Multifractality in simple systems. Eugene Bogomolny

Size: px
Start display at page:

Download "Multifractality in simple systems. Eugene Bogomolny"

Transcription

1 Multifractality in simple systems Eugene Bogomolny Univ. Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques, Orsay, France In collaboration with Yasar Atas

2 Outlook 1 Multifractality Critical models 3 Spin chains models Quantum Ising model XY model Ising model in two fields XXZ model XYZ model 4 Bose-Hubbard model 5 Thermodynamics 6 Summary

3 The simplest model of multifractality Binomial cascade p +r = 1 p r p pr rp r 3 pr rp p p p r p r r r p r 3

4 Typical functions Left σ =. Right σ = 1 After N steps there are N possibilities of σ n =,1, σ = [ ] Ψ σ = p N k r k, k = n σ n x = N N n=1 n (1+σ n ) = Ψ σ = Ψ(x)..15 Ψ(x) x N = 1, p = cos (1).9, r = sin (1).78

5 Multifractal formalism M (= N ) normalized quantities Ψ σ, σ Ψ σ = 1 Rényi entropy Fractal dimensions S R (q,m) = 1 q 1 ln ( D q = lim M σ S R (q,m) lnm Ψ σ q) Localization : D q = Completely delocalized states : Ψ σ 1 M, D q = q 1 Multifractals : D q = non-linear function of q σ Ψ σ q M M τ q τ q = D q (q 1) τ q = increasing and concave function of q

6 Binomial cascade Ψ σ = p N k r k, k = n σ n, M = N Ψ σ q = σ N CN k pq(n k) r qk = (p q +r q ) N k= τ(q) = ln(pq +r q ), D q = ln(pq +r q ) ln (q 1)ln τ q D q q q

7 Singularity spectrum, f(α)-function Ψ σ q e N τ q, N = lnm σ Ψ σ = e E σ, Ψ σ q = σ σ e qe σ e qe ρ(e)de σ e qe σ Density ρ = σ ) δ (E E σ, ρ(e) N en f(e/n ).8 e qe+n f(e/n ) de by saddle point f(α).6.4 q = f (α), τ q = qα f(α), α = E/N α = τ q α

8 3-d Anderson model at metal-insulator transition H = i ε i a i a i a j a i j= adjacent to i ε i =i.i.d. random variables between W/ and W/ Mobility edge : E c (W) E c = W = W c = 16.5 W > W c all states are localized density localized states delocalized states localized states E c E c E > E c. States are localized. Poisson statistics of eigenvalues E < E c. States are delocalized. Random matrix statistics E = E c. States are neither localized or delocalized Multifractal wave functions New intermediate type of spectral statistics

9 Critical one-dimensional models Critical power law banded random matrices N N Hermitian matrices H ij = i.i.d. Gaussian variables (real for β = 1 and complex for β = ) with zero mean H ij = and variance H ii = 1/β, H ij = (1+ ) 1 (i j) for i j b Ruijsenaars - Schneider ensemble of random matrices N N unitary matrix related with the Lax matrix of Ruijsenaars - Schneider model M kp = e iφ k 1 e πig N[1 e πi(k p+g)/n ] Φ m = independent random variables (phases) uniformly distributed in [,π] g = parameter

10 Spectral statistics for RS model g = 1/ (top left), 6/5 (top right), 4/3 (bottom left), and 9/4 (bottom right), averaged over 1 realizations of matrices of size N = 71. Solid lines are numerical results, dashed lines indicate the analytical expressions In each panel (from left to right) P(s) = P(1,s) (red), P(,s) (green) and P(3,s) (blue)

11 Fractal dimensions for RS model g =.1 (black),.5 (red),.1 (green),. (blue),.3 (violet),.5 (brown),.7 (maroon),.9 (cyan) Matrix sizes are N = n, 8 n 1 Number of realizations is between 14 for N = 8 and 64 for 1

