis]: Cape Town, University of Cape Town, 300 p. Droser, M., Bottjer, D.J., A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology 56, Edelman-Furstenberg, Y., 2008, Macrobenthic community structure in a high-productivity region: Upper Campanian Mishash Formation (Israel): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 261, p Edelman-Furstenberg, Y., 2014, Distribution and paleoecology of molluscan skeletal remains along an upwelling tract: Benguela system, Namibian shelf: Marine Geology, v. 353, p Kidwell, S.M., and Holland, S.M., 1991, Field description of coarse bioclastic fabrics: Palaios, v. 6, p Savrda, C.E., and Bottjer, D.J., 1991, Oxygen-related biofacies in marine strata: an overview and update, in Tyson, R.V., and Pearson, T.H., eds., Modern and Ancient Continental Shelf Anoxia: Geological Society, London, Special Publication 58, p

2 Fig. DR1. Molluscan biofacies based on cluster analysis for the (A) modern Benguela Upwelling System (BUS) on the continental shelf of Namibia, adapted from Figure 2 of Edelman-Furstenberg (2014) and (B) Cretaceous Mishash Formation (MIS), Israel, adapted from Figure 5 of Edelman-Furstenberg (2008). In each study area, biofacies were discriminated on the basis of cluster analysis of sample-level data on species abundance, using Euclidean distances (in R). The clusters here are revised slightly from those of Edelman-Furstenberg (2008, 2014) based on (i) additional faunal data about biofacies MIS-1 and (ii) including, qualitatively, samples that contained no mollusks (biofacies 0a and 0b).

3 Table DR1. A. Benguela Upwelling System (BUS) Biofaces BUS-0a BUS-1 BUS-2 BUS-3 BUS-4 Number of samples (no. 4 (0) 5 (146) 2 (199) 3 (605) 3 (477) of mollusk individuals) Shell packing density; % shells by volume (Holland and Kidwell, 1991) none Dispersed; 3 11% Dispersed; 10% Densely packed; 50 76% Shell condition NA Up to 64% are Up to 19% are Up to 3% are, up to 17% are rounded Densely packed; 61-74% Up to 1.5% are, up to 69% are rounded Richness (Margalef d) NA (zero species) Evenness (PIE) NA % pooled dominant NA 100 Lucinoma 87 Lucinoma 60 Carditella 25 Dosinia bivalve % chemosymbiont NA % deposit feeder NA % mixed feeder NA % suspension NA Body size of chemosymbiont bivalves (mm) % epifauna+epifauna/semiinfaunal (not nestlers) Gastropods (% of all mollusk individuals) TOC (wt%) (Bremner, 1978) Lithology NA Up to 45 mm No data Up to 16 mm mix of small & large NS (?mytilid) 2 (mytilid, pteriid) 6.4 (malleidae, mytilid) 0 1 (Gastropoda sp. 1) 4.5 (Gastropoda sp. 1) 5, Nassarius most abundant (carnivore/scavenger) 10, Nassarius most abundant (carnivore/scavenger) < 7 < 7 Organic-rich opal ooze, no shells Organic-rich opal ooze, some shells Moderate-organic & -opal ooze Carbonate ooze Phosphate-rich shelly debris, scant mud % opal % phosphate >20-49 % calcium carbonate >75% 22 50

4 (mud fraction) Bottom-water oxygen < 0.5 < <O 2 <1 >1 >2 (ml/l) (Bailey, 1991) Water depth (m) , 321 B. Cretaceous Mishash Formation Biofacies MIS-0a MIS-0b MIS-1 MIS-2 MIS-3 MIS-4 Number of ~10 (0) ~10 (0) 2 5-m units 8 (854) 4 (416) 8 (963) samples (no. of mollusk individuals) (no counts) Maximum shell None None Rare, loosely Dispersed Loosely packed Densely packed packing density packed patches Shell condition NA NA Diagenetic ghosts, mostly Up to 74% are ; some in life position Up to 36% are Up to 8% are, some abraded or rounded Richness NA (zero NA (zero 0 (one species , (Margalef s d) species) species) present) Evenness (PIE) NA NA NA Dominant bivalve, % abundance NA NA Lucina Mesosacella (49%), deposit feeders Mesosacella (22%), deposit feeder Caestocorbula (27%), suspension feeder % NA NA chemosymbiont % deposit feeder NA NA (Mesosacella) 16 (Mesosacella) % mixed feeder NA NA % suspension NA NA (Meretrix) 77 (Caestocorbula) Body size of chemosymbiont bivalves (mm) NA NA Up to 45 mm No data Up to 25 mm mostly small, rare large % epifauna NA NA (Nanonavis only) Gastropods (% %, dominantly of all mollusk carnivorous individuals) 5 (Nanonavis only) 8 (mostly Nanonavis,) 23%, carnivorous 15% (half Turritella, dominate half carnivorous (Undiscala) Foraminifera None Extremely None Extremely low Diverse benthic & NA (no fine matrix)

5 low diversity diversity (1-2 rare planktic spp (1-2 spp) spp) Ichnofabric Index Ichno 1 Ichno 1 Ichno 1 Ichno 1-2 Ichno 2-4 Ichno 3-4 Dominant trace None noted None noted One burrowed Some Planolites Planolites Thalassinoides layer Lithology Massive porcelanite Suggested O2 ml/l of Savdra & Bottjer, 1991; ratio = overlying water / pore water Laminated organic-rich carbonate (ORC) Massive porcelanite with rare shells Laminated ORC, thin beds of chertified micrite 0 / 0 <0.1 / 0 >0.1 <1 / 0 >0.1 <1 / localized >1 5-cm to 30-cm beds of shelly chertified micrite [we infer >1 / localized >1 Phosphate-bearing, 20- to 60cm densely packed shellbeds, scant mud >1 / extensive irrigation with >1 to some depth Table DR1. Molluscan biofacies composition and associated environmental data for (A) the modern Benguela Upwelling System (BUS) on the continental shelf of Namibia, southwestern Africa, and (B) the Cretaceous Mishash Formation (MIS), Israel, elaborating upon the biofacies recognized by cluster analysis (DR-Fig. 1). Sample-level faunal data for BUS are in Edelman-Furstenberg (2014) and for MIS are in Edelman-Furstenberg (2008). NOTES: * Margalef index D = (count of species 1) divided by log/e of N, using the entire mollusk assemblage; * Evenness PIE sum of squares of proportional abundances, ranges from 0 (dominated by a single taxon) to 1 (each species represented by same number of individuals), using the entire mollusk assemblage; * Trophic groups and % abundance are for bivalve part of assemblage only; * Body size of chemosymbiont bivalves (lucinids) = includes fragments that were at least >0.5 of specimen; * Lithology and sedimentary components of BUS from Bremner (1978), reported in Edelman-Furstenberg (2014); * Ichnofabric index of Droser & Bottjer (1986); * Shell-packing density terms of Kidwell & Holland (1991).

Feet CLAY; silty, greenish gray and clayey fine sand; Color: 5Y 3/1

Feet CLAY; silty, greenish gray and clayey fine sand; Color: 5Y 3/1 -. CLAY; silty, greenish gray and clayey fine sand; Color: Y /. -. SAND; fine-medium, clayey, with sandy clay layers; very abundant broken thin, tiny shells; shell hash at several horizons, heavily burrowed;

More information

Evaluating Reflux Dolomitization using a Novel High-Resolution Record of Dolomite

Evaluating Reflux Dolomitization using a Novel High-Resolution Record of Dolomite 1 GSA Data Repository 2019208 2 3 4 5 6 Evaluating Reflux Dolomitization using a Novel High-Resolution Record of Dolomite Stoichiometry: A Case Study from the Cretaceous of Central Texas, U.S.A. Cameron

More information

Paleo Lab #4 - Sedimentary Environments

Paleo Lab #4 - Sedimentary Environments Paleo Lab #4 - Sedimentary Environments page - 1. CHARACTERISTICS OF SEDIMENT Grain size and grain shape: The sizes and shapes of sedimentary particles (grains) are modified considerably during their transportation

More information

4 Sedimentary phosphate deposits 4.1 Introduction

4 Sedimentary phosphate deposits 4.1 Introduction 4 Sedimentary phosphate deposits 4.1 Introduction Sedimentary phosphate deposits or phosphorites contain few percents of calcium phosphate in form of grains of apatite, bone fragments or coprolites, and

More information

Feet. SAND; clayey, fine grained; shells are common; rounded quartz grains. SHELLS; muddy; almost no sand, shells and fragments common

Feet. SAND; clayey, fine grained; shells are common; rounded quartz grains. SHELLS; muddy; almost no sand, shells and fragments common SAND; clayey, fine grained; shells are common; rounded quartz grains SHELLS; muddy; almost no sand, shells and fragments common SAND; back to medium to fine; has a mottled appearance and looks burrowed;

More information

The petrography of sandstone samples from the Upper Greensand Formation in southern England.

The petrography of sandstone samples from the Upper Greensand Formation in southern England. BRITISH GEOLOGICAL SURVEY TECHNICAL REPORT Stratigraphy Series IR/05/138 The petrography of sandstone samples from the Upper Greensand Formation in southern England. G.K.Lott (British Geological Survey)

More information

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows Although this laboratory will pertain to oceanic sediments similar processes can also be observed on land and other aquatic systems

More information

Marine Sediments EPSS15 Spring 2017 Lab 4

Marine Sediments EPSS15 Spring 2017 Lab 4 Marine Sediments EPSS15 Spring 2017 Lab 4 Why Sediments? Record of Earth s history - Tectonic plate movement - Past changes in climate - Ancient ocean circulation currents - Cataclysmic events 1 Classification

More information

Sedimentary facies and sequence stratigraphy of the Asmari Formation at Tange Arabi,Zagros Basin, Iran

Sedimentary facies and sequence stratigraphy of the Asmari Formation at Tange Arabi,Zagros Basin, Iran Sedimentary facies and sequence stratigraphy of the Asmari Formation at Tange Arabi,Zagros Basin, Iran Atefe Abbasi, Geology student of Shiraz Payam-noor University Abstract The Oligocene Miocene ASMARI

More information

CORAL BIODIVERSITY AND ZONATION ON A PLEISTOCENE REEF, SOUTHEASTERN JAMAICA

CORAL BIODIVERSITY AND ZONATION ON A PLEISTOCENE REEF, SOUTHEASTERN JAMAICA CORAL BIODIVERSITY AND ZONATION ON A PLEISTOCENE REEF, SOUTHEASTERN JAMAICA Sherene A. James PhD Student - University of the West Indies, Mona Education Outreach Officer - Natural History Division, Institute

More information

EARLY TRIASSIC MICROBIAL SPHEROIDS IN THE VIRGIN LIMESTONE MEMBER OF THE MOENKOPI FORMATION, NEVADA, USA

EARLY TRIASSIC MICROBIAL SPHEROIDS IN THE VIRGIN LIMESTONE MEMBER OF THE MOENKOPI FORMATION, NEVADA, USA PALAIOS, 2009, v. 24, p. 131 136 Research Note DOI: 10.2110/palo.2007.p07-094r EARLY TRIASSIC MICROBIAL SPHEROIDS IN THE VIRGIN LIMESTONE MEMBER OF THE MOENKOPI FORMATION, NEVADA, USA SARA B. PRUSS 1 *

More information

Unbioturbated Marine Mudstones: Environmental Stress or Rapid Deposition? A Worked Example from the Ordovician Beach Formation, Newfoundland, Canada*

Unbioturbated Marine Mudstones: Environmental Stress or Rapid Deposition? A Worked Example from the Ordovician Beach Formation, Newfoundland, Canada* Unbioturbated Marine Mudstones: Environmental Stress or Rapid Deposition? A Worked Example from the Ordovician Beach Formation, Newfoundland, Canada* Dario Harazim 1, Duncan McIlroy 1, Joe Macquaker 1,

More information

Core Examples from Modern Estuarine Tidal Bars, Tillamook Bay, Oregon

Core Examples from Modern Estuarine Tidal Bars, Tillamook Bay, Oregon Core Examples from Modern Estuarine Tidal Bars, Tillamook Bay, Oregon Rares Bistran* University of Alberta, Edmonton, Alberta, Canada rares.bistran@ualberta.ca David Herbers, Murray Gingras, John-Paul

More information

Processes affecting continental shelves

Processes affecting continental shelves Marine Sediments Continental Shelves Processes affecting continental shelves 1. Glaciation 2. Sea-level change (±130 m during continental glaciation) 3. Waves and currents 4. Sedimentation 5. Carbonate

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

UNIT 4 SEDIMENTARY ROCKS

UNIT 4 SEDIMENTARY ROCKS UNIT 4 SEDIMENTARY ROCKS WHAT ARE SEDIMENTS Sediments are loose Earth materials (unconsolidated materials) such as sand which are transported by the action of water, wind, glacial ice and gravity. These

More information

Simon F. Mitchell. Field Trip 1: Geology of the White Limestone between Middlesex and Riverhead, Parish of St. Ann, Jamaica

Simon F. Mitchell. Field Trip 1: Geology of the White Limestone between Middlesex and Riverhead, Parish of St. Ann, Jamaica Field Trip 1: Geology of the White Limestone between Middlesex and Riverhead, Parish of St. Ann, Jamaica Simon F. Mitchell Department of Geography and Geology, the University of the West Indies, Mona,

More information

DATA REPOSITORY ITEM

DATA REPOSITORY ITEM Powell DATA REPOSITORY ITEM 0003 TABLE DR. LITERATURE-DERIVED SAMPLES USED IN THIS STUDY Study Interval* Facies Taxon N # S ** Elias and Young, 8 Ord./Sil. Carbonate Coral 58 0 Elias and Young, 8 Ord./Sil.

More information

OWNER: Lone Star Cement Corporation DRILLER: R. L. Magette Well Drilling Corp. COUNTY: Norfolk (S. Norfolk). GEOLOGIC LOG. feet.

OWNER: Lone Star Cement Corporation DRILLER: R. L. Magette Well Drilling Corp. COUNTY: Norfolk (S. Norfolk). GEOLOGIC LOG. feet. Lone Star Cement Corporation DRILLER: R. L. Magette Well Drilling Corp. COUNTY: Norfolk (S. Norfolk). W: 2111 C: 165 TOTAL DEPTH: 800' GEOLOGIC LOG Depth feet in 0-40 No Samples YORKTOWN FORMATION (40-360')

More information

Components of a Carbonate rock

Components of a Carbonate rock Components of a Carbonate rock Skeletal grains Pores Matrix (

More information

Field trip to Racine Reef Complex, Thornton Quarry, Illinois

Field trip to Racine Reef Complex, Thornton Quarry, Illinois Field trip to Racine Reef Complex, Thornton Quarry, Illinois Primary objectives for this fieldtrip 1) Collect and identify the fossils of the Racine Reef Complex. 2) Discuss procedures for collecting fossil

More information

GEOLOGY OF THE DO27 PIPE: A PYROCLASTIC KIMBERLITE IN THE LAC DE GRAS PROVINCE, NWT, CANADA

GEOLOGY OF THE DO27 PIPE: A PYROCLASTIC KIMBERLITE IN THE LAC DE GRAS PROVINCE, NWT, CANADA GEOLOGY OF THE DO27 PIPE: A PYROCLASTIC KIMBERLITE IN THE LAC DE GRAS PROVINCE, NWT, CANADA Margaret Harder 1, Casey Hetman 2, Barbara Scott Smith 3, and Jennifer Pell 1 1 Peregrine Diamonds Ltd. 2 Mineral

More information

Feet. Cape May Core #51 Start depth: 240 ft Stop depth: 245 ft Recovery (ft): 5.1 ft Date: 3/21/94 Described by: JVB, KGM, CL. 5.

Feet. Cape May Core #51 Start depth: 240 ft Stop depth: 245 ft Recovery (ft): 5.1 ft Date: 3/21/94 Described by: JVB, KGM, CL. 5. SAND; medium to fine sand with abundant silt, homogenous slightly mottled appearance; mica on outside, mostly quartz; few darks; peat layer.9 - ft; cnv - same as above; the last few cores are all the same;

More information

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

Lecture Outline Wednesday - Friday February 14-16, 2018

Lecture Outline Wednesday - Friday February 14-16, 2018 Lecture Outline Wednesday - Friday February 14-16, 2018 Quiz 2 scheduled for Friday Feb 23 (Interlude B, Chapters 6,7) Questions? Chapter 6 Pages of the Past: Sedimentary Rocks Key Points for today Be

More information

17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT

17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT 17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT Ralph Moberly, Jr., Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii and G. Ross Heath,

More information

Marine Sediments. Introductory Oceanography. Ray Rector: Instructor

Marine Sediments. Introductory Oceanography. Ray Rector: Instructor Marine Sediments Introductory Oceanography Ray Rector: Instructor Ocean Basins are Vast Sinks for Huge Amounts of Sediment from Numerous Different Sources Four Major Types of Seafloor Sediments 1. Lithogenous

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 100 Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

GEOLOGICAL AGE OF ROCKS. Absolute geological age

GEOLOGICAL AGE OF ROCKS. Absolute geological age GEOLOGICAL AGE OF ROCKS Absolute geological age The pioneer of nuclear physics discovered at the turn of centuries that atoms of certain elements, the radioactive ones, spontaneously disintegrate to form

More information

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS GSA DATA REPOSITORY 2014069 Hajek and Edmonds SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS Each experiment starts from the initial condition of a straight channel 10 km

More information

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1 SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1 The correct answers are listed at the bottom (no peeking!). These questions are to give you an idea of the type of questions that will be asked. They are not a

More information

are unconsolidated particulate materials that either precipitate from or are deposited by a fluid (e.g., water, wind);

are unconsolidated particulate materials that either precipitate from or are deposited by a fluid (e.g., water, wind); Sediments... are unconsolidated particulate materials that either precipitate from or are deposited by a fluid (e.g., water, wind); provide information about the past depositional environments and climatic

More information

Your teacher will show you a sample or diagram of each, and show you a settling column. Draw these, and label your diagrams (8 pts) Ungraded:

Your teacher will show you a sample or diagram of each, and show you a settling column. Draw these, and label your diagrams (8 pts) Ungraded: From Sand to Stone: How do we recognize and interpret sedimentary rocks in the rock record? (Based closely on the University of Washington ESS 101 Lab 5: Sedimentary Rocks) Introduction: This lab consists

More information

Sedimentary Features in Expedition 341 Cores: A Guide to Visual Core Description

Sedimentary Features in Expedition 341 Cores: A Guide to Visual Core Description Sedimentary Features in Expedition 341 Cores: A Guide to Visual Core Description 1. Typical Deep water Sediments in the Gulf of Alaska 1A & B: Mud and 1C: Laminated mud Description: Mud is representative

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Washover sandsheets are often found in low-lying coastal embayment s (Sedgwick and Davis 2003). Washover deposition of marine sand is usually attributed to storm activity

More information

The Nature of Sedimentary Rocks

The Nature of Sedimentary Rocks The Nature of Sedimentary Rocks Sedimentary rocks are composed of: Fragments of other rocks Chemical precipitates Organic matter or biochemically produced materials The Nature of Sedimentary Rocks Sedimentary

More information

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions OCN 623 Chemical Oceanography Reading: Libes, Chapters 15 and 16 Outline I. Deep sea sedimentation Detrital sediments

More information

Concretions are accumulation of one or more minerals within the body of a sedimentary rock, or within

Concretions are accumulation of one or more minerals within the body of a sedimentary rock, or within Tibooburra concretions Page 1 Concretions are accumulation of one or more minerals within the body of a sedimentary rock, or within cracks and cavities in a rock. They form when minerals such as quartz,

More information

Bahamian Dolomites. Occurrences in the Bahamas 2/25/2009. Platform Dolomites. Cretaceous Dolomite. San Salvador Little Bahama Bank.

Bahamian Dolomites. Occurrences in the Bahamas 2/25/2009. Platform Dolomites. Cretaceous Dolomite. San Salvador Little Bahama Bank. Bahamian Dolomites A Short Course VU March, 2009 Peter Swart University of Miami Occurrences in the Bahamas Platform Dolomites San Salvador Little Bahama Bank Bahamas Drilling Project Unda Clino Cretaceous

More information

BIVALVE LIVE-DEAD DIFFERENCES RECORD THE IMPACT OF ANTHROPOGENIC EUTROPHICATION ON COASTAL ECOSYSTEMS IN THE NORTHERN GULF OF MEXICO

BIVALVE LIVE-DEAD DIFFERENCES RECORD THE IMPACT OF ANTHROPOGENIC EUTROPHICATION ON COASTAL ECOSYSTEMS IN THE NORTHERN GULF OF MEXICO Published by Keck Geology Consortium Short Contributions 30th Annual Symposium Volume 29th April, 2017 ISBN: 1528-7491 BIVALVE LIVE-DEAD DIFFERENCES RECORD THE IMPACT OF ANTHROPOGENIC EUTROPHICATION ON

More information

Data Repository item DATA REPOSITORY

Data Repository item DATA REPOSITORY Data Repository item 2003053 1 DATA REPOSITORY Stable isotope and trace-element geochemistry of the basal Bouse Formation carbonate, southwestern USA: Implications for the Pliocene uplift history of the

More information

Sci.tanta.edu.eg PALEOECOLOGY, GE 2218

Sci.tanta.edu.eg PALEOECOLOGY, GE 2218 Sci.tanta.edu.eg PALEOECOLOGY, GE 2218 Lec. 4 1 Biosphere Lithosphere Community Hydrosphere Atmosphere 2 1 Temperature Temperature range in the ocean is approximately 2 to 40 º C. Coldest waters are found

More information

The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface.

The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface. The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface. The material that is chemically and mechanically weathered to yield sediment and soil. Regolith consisting

More information

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 GEOLOGY Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 Topic No. & Title : 56 Structure of Sedimentary Rocks Frequently Asked Questions FAQ s Que 01. What

More information

GEOL Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section)

GEOL Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section) GEOL 333 - Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section) Sedimentary Rock Classification - As we learned last week, sedimentary rock, which forms by accumulation and lithification

More information

UNIT DESCRIPTIONS: Artificial Fill, Undocumented (Afu): Locally derived sandy silt and silty sand, locally with clay and varying amounts of gravel and man-made debris. Abundant concrete rubble, in places

More information

Sedimentología Ayudantía Lectura 1 Carbonate minerals

Sedimentología Ayudantía Lectura 1 Carbonate minerals Carbonate minerals The most common minerals in this group are the calcium carbonates, calcite and aragonite, while dolomite (a magnesium calcium carbonate) and siderite (iron carbonate) are also frequently

More information

Pyrite framboid size distribution of the Grey Shales (Yorkshire UK) as an indication of redox conditions

Pyrite framboid size distribution of the Grey Shales (Yorkshire UK) as an indication of redox conditions IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 99, p-issn: 2321 982.Volume 3, Issue Ver. I (Sep. - Oct. 21), PP 36-42 www.iosrjournals.org Pyrite framboid size distribution of

More information

Chert-Shale-Mudstone Chert typs of silica: Microquartz Megaquartz Chalcedonic quartz (From Tucker, 1996)

Chert-Shale-Mudstone Chert typs of silica: Microquartz Megaquartz Chalcedonic quartz (From Tucker, 1996) Chert-Shale-Mudstone Chert is a general term for fine-grained siliceous rock, of chemical, biochemical, biogenetic origin. It is a dense, very hard rock, which splinters with a conchoidal fracture. The

More information

Different stacking patterns along an active fold and thrust belt Acerenza Bay, Southern Apennines (Italy)

Different stacking patterns along an active fold and thrust belt Acerenza Bay, Southern Apennines (Italy) GSA Data Repository 2019054 Different stacking patterns along an active fold and thrust belt Acerenza Bay, Southern Apennines (Italy) Domenico Chiarella 1, Sergio G. Longhitano 2, Marcello Tropeano 3 1

More information

If it ain t broke, then what? Taphonomic filters of late Pleistocene. Terrestrial Gastropod fossils in the Upper Mississippi Valley

If it ain t broke, then what? Taphonomic filters of late Pleistocene. Terrestrial Gastropod fossils in the Upper Mississippi Valley Appendix E 230 If it ain t broke, then what? Taphonomic filters of late Pleistocene Terrestrial Gastropod fossils in the Upper Mississippi Valley Abstract This chapter analyzes terrestrial gastropod shell

More information

PREDICTION OF ACID MINE DRAINAGE POTENTIAL FROM COAL MINES

PREDICTION OF ACID MINE DRAINAGE POTENTIAL FROM COAL MINES PREDICTION OF ACID MINE DRAINAGE POTENTIAL FROM COAL MINES Arthur W. Rose, Professor of Geochemistry Eugene G. Williams, Professor of Geology Richard R. Parizek, Professor of Hydrogeology Acid mine drainage

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

GEOLOGY MEDIA SUITE Chapter 5

GEOLOGY MEDIA SUITE Chapter 5 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 5 Sedimentation Rocks Formed by Surface Processes 2010 W.H. Freeman and Company Mineralogy of sandstones Key Figure 5.12

More information

Lecture 4: Carbonate sediments: principal components and classification

Lecture 4: Carbonate sediments: principal components and classification GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 4: Carbonate sediments: principal components and classification Today s Lecture Differences between siliciclastics

More information

Data Repository Item 1

Data Repository Item 1 GSA DR 2006031 Burgisser, p. 1 Data Repository Item 1 of Burgisser, A., and Gardner. J., Using Hydraulic Equivalence to Discriminate Transport Processes of Volcanic Flows This Electronic Supplement contains

More information

ES120 Sedimentology/Stratigraphy

ES120 Sedimentology/Stratigraphy Midterm Exam 5/05/08 NAME: 1. List or describe 3 physical processes that contribute to the weathering of rocks (3pts). exfoliation frost wedging many others. roots, thermal expansion/contraction also credit

More information

Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live dead studies

Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live dead studies Geobios (2002) Mémoire spécial n 24 www.elsevier.com/locate/geobios Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live dead studies Susan M. Kidwell *

More information

ROCK CLASSIFICATION AND IDENTIFICATION

ROCK CLASSIFICATION AND IDENTIFICATION Name: Miramar College Grade: GEOL 101 - Physical Geology Laboratory SEDIMENTARY ROCK CLASSIFICATION AND IDENTIFICATION PRELAB SECTION To be completed before labs starts: I. Introduction & Purpose: The

More information

The Proterozoic Eon (2500 ma to 540 ma)

The Proterozoic Eon (2500 ma to 540 ma) The Proterozoic Eon (2500 ma to 540 ma) December November October September August July June May April March February January 0 Ma Phanerozoic C M P 540 Ma oldest shelly fossils Proterozoic 2500 Ma first

More information

Granulometric Analysis of Sandstone Facies of Late Maastritchian Nsukka Formation Outcrops in Ihube and Isiukwuato Areas, Southeastern Nigeria

Granulometric Analysis of Sandstone Facies of Late Maastritchian Nsukka Formation Outcrops in Ihube and Isiukwuato Areas, Southeastern Nigeria American Journal of Earth and Environmental Sciences 2018; 1(3): 124-131 http://www.aascit.org/journal/ees Granulometric Analysis of Sandstone Facies of Late Maastritchian Nsukka Formation Outcrops in

More information

Chapter 6 Pages of Earth s Past: Sedimentary Rocks

Chapter 6 Pages of Earth s Past: Sedimentary Rocks Chapter 6 Pages of Earth s Past: Sedimentary Rocks Introduction! Drilling into the bottom of the North Sea, we encounter: " Soft mud and loose sand, silt, pebbles, and shells. Then: " Similar materials

More information

LECTURE 2: Taphonomy and Time

LECTURE 2: Taphonomy and Time 1 LECTURE 2: Taphonomy and Time OUTLINE Fossils: Definition, Types Taphonomy Preservation: Modes and Biases Depositional environments Preservation potential of dinosaurs Geologic Time Scale: Relative and

More information

Sedimentary Geology. Strat and Sed, Ch. 1 1

Sedimentary Geology. Strat and Sed, Ch. 1 1 Sedimentary Geology Strat and Sed, Ch. 1 1 Sedimentology vs. Stratigraphy Sedimentology is the study of the origin and classification of sediments and sedimentary rocks Mostly the physical and chemical

More information

DANIDA Danish International Development Assistance. NREB Natural Resources and Environment Board Sarawak

DANIDA Danish International Development Assistance. NREB Natural Resources and Environment Board Sarawak NREB Natural Resources and Environment Board Sarawak MONITORING OF RIVERBED INVERTEBRATES IN RIVERS AND TRIBUTARIES IN THE KUCHING AREA November 2003 September 2004 DANIDA Danish International Development

More information

CHAPTER 7 Back into the Icehouse: The Last 55 Million Year. speaker: 林 烈

CHAPTER 7 Back into the Icehouse: The Last 55 Million Year. speaker: 林 烈 CHAPTER 7 Back into the Icehouse: The Last 55 Million Year speaker: 林 烈 Global Climate Change Since 55 Myr Age Evidence from Ice & Vegetation Oxygen Isotope Data Why Did Globe Climate Cool over the Last

More information

Nova Scotia Department of Fisheries and Aquaculture. Environmental Monitoring Program Summary

Nova Scotia Department of Fisheries and Aquaculture. Environmental Monitoring Program Summary Nova Scotia Department of Fisheries and Aquaculture Environmental Monitoring Program Summary 2015 Table of Contents 1 Environmental Monitoring Program Overview... 1 2 2015 EMP... 5 2.1 Level I... 5 2.1.1

More information

Chapter 4 Implications of paleoceanography and paleoclimate

Chapter 4 Implications of paleoceanography and paleoclimate Age ka / Chapter 4 Implications of paleoceanography and paleoclimate 4.1 Paleoclimate expression 4.2 Implications of paleocirculation and tectonics 4.3 Paleoenvironmental reconstruction MD05-2901 (Liu

More information

To get you thinking Explain how these different layers of rock formed? Why are these layers different colors? Sedimentary Rocks

To get you thinking Explain how these different layers of rock formed? Why are these layers different colors? Sedimentary Rocks To get you thinking Explain how these different layers of rock formed? Why are these layers different colors? Sedimentary Rocks Bryce Canyon, Utah Badlands, South Dakota Weathering Whenever rock is exposed

More information

SEDIMENTARY STRUCTURES: BEDDING PLANE STRUCTURES SECONDARY MECHANICAL SEDIMENTARY STRUCTURES SECONDARY BIOGENIC SEDIMENTARY STRUCTURES

SEDIMENTARY STRUCTURES: BEDDING PLANE STRUCTURES SECONDARY MECHANICAL SEDIMENTARY STRUCTURES SECONDARY BIOGENIC SEDIMENTARY STRUCTURES SEDIMENTARY STRUCTURES: BEDDING PLANE STRUCTURES SECONDARY MECHANICAL SEDIMENTARY STRUCTURES SECONDARY BIOGENIC SEDIMENTARY STRUCTURES 1 BEDDING PLANE STRUCTURES Generated on bedding surfaces by both erosion

More information

Sedimentary and Stratigraphic Analysis of the Viking Sand in the Edgerton/Wainwright Area, Central Alberta* By Russell Walz 1

Sedimentary and Stratigraphic Analysis of the Viking Sand in the Edgerton/Wainwright Area, Central Alberta* By Russell Walz 1 Sedimentary and Stratigraphic Analysis of the Viking Sand in the Edgerton/Wainwright Area, Central Alberta* By Russell Walz 1 Search and Discovery Article #50030 (2006) Posted June 25, 2006 *Extended abstract

More information

GENETIC SIGNIFICANCE OF THE IRONSTONE FACIES OF THE MAASTRICHTIAN PATTI FORMATION, BIDA BASIN, NIGERIA: INSIGHTS FROM CHEMISTRY AND MINERALOGY

GENETIC SIGNIFICANCE OF THE IRONSTONE FACIES OF THE MAASTRICHTIAN PATTI FORMATION, BIDA BASIN, NIGERIA: INSIGHTS FROM CHEMISTRY AND MINERALOGY GENETIC SIGNIFICANCE OF THE IRONSTONE FACIES OF THE MAASTRICHTIAN PATTI FORMATION, BIDA BASIN, NIGERIA: INSIGHTS FROM CHEMISTRY AND MINERALOGY Olusola J. Ojo 1, Toba E. Bamidele 2, Idris Kelani 2 1 Department

More information

Cored Successions from a Modern Estuarine Channel, Willapa Bay, Washington

Cored Successions from a Modern Estuarine Channel, Willapa Bay, Washington Cored Successions from a Modern Estuarine Channel, Willapa Bay, Washington Jesse Schoengut* University of Alberta, Edmonton, Alberta, Canada jesse@ualberta.ca Greg Baniak, Rares Bistran, Luke McHugh, S.

More information

GEOLOGICAL TIME / DATING TECHNIQUES

GEOLOGICAL TIME / DATING TECHNIQUES DATE DUE: INSTRUCTOR: TERRY J. BOROUGHS Geology 305 NAME: SECTION: GEOLOGICAL TIME / DATING TECHNIQUES Instructions: Read each question carefully before selecting the BEST answer. Provide specific and

More information

1. Gravel-size 2. Sand-size 3. Silt-size 4. Clay-size 5. Microcrystalline 6. Macrocrystalline

1. Gravel-size 2. Sand-size 3. Silt-size 4. Clay-size 5. Microcrystalline 6. Macrocrystalline Name: GEOL 101 - Physical Geology Lab Grade: SEDIMENTARY & METAMORPHIC ROCK CLASSIFICATION and IDENTIFICATION SEDIMENTARY PRE-ID SECTION To be completed before observing hand samples: I. Introduction &

More information

Sedimentary Rocks. All sedimentary rocks begin to form when existing rocks are broken down into sediments Sediments are mainly weathered debris

Sedimentary Rocks. All sedimentary rocks begin to form when existing rocks are broken down into sediments Sediments are mainly weathered debris Rocks! Objectives Describe the major processes involved in the formation of sedimentary rock Distinguish between clastic sedimentary rocks and chemical sedimentary rocks Identify the features that are

More information

High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation

High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation Page No. 069-1 High-resolution Sequence Stratigraphy of the Glauconitic Sandstone, Upper Mannville C Pool, Cessford Field: a Record of Evolving Accommodation Thérèse Lynch* and John Hopkins, Department

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

Evan K. Franseen, Dustin Stolz, Robert H. Goldstein, KICC, Department of Geology, University of Kansas

Evan K. Franseen, Dustin Stolz, Robert H. Goldstein, KICC, Department of Geology, University of Kansas Reservoir Character of the Avalon Shale (Bone Spring Formation) of the Delaware Basin, West Texas and Southeast New Mexico: Effect of Carbonate-rich Sediment Gravity Flows Evan K. Franseen, Dustin Stolz,

More information

Carbonate Hand Samples

Carbonate Hand Samples Describing carbonate rocks in hand sample As for siliciclastic rocks, many aspects of carbonate rocks are best described in thin section, but you will often need to describe them in hand sample. That is

More information

SEDIMENTARY PHOSPHORITES: GENESIS, FACIES AND OCCURRENCE. Peter Berger Samantha Dwyer Jessica Hellwig Eric Obrock Kristin Read

SEDIMENTARY PHOSPHORITES: GENESIS, FACIES AND OCCURRENCE. Peter Berger Samantha Dwyer Jessica Hellwig Eric Obrock Kristin Read SEDIMENTARY PHOSPHORITES: GENESIS, FACIES AND OCCURRENCE Peter Berger Samantha Dwyer Jessica Hellwig Eric Obrock Kristin Read Introduction Phosphogenesis & Deposystems Facies Case Studies: Western U.S.,

More information

The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya - an example of "Virtual Core Study"

The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya - an example of Virtual Core Study The Eocene Gir Formation of the Ghani and Ed Dib Fields, Eastern Libya - an example of "Virtual Core Study" Henry Williams*, Suncor Energy Inc., Calgary, AB hwilliams@suncor.com Summary The Gir Formation

More information

Lecture # 02 DEPARTMENT OF CIVIL ENGINEERING SWEDISH COLLEGE OF ENGINEERING & TECHNOLOGY, WAH CANTT. 14th December,

Lecture # 02 DEPARTMENT OF CIVIL ENGINEERING SWEDISH COLLEGE OF ENGINEERING & TECHNOLOGY, WAH CANTT. 14th December, Lecture # 02 DEPARTMENT OF CIVIL ENGINEERING SWEDISH COLLEGE OF ENGINEERING & TECHNOLOGY, WAH CANTT Instructor: Date: Engr. Imran Mehmood 14th December, 2011 1 SEDIMENTARY ROCKS SEDIMENTARY ROCKS The rocks

More information

Module 9 Sedimentary Rocks

Module 9 Sedimentary Rocks Module 9 Sedimentary Rocks SEDIMENTARY ROCKS Rocks formed from material derived from preexisting rocks by surfacial processes followed by diagenesis There are two main classes of sedimentary rocks Clastic

More information

GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND

GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND GEOLOGY OF TODMORDEN MOOR 2 BACKGROUND 1) THE CARBONIFEROUS SERIES OF ROCKS The rocks of the Todmorden district are of the Carboniferous Series and were first laid down in an ancient sea, which covered

More information

GY 112 Lecture Notes Significance of Fossils: Paleoenvironmental Interpretations

GY 112 Lecture Notes Significance of Fossils: Paleoenvironmental Interpretations GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Significance of Fossils: Paleoenvironmental Interpretations Lecture Goals: A) The oceans today B) Estimating water depths C) Adaptations to

More information

Geology 1023 Lab #6, Winter Introduction to fossils and fossilisation

Geology 1023 Lab #6, Winter Introduction to fossils and fossilisation Name: Answers Geology 1023 Lab #6, Winter 2014 Introduction to fossils and fossilisation What is a fossil? A fossil is any evidence of ancient life preserved in sediments or rocks. Why are fossils important?

More information

Mammoth Cave National Park, Kentucky

Mammoth Cave National Park, Kentucky Mammoth Cave National Park, Kentucky Objectives of Today s Lecture Refresher on Sedimentary Depositional Systems and Rock Classifications Transgressive and Regressive Marine Environments Carbonate Depositional

More information

Geology of the Hawaiian Islands

Geology of the Hawaiian Islands Geology of the Hawaiian Islands Class 12 19 February 2004 A B C D F 97 94 92 91 88 87 86 85 85 84 82 77 73 73 mean 66 64 60 69 60 57 51 29 Exam Scores Mean = 71 Median = 82/77 Any Questions? Sedimentary

More information

The Hickory Sandstone, South-Central Texas

The Hickory Sandstone, South-Central Texas The Hickory Sandstone, South-Central Texas Goals of the project The research question for the Hickory Sandstone project is just like that for the Jackfork Group project: how were the rocks of the Hickory

More information

Comparative Taphonomy of the Vendian Genera. Beltanelloides and Nemiana as a Key to their True. Nature

Comparative Taphonomy of the Vendian Genera. Beltanelloides and Nemiana as a Key to their True. Nature Comparative Taphonomy of the Vendian Genera Beltanelloides and Nemiana as a Key to their True Nature M. V. Leonov Paleontological Institute, Russian Academy of Science, 123 Profsoyuznaya, Moscow, 117868,

More information

Rock cycle diagram. Relative dating. Placing rocks and events in proper sequence of formation Deciphering Earth s history from clues in the rocks

Rock cycle diagram. Relative dating. Placing rocks and events in proper sequence of formation Deciphering Earth s history from clues in the rocks Geologic Time Rock cycle diagram Leaves of History Chapter 21 Modern geology Uniformitarianism Fundamental principle of geology "The present is the key to the past Relative dating Placing rocks and events

More information

14.2 Ocean Floor Features Mapping the Ocean Floor

14.2 Ocean Floor Features Mapping the Ocean Floor 14.2 Ocean Floor Features Mapping the Ocean Floor The ocean floor regions are the continental margins, the ocean basin floor, and the mid-ocean ridge. 14.2 Ocean Floor Features Continental Margins A continental

More information

Radiolaria and the Rock Record

Radiolaria and the Rock Record 1 Radiolaria and the Rock Record Radiolarians are important constituents of chert at certain times in geologic history. Their tests accumulate on the seafloor today to form radiolarian ooze, particularly

More information

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Includes Physical, Chemical, Biological processes Weathering Mechanisms Physical

More information

Paleo Lab #5 - Fossilization and Fossil Identification

Paleo Lab #5 - Fossilization and Fossil Identification Paleo Lab #5 - Fossilization and Fossil Identification page - INTRODUCTION The objectives of this exercise are to understand what fossils are, to recognize the different styles of fossil preservation,

More information

Facies Analysis and Depositional Environments of Khabour Formation/ from Iraqi Kurdistan Region Northern Iraq

Facies Analysis and Depositional Environments of Khabour Formation/ from Iraqi Kurdistan Region Northern Iraq Facies Analysis and Depositional Environments of Khabour Formation/ from Iraqi Kurdistan Region Northern Iraq By Dr.Muhamed F. Omer Assistant Professor of Sedimentology Salahaddin University- Science College

More information

EARTH SURFACE PROCESSES AND SEDIMENTATION!

EARTH SURFACE PROCESSES AND SEDIMENTATION! Sed and Strat EARTH SURFACE PROCESSES AND SEDIMENTATION! 2/27 Lecture 7- Exposure: Weathering and the Sediment Factory 3/04 Lecture 8 - Rivers and Landscapes 3/06 Lecture 9 - Waves (not Tides) 3/11 Lecture

More information

GCE A level 1214/01 GEOLOGY GL4 Interpreting the Geological Record

GCE A level 1214/01 GEOLOGY GL4 Interpreting the Geological Record Surname Centre Number Candidate Number Other Names 2 GCE A level 1214/01 GEOLOGY GL4 Interpreting the Geological Record P.M. MONDAY, 6 June 2016 2 hours S16-1214-01 For s use Question Maximum Mark Mark

More information

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 3 Minerals, Rocks, and Structures Section 7 Reading the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section,

More information