An Introduction to Graphical Lasso

Size: px
Start display at page:

Download "An Introduction to Graphical Lasso"

Transcription

1 An Introduction to Graphical Lasso Bo Chang Graphical Models Reading Group May 15, 2015 Bo Chang (UBC) Graphical Lasso May 15, / 16

2 Undirected Graphical Models An undirected graph, each vertex represents a random variable. The absence of an edge between two vertices means the corresponding random variables are conditionally independent, given other variables. The Gaussian distribution is widely used for such graphical models, because of its convenient analytical properties. Penalized regression methods for inducing sparsity in the precision matrix are central to the construction of Gaussian graphical models. Bo Chang (UBC) Graphical Lasso May 15, / 16

3 Precision Matrix Denote the covariance matrix by Σ, then the inverse covariance matrix Θ = Σ 1 is called precision matrix. Let θ ij be the (i, j)th element of Θ. θ ij = σ ij;rest det(σ (ij) ) det(σ) 1. σ ij;rest : conditional/partial covariance of variables i and j, given the other variables. Σ (ij) : matrix Σ with ith row and jth column removed. If θ ij = 0, then variables i and j are conditionally independent, given other variables. Bo Chang (UBC) Graphical Lasso May 15, / 16

4 Precision Matrix Suppose we partition X T = (X T 1, X 2), where X 1 consists of the first d 1 variables and X 2 is the last. We have the partition of Σ and Θ: ( ) ( ) Σ11 σ Σ = 12 Θ11 θ σ12 T, Θ = 12 σ 22 θ12 T. θ 22 Let β = Σ 1 11 σ 12 be the multiple linear regression coefficient of X 2 on X 1. Since ΣΘ = I, Σ 11 θ 12 + σ 12 θ 22 = 0, β = Σ 1 11 σ 12 = θ 12 /θ 22. Bo Chang (UBC) Graphical Lasso May 15, / 16

5 Precision Matrix Regression coefficient: β = θ 12 /θ 22. We can learn about the dependence structure through multiple linear regression. Meinshausen and Bhlmann (2006) try to estimate which components θ ij are zero, rather than fully estimate Θ. They fit a lasso regression using each variable as the response and the others as predictors. Bo Chang (UBC) Graphical Lasso May 15, / 16

6 Lasso Minimize Q(β) = 1 2 Y X β 2 + λ j β j. When n = p = 1 and X = 1, Q(β) = 1 2 (y β)2 + λ β. Q (β) = y + β + λ sign(β) = 0. Lasso solution ˆβ(λ) = sign(y)( y λ) + = S(y, λ), where S(y, λ) is called the soft-thresholding operator. Bo Chang (UBC) Graphical Lasso May 15, / 16

7 Graphical Lasso A more systematic approach by Friedman, Hastie and Tibshirani (2008). Consider maximizing the penalized log-likelihood log(det[θ]) trace(sθ) λ Θ 1. S: sample covariance matrix. Θ 1 : element L 1 norm, the sum of the absolute values of the elements of Θ. The gradient equation Θ 1 S λ Sign(Θ) = 0. Bo Chang (UBC) Graphical Lasso May 15, / 16

8 Graphical Lasso The gradient equation Θ 1 S λ Sign(Θ) = 0. Let W = Θ 1 and ( ) ( ) W11 w 12 Θ11 θ 12 w12 T w 22 θ12 T = θ 22 where β = θ 12 /θ 22. w 12 = W 11 θ 12 /θ 22 = W 11 β, The upper right block of the gradient equation: W 11 β s 12 + λ Sign(β) = 0 ( ) I 0 0 T. 1 which is recognized as the estimation equation for the Lasso regression. Bo Chang (UBC) Graphical Lasso May 15, / 16

9 Graphical Lasso Bo Chang (UBC) Graphical Lasso May 15, / 16

10 Graphical Lasso Coordinate descent: Let V = W 11, ˆβ i S(s 12i k j V ki ˆβ k, λ)/v ii, where S(y, λ) is the soft-thresholding operator. Bo Chang (UBC) Graphical Lasso May 15, / 16

11 Analysis of Protein-signalling Data We analyze a flow cytometry dataset on d = 11 proteins and n = 7466 cells. Several methods are compared: Graphical Lasso Bayesian Network Truncated Vine (Sequential MST) Factor Analysis Bo Chang (UBC) Graphical Lasso May 15, / 16

12 Discrepancy Measure A common discrepancy measure in the psychometrics and structural equation modeling literatures is: D = log(det[r model (ˆδ)]) log(det[r data ]) + tr[r 1 model (ˆδ)R data ] d. d: number of variables. R data : sample correlation matrix. R model (ˆδ): model-based correlation matrix based on the estimate of the parameter δ. If either model has some conditional independence relations, then the dimension of δ is less than d(d 1)/2. Bo Chang (UBC) Graphical Lasso May 15, / 16

13 Discrepancy Measure Other comparisons are the AIC/BIC based on a Gaussian log-likelihood. Also useful are the average and max absolute deviations of the model-based correlation matrix from the empirical correlation matrix: max j<k R data,jk R model,jk (ˆδ). Bo Chang (UBC) Graphical Lasso May 15, / 16

14 Results Model Dfit MaxAbsDiff AIC( 10 5 ) BIC( 10 5 ) #Par BN glasso(λ = 0.13) glasso(λ = 0.10) glasso(λ = 0.08) truncated seq. MST truncated seq. MST truncated seq. MST truncated seq. MST truncated seq. MST factor factor factor factor Bo Chang (UBC) Graphical Lasso May 15, / 16

15 References Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning. New York: springer. Pourahmadi, M. (2013). High-Dimensional Covariance Estimation: With High-Dimensional Data. John Wiley & Sons. Meinshausen, N., & Bhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), Chicago Bo Chang (UBC) Graphical Lasso May 15, / 16

16 The End Bo Chang (UBC) Graphical Lasso May 15, / 16

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Sparse inverse covariance estimation with the lasso

Sparse inverse covariance estimation with the lasso Sparse inverse covariance estimation with the lasso Jerome Friedman Trevor Hastie and Robert Tibshirani November 8, 2007 Abstract We consider the problem of estimating sparse graphs by a lasso penalty

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Program and big picture Big data: can copula modelling be used for high dimensions, say

Program and big picture Big data: can copula modelling be used for high dimensions, say Conditional independence copula models with graphical representations Harry Joe (University of British Columbia) For multivariate Gaussian with a large number of variables, there are several approaches

More information

Undirected Graphical Models

Undirected Graphical Models 17 Undirected Graphical Models 17.1 Introduction A graph consists of a set of vertices (nodes), along with a set of edges joining some pairs of the vertices. In graphical models, each vertex represents

More information

The lasso: some novel algorithms and applications

The lasso: some novel algorithms and applications 1 The lasso: some novel algorithms and applications Newton Institute, June 25, 2008 Robert Tibshirani Stanford University Collaborations with Trevor Hastie, Jerome Friedman, Holger Hoefling, Gen Nowak,

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. August 2008 Trevor

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Structure estimation for Gaussian graphical models

Structure estimation for Gaussian graphical models Faculty of Science Structure estimation for Gaussian graphical models Steffen Lauritzen, University of Copenhagen Department of Mathematical Sciences Minikurs TUM 2016 Lecture 3 Slide 1/48 Overview of

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Sparse Permutation Invariant Covariance Estimation: Motivation, Background and Key Results

Sparse Permutation Invariant Covariance Estimation: Motivation, Background and Key Results Sparse Permutation Invariant Covariance Estimation: Motivation, Background and Key Results David Prince Biostat 572 dprince3@uw.edu April 19, 2012 David Prince (UW) SPICE April 19, 2012 1 / 11 Electronic

More information

Robust and sparse Gaussian graphical modelling under cell-wise contamination

Robust and sparse Gaussian graphical modelling under cell-wise contamination Robust and sparse Gaussian graphical modelling under cell-wise contamination Shota Katayama 1, Hironori Fujisawa 2 and Mathias Drton 3 1 Tokyo Institute of Technology, Japan 2 The Institute of Statistical

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.)

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) 1/12 MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) Dominique Guillot Departments of Mathematical Sciences University of Delaware May 6, 2016

More information

Sparse Graph Learning via Markov Random Fields

Sparse Graph Learning via Markov Random Fields Sparse Graph Learning via Markov Random Fields Xin Sui, Shao Tang Sep 23, 2016 Xin Sui, Shao Tang Sparse Graph Learning via Markov Random Fields Sep 23, 2016 1 / 36 Outline 1 Introduction to graph learning

More information

Proximity-Based Anomaly Detection using Sparse Structure Learning

Proximity-Based Anomaly Detection using Sparse Structure Learning Proximity-Based Anomaly Detection using Sparse Structure Learning Tsuyoshi Idé (IBM Tokyo Research Lab) Aurelie C. Lozano, Naoki Abe, and Yan Liu (IBM T. J. Watson Research Center) 2009/04/ SDM 2009 /

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent KDD August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. KDD August 2008

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

A Robust Approach to Regularized Discriminant Analysis

A Robust Approach to Regularized Discriminant Analysis A Robust Approach to Regularized Discriminant Analysis Moritz Gschwandtner Department of Statistics and Probability Theory Vienna University of Technology, Austria Österreichische Statistiktage, Graz,

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent user! 2009 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerome Friedman and Rob Tibshirani. user! 2009 Trevor

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Uncertainty quantification and visualization for functional random variables

Uncertainty quantification and visualization for functional random variables Uncertainty quantification and visualization for functional random variables MascotNum Workshop 2014 S. Nanty 1,3 C. Helbert 2 A. Marrel 1 N. Pérot 1 C. Prieur 3 1 CEA, DEN/DER/SESI/LSMR, F-13108, Saint-Paul-lez-Durance,

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

LASSO Review, Fused LASSO, Parallel LASSO Solvers

LASSO Review, Fused LASSO, Parallel LASSO Solvers Case Study 3: fmri Prediction LASSO Review, Fused LASSO, Parallel LASSO Solvers Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 3, 2016 Sham Kakade 2016 1 Variable

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Regulatory Inferece from Gene Expression. CMSC858P Spring 2012 Hector Corrada Bravo

Regulatory Inferece from Gene Expression. CMSC858P Spring 2012 Hector Corrada Bravo Regulatory Inferece from Gene Expression CMSC858P Spring 2012 Hector Corrada Bravo 2 Graphical Model Let y be a vector- valued random variable Suppose some condi8onal independence proper8es hold for some

More information

Learning with Sparsity Constraints

Learning with Sparsity Constraints Stanford 2010 Trevor Hastie, Stanford Statistics 1 Learning with Sparsity Constraints Trevor Hastie Stanford University recent joint work with Rahul Mazumder, Jerome Friedman and Rob Tibshirani earlier

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Multivariate Bernoulli Distribution 1

Multivariate Bernoulli Distribution 1 DEPARTMENT OF STATISTICS University of Wisconsin 1300 University Ave. Madison, WI 53706 TECHNICAL REPORT NO. 1170 June 6, 2012 Multivariate Bernoulli Distribution 1 Bin Dai 2 Department of Statistics University

More information

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig

Genetic Networks. Korbinian Strimmer. Seminar: Statistical Analysis of RNA-Seq Data 19 June IMISE, Universität Leipzig Genetic Networks Korbinian Strimmer IMISE, Universität Leipzig Seminar: Statistical Analysis of RNA-Seq Data 19 June 2012 Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 1 Paper G. I. Allen and Z. Liu.

More information

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation arxiv:0909.1123v1 [stat.me] 7 Sep 2009 Shrinkage Tuning Parameter Selection in Precision Matrices Estimation Heng Lian Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models

Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models arxiv:1006.3316v1 [stat.ml] 16 Jun 2010 Contents Han Liu, Kathryn Roeder and Larry Wasserman Carnegie Mellon

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Dependence Modeling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso

Dependence Modeling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso Dependence Modeling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso Dominik Müller Claudia Czado arxiv:1709.05119v1 [stat.ml] 15 Sep 2017 September 18, 2017 Abstract To model high dimensional

More information

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Journal of Data Science 9(2011), 549-564 Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Masaru Kanba and Kanta Naito Shimane University Abstract: This paper discusses the

More information

Learning Markov Network Structure using Brownian Distance Covariance

Learning Markov Network Structure using Brownian Distance Covariance arxiv:.v [stat.ml] Jun 0 Learning Markov Network Structure using Brownian Distance Covariance Ehsan Khoshgnauz May, 0 Abstract In this paper, we present a simple non-parametric method for learning the

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

High-dimensional Covariance Estimation Based On Gaussian Graphical Models

High-dimensional Covariance Estimation Based On Gaussian Graphical Models High-dimensional Covariance Estimation Based On Gaussian Graphical Models Shuheng Zhou, Philipp Rutimann, Min Xu and Peter Buhlmann February 3, 2012 Problem definition Want to estimate the covariance matrix

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Learning Gaussian Graphical Models with Unknown Group Sparsity

Learning Gaussian Graphical Models with Unknown Group Sparsity Learning Gaussian Graphical Models with Unknown Group Sparsity Kevin Murphy Ben Marlin Depts. of Statistics & Computer Science Univ. British Columbia Canada Connections Graphical models Density estimation

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models

MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models 1/13 MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models Dominique Guillot Departments of Mathematical Sciences University of Delaware May 4, 2016 Recall

More information

Examples of vines and vine copulas Harry Joe July 24/31, 2015; Graphical models reading group

Examples of vines and vine copulas Harry Joe July 24/31, 2015; Graphical models reading group Examples of vines and vine copulas Harry Joe July 4/31, 015; Graphical models reading group Outline Examples with correlation matrices Example showing continuous variables and non-gaussian dependence Example

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Univariate shrinkage in the Cox model for high dimensional data

Univariate shrinkage in the Cox model for high dimensional data Univariate shrinkage in the Cox model for high dimensional data Robert Tibshirani January 6, 2009 Abstract We propose a method for prediction in Cox s proportional model, when the number of features (regressors)

More information

A note on the group lasso and a sparse group lasso

A note on the group lasso and a sparse group lasso A note on the group lasso and a sparse group lasso arxiv:1001.0736v1 [math.st] 5 Jan 2010 Jerome Friedman Trevor Hastie and Robert Tibshirani January 5, 2010 Abstract We consider the group lasso penalty

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

Inequalities on partial correlations in Gaussian graphical models

Inequalities on partial correlations in Gaussian graphical models Inequalities on partial correlations in Gaussian graphical models containing star shapes Edmund Jones and Vanessa Didelez, School of Mathematics, University of Bristol Abstract This short paper proves

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010 Department of Biostatistics Department of Statistics University of Kentucky August 2, 2010 Joint work with Jian Huang, Shuangge Ma, and Cun-Hui Zhang Penalized regression methods Penalized methods have

More information

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Jérôme Thai 1 Timothy Hunter 1 Anayo Akametalu 1 Claire Tomlin 1 Alex Bayen 1,2 1 Department of Electrical Engineering

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information

Estimating Sparse Graphical Models: Insights Through Simulation. Yunan Zhu. Master of Science STATISTICS

Estimating Sparse Graphical Models: Insights Through Simulation. Yunan Zhu. Master of Science STATISTICS Estimating Sparse Graphical Models: Insights Through Simulation by Yunan Zhu A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in STATISTICS Department of

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables LIB-MA, FSSM Cadi Ayyad University (Morocco) COMPSTAT 2010 Paris, August 22-27, 2010 Motivations Fan and Li (2001), Zou and Li (2008)

More information

Introduction to graphical models: Lecture III

Introduction to graphical models: Lecture III Introduction to graphical models: Lecture III Martin Wainwright UC Berkeley Departments of Statistics, and EECS Martin Wainwright (UC Berkeley) Some introductory lectures January 2013 1 / 25 Introduction

More information

Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models

Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models Han Liu Kathryn Roeder Larry Wasserman Carnegie Mellon University Pittsburgh, PA 15213 Abstract A challenging

More information

Pathwise coordinate optimization

Pathwise coordinate optimization Stanford University 1 Pathwise coordinate optimization Jerome Friedman, Trevor Hastie, Holger Hoefling, Robert Tibshirani Stanford University Acknowledgements: Thanks to Stephen Boyd, Michael Saunders,

More information

Graphical Models for Non-Negative Data Using Generalized Score Matching

Graphical Models for Non-Negative Data Using Generalized Score Matching Graphical Models for Non-Negative Data Using Generalized Score Matching Shiqing Yu Mathias Drton Ali Shojaie University of Washington University of Washington University of Washington Abstract A common

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

Extended Bayesian Information Criteria for Gaussian Graphical Models

Extended Bayesian Information Criteria for Gaussian Graphical Models Extended Bayesian Information Criteria for Gaussian Graphical Models Rina Foygel University of Chicago rina@uchicago.edu Mathias Drton University of Chicago drton@uchicago.edu Abstract Gaussian graphical

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

The graphical lasso: New insights and alternatives

The graphical lasso: New insights and alternatives Electronic Journal of Statistics Vol. 6 (2012) 2125 2149 ISSN: 1935-7524 DOI: 10.1214/12-EJS740 The graphical lasso: New insights and alternatives Rahul Mazumder Massachusetts Institute of Technology Cambridge,

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Joint Gaussian Graphical Model Review Series I

Joint Gaussian Graphical Model Review Series I Joint Gaussian Graphical Model Review Series I Probability Foundations Beilun Wang Advisor: Yanjun Qi 1 Department of Computer Science, University of Virginia http://jointggm.org/ June 23rd, 2017 Beilun

More information

Robust methods and model selection. Garth Tarr September 2015

Robust methods and model selection. Garth Tarr September 2015 Robust methods and model selection Garth Tarr September 2015 Outline 1. The past: robust statistics 2. The present: model selection 3. The future: protein data, meat science, joint modelling, data visualisation

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Introduction to the genlasso package

Introduction to the genlasso package Introduction to the genlasso package Taylor B. Arnold, Ryan Tibshirani Abstract We present a short tutorial and introduction to using the R package genlasso, which is used for computing the solution path

More information

The Nonparanormal skeptic

The Nonparanormal skeptic The Nonpara skeptic Han Liu Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205 USA Fang Han Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205 USA Ming Yuan Georgia Institute

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Learning discrete graphical models via generalized inverse covariance matrices

Learning discrete graphical models via generalized inverse covariance matrices Learning discrete graphical models via generalized inverse covariance matrices Duzhe Wang, Yiming Lv, Yongjoon Kim, Young Lee Department of Statistics University of Wisconsin-Madison {dwang282, lv23, ykim676,

More information

An algorithm for the multivariate group lasso with covariance estimation

An algorithm for the multivariate group lasso with covariance estimation An algorithm for the multivariate group lasso with covariance estimation arxiv:1512.05153v1 [stat.co] 16 Dec 2015 Ines Wilms and Christophe Croux Leuven Statistics Research Centre, KU Leuven, Belgium Abstract

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

of Complex Models Runmin Shi, Faming Liang, Ye Luo, Qifan Song and Malay Ghosh December 13, 2016 Abstract

of Complex Models Runmin Shi, Faming Liang, Ye Luo, Qifan Song and Malay Ghosh December 13, 2016 Abstract A Blockwise Consistency Method for Parameter Estimation of Complex Models Runmin Shi, Faming Liang, Ye Luo, Qifan Song and Malay Ghosh December 13, 2016 Abstract The drastic improvement in data collection

More information

Lecture 2 Part 1 Optimization

Lecture 2 Part 1 Optimization Lecture 2 Part 1 Optimization (January 16, 2015) Mu Zhu University of Waterloo Need for Optimization E(y x), P(y x) want to go after them first, model some examples last week then, estimate didn t discuss

More information

Big & Quic: Sparse Inverse Covariance Estimation for a Million Variables

Big & Quic: Sparse Inverse Covariance Estimation for a Million Variables for a Million Variables Cho-Jui Hsieh The University of Texas at Austin NIPS Lake Tahoe, Nevada Dec 8, 2013 Joint work with M. Sustik, I. Dhillon, P. Ravikumar and R. Poldrack FMRI Brain Analysis Goal:

More information

Bi-level feature selection with applications to genetic association

Bi-level feature selection with applications to genetic association Bi-level feature selection with applications to genetic association studies October 15, 2008 Motivation In many applications, biological features possess a grouping structure Categorical variables may

More information

Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics

Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics Regularization Parameter Selection for a Bayesian Multi-Level Group Lasso Regression Model with Application to Imaging Genomics arxiv:1603.08163v1 [stat.ml] 7 Mar 016 Farouk S. Nathoo, Keelin Greenlaw,

More information

The lasso. Patrick Breheny. February 15. The lasso Convex optimization Soft thresholding

The lasso. Patrick Breheny. February 15. The lasso Convex optimization Soft thresholding Patrick Breheny February 15 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/24 Introduction Last week, we introduced penalized regression and discussed ridge regression, in which the penalty

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Automatic Response Category Combination. in Multinomial Logistic Regression

Automatic Response Category Combination. in Multinomial Logistic Regression Automatic Response Category Combination in Multinomial Logistic Regression Bradley S. Price, Charles J. Geyer, and Adam J. Rothman arxiv:1705.03594v1 [stat.me] 10 May 2017 Abstract We propose a penalized

More information

Strong Rules for Discarding Predictors in Lasso-type Problems

Strong Rules for Discarding Predictors in Lasso-type Problems Strong Rules for Discarding Predictors in Lasso-type Problems Robert Tibshirani Jacob Bien Jerome Friedman Trevor Hastie Noah Simon Jonathan Taylor Ryan Tibshirani Departments of Statistics and Health

More information

Robust Variable Selection Through MAVE

Robust Variable Selection Through MAVE Robust Variable Selection Through MAVE Weixin Yao and Qin Wang Abstract Dimension reduction and variable selection play important roles in high dimensional data analysis. Wang and Yin (2008) proposed sparse

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information