12 Heisenberg model in external fields with periodic boundary conditions H = N n=1 [ 1+γ σ x nσ x n γ σ y nσ y n+1 + σz nσ z n+1 +λσ z n +ασ x n Basis of z-components of each spin, σ = σ 1,...,σ N, σ j = ±1 ] Any model of N spins- 1 is represented by a M M matrix with M = N Wave function of N spins- 1, HΨ = EΨ Ψ = σ Ψ σ σ Main question is the distribution of coefficients Ψ σ Only ground state wave functions with lowest energy are considered Parameters γ, α, λ are chosen to imply (by the Perron-Frobenius theorem) that Ψ σ Values of parameters are such that GS of the XY models (with = ) are ferromagnetic and for the XYZ models they are anti-ferromagnetic

13 Quantum Ising model Quantum Ising model in transverse field H = N n=1 [ ] σnσ x n+1 x +λσn z Integrable by the Jordan-Wigner transformation 3.6 λ = 1.6 Ψ σ.3 λ = 1 D q λ = 1 1 λ = σ > q

14 Quantum Ising model Exact expressions D + (λ) = 1 1 πln D (λ) = 1 1 πln D 1/ (λ) = 1 D ( 1 λ π π ln ln [ 1+ λ cosu R(λ,u) ]du,... [ 1 λ cosu R(λ,u) ]du,... ), R(λ,u) = 1 λcosu +λ D + D D λ D 1/ D (λ)+d (λ) = {, λ < 1 + ln λ ln, λ > 1 D 1 λ

15 XY model The XY model H = N n=1 [ 1+γ σ x nσ x n γ Integrable by the Jordan-Wigner transformation λ=1.6. σ y nσ y n+1 +λσz n λ=.4, γ=1.4 ] λ=1 Ψ σ.1 λ=.4 D q σ > λ =.8, γ= q γ = 1.4

16 XY model Exact expressions Factorizing field Exact factorized GS wave functions at λ = λ f = 1 γ Ψ = N (cosθ 1 n ±sinθ 1 n ), cos θ = 1 γ 1+γ. n=1 D q = ln(cosq θ +sin q θ) (q 1)ln Exactly as for binomial cascade Limiting values { D..., λ > λ D +..., D = c D Neel..., λ < λ c D ± = 1 1 π [ ln 1± λ cosu ] du πln R (λ,γ,u) D Neel = πln π/ R ± (λ,γ,u) = (λ cosu) +γ sin u ln [ 1 λ +γ (1 +γ )cos u ] du R+ (λ,γ,u)r (λ,γ,u)

17 XY model Asymptotic fractal dimensions for the XY model with anisotropy γ = D D Neel D_.5 D λ c (1.4) λ

18 Ising model in two fields The Ising model in transverse and longitudinal fields H = N n=1 Integrable when α only for λ = 1 [ ] σn x σx n+1 +λσz n +ασx n 1.5 Ψ σ..1 α = 1.4, λ = D q σ > α =.6, λ = 1.5 α = 1.4, λ = α =, λ = q

19 XXZ model The XXZ model in zero fields H = 1 N n=1 Integrable by the coordinate Bethe anzatz [ ] σnσ x n+1 x +σnσ y y n+1 + σz nσn+1 z Ψ σ..1 =.5 D q σ > =.5 =.5 = q 15

20 XXZ model Combinatorial point : = 1 Razumov Stroganov conjecture for odd N = R +1 (proved) : GS energy = 3N/4 The largest coefficient (the one for the Néel configuration) : Ψ 1 max = 3R/ R 5...(3R 1) (R 1) The smallest coefficient corresponds to a half consecutive spins up and other spins down Ψ 1 min = Ψ 1 maxa R σ Ψ σ = 3 R/ Negative moments A R = number of alternating sign matrices = R 1 k= D = 3ln3 ln.377, D 1/ = ln3 ln.79 (3k +1)! (R +k)! lna R R R ln(3 3/4)+O(R) It is a particular case of the emptiness formation probability of a string of n aligned spins with n N Negative moments in anti-ferromagnetic case require a different scaling

21 XYZ model The XYZ model H = N [ 1+γ n=1 σ x n σx n γ Integrable by algebraic Bethe anzatz Special points Factorized field : λ f = (1 ) γ Ψ = N (cosθ 1 n ±sinθ 1 n ), cos θ = 1 γ = γ =.5 n=1 cos θ = 1 γ 1+γ Combinatorial point in zero fields : c = (γ 1)/ 1.5 σ y n σy n+1 + σz n σz n+1 +λσz n. Ψ σ.1 D q σ > = q 15 γ =.6, c =.3 ] =.5

22 Bose-Hubbard model N bosons at L sites H = L j=1 b j = bosonic creation operator at site j [ b j+1 b j +h.c. U ] n j(n j 1), n j = b j b j D q U=. U=.1 U=.5 U=1. U=. U=4. U=6. U=1. U=. HCB q (L = 1,...,, N/L =.5, preliminary calculations of Guillaume Roux)

23 Limiting cases U = = free bosons Ground state wave function on N free bosons at L sites with periodic boundary conditions (n j = the occupation number of site j) Ψ(n 1,n,...,n L ) = N! L N 1 n 1!n!...n L!, n j, n n L = N Standard calculations D q = ln(f q(z c )) νlnz c +qνln(ν/e) (q 1)[(1 +ν)ln(1+ν) νlnν], ν = N L, f q(x) = n= x n (n!) q z c from the saddle point equation f q f q (z c ) ν z c =

24 U = = hard-core bosons Hard-core bosons = fermions. Normalized ground state wave function of N HC bosons (= modulus of fermionic WF) at L sites with periodic boundary conditions (n j determines the momentum of a particle number j, p j = πn j /L) Ψ B (n 1,...,n N ) = 1 L N 1 s<r N e πin r/l e πin s/l ; One has to calculate the sum (Gaudin model) 1 n 1 < n <...n N L S q = 1 N! L L... Ψ B (n 1,...,n N ) q n 1 =1 n N =1 In the continuous limit πn j /L θ j ( L ) N π π S q 1 N! π Ψ B (θ 1,...,θ N ) q dθ 1...dθ N From the Dyson integral S q 1 Γ(1 +qn) N!L (q 1)N Γ N (1 +q)

25 Fractal dimensions of free fermions and HC bosons D q = 1 [ lnγ(1 +q) q lnq ] 1 lnν + c(ν) q 1 { 1 ln(ν), for free fermions and HC bosons c(ν) = ln(1 ν) lnν ln(1 ν), for HC limit of Hubbard model ν For discrete case only special values are known due to Gaudin D 1/ = 1 [ 1 c(ν) πν πν/ ] lntanφdφ, D = 1 c(ν) (1 ln(ν)) For integer k < L N 1, D k in the discrete case coincides with the continuous result If ν = 1/m, D = lnm/c(1/m) D q D q q ν = 1/ q ν = 1/3

26 Thermodynamic analogy Usual thermodynamics of lattice gas Multifractality Z(T) = σ e E σ /T Z R (q) = σ Ψ σ q E σ = classical energy of a Hamiltonian, for example for N sites in 1-dim lattice H = i<j J ij σ i σ j j h j σ j General question : when free energy in thermodynamic limit exists F(T) = lim N 1 N lnz(t) Answer : e.g. pair interaction of not too long range (local interactions) Denote Ψ σ = e E σ then Z R (q) = Z(T = 1/q) Main question : when fractal dimensions exist in the limit N Conjecture τ q = lim N 1 N lnz R(q) For quantum Hamiltonians with local interaction fractal dimensions of (at least) GS wave function do exist

27 Summary Main result Ground state wave functions of practically all standard one-dimensional spin- 1 models are multifractals in the natural spin-z basis For special values of parameters and/or certain dimensions it is possible to derive exact analytical formulas which prove rigorously the existence of fractal dimensions. In other cases one has to rely on numerical calculations The multifractality in spin chains is robust and UNIVERSAL phenomenon. It exists for integrable and non-integrable models, for ferro and anti-ferro magnetic states, as well as for critical and non-critical systems Conjecture Multifractality is a generic property of many-body problems with local interactions

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES Eugène Bogomolny Univ. Paris-Sud, CNRS, LPTMS, Orsay, France In collaboration with Olivier Giraud VI Brunel Workshop on PMT Brunel, 7-8 December

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Random Fermionic Systems

Random Fermionic Systems Random Fermionic Systems Fabio Cunden Anna Maltsev Francesco Mezzadri University of Bristol December 9, 2016 Maltsev (University of Bristol) Random Fermionic Systems December 9, 2016 1 / 27 Background

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Introduction to the Mathematics of the XY -Spin Chain

Introduction to the Mathematics of the XY -Spin Chain Introduction to the Mathematics of the XY -Spin Chain Günter Stolz June 9, 2014 Abstract In the following we present an introduction to the mathematical theory of the XY spin chain. The importance of this

More information

An ingenious mapping between integrable supersymmetric chains

An ingenious mapping between integrable supersymmetric chains An ingenious mapping between integrable supersymmetric chains Jan de Gier University of Melbourne Bernard Nienhuis 65th birthday, Amsterdam 2017 György Fehér Sasha Garbaly Kareljan Schoutens Jan de Gier

More information

Shared Purity of Multipartite Quantum States

Shared Purity of Multipartite Quantum States Shared Purity of Multipartite Quantum States Anindya Biswas Harish-Chandra Research Institute December 3, 2013 Anindya Biswas (HRI) Shared Purity December 3, 2013 1 / 38 Outline of the talk 1 Motivation

More information

Dynamics of Entanglement in the Heisenberg Model

Dynamics of Entanglement in the Heisenberg Model Dynamics of Entanglement in the Heisenberg Model Simone Montangero, Gabriele De Chiara, Davide Rossini, Matteo Rizzi, Rosario Fazio Scuola Normale Superiore Pisa Outline Ground state entanglement in Spin

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

LECTURE III Asymmetric Simple Exclusion Process: Bethe Ansatz Approach to the Kolmogorov Equations. Craig A. Tracy UC Davis

LECTURE III Asymmetric Simple Exclusion Process: Bethe Ansatz Approach to the Kolmogorov Equations. Craig A. Tracy UC Davis LECTURE III Asymmetric Simple Exclusion Process: Bethe Ansatz Approach to the Kolmogorov Equations Craig A. Tracy UC Davis Bielefeld, August 2013 ASEP on Integer Lattice q p suppressed both suppressed

More information

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny Modification of the Porter-Thomas distribution by rank-one interaction Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Théorique et Modèles Statistiques, Orsay France XII Brunel-Bielefeld

More information

Partition functions for complex fugacity

Partition functions for complex fugacity Partition functions for complex fugacity Part I Barry M. McCoy CN Yang Institute of Theoretical Physics State University of New York, Stony Brook, NY, USA Partition functions for complex fugacity p.1/51

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

On the Random XY Spin Chain

On the Random XY Spin Chain 1 CBMS: B ham, AL June 17, 2014 On the Random XY Spin Chain Robert Sims University of Arizona 2 The Isotropic XY-Spin Chain Fix a real-valued sequence {ν j } j 1 and for each integer n 1, set acting on

More information

We can instead solve the problem algebraically by introducing up and down ladder operators b + and b

We can instead solve the problem algebraically by introducing up and down ladder operators b + and b Physics 17c: Statistical Mechanics Second Quantization Ladder Operators in the SHO It is useful to first review the use of ladder operators in the simple harmonic oscillator. Here I present the bare bones

More information

Fully Packed Loops Model: Integrability and Combinatorics. Plan

Fully Packed Loops Model: Integrability and Combinatorics. Plan ully Packed Loops Model 1 Fully Packed Loops Model: Integrability and Combinatorics Moscow 05/04 P. Di Francesco, P. Zinn-Justin, Jean-Bernard Zuber, math.co/0311220 J. Jacobsen, P. Zinn-Justin, math-ph/0402008

More information

The Free Central Limit Theorem: A Combinatorial Approach

The Free Central Limit Theorem: A Combinatorial Approach The Free Central Limit Theorem: A Combinatorial Approach by Dennis Stauffer A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honour s Seminar)

More information

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis THE THEORY OF MAGNETISM MADE SIMPLE An Introduction to Physical Concepts and to Some Useful Mathematical Methods Daniel C. Mattis Department of Physics, University of Utah lb World Scientific NEW JERSEY

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Angular Momentum set II

Angular Momentum set II Angular Momentum set II PH - QM II Sem, 7-8 Problem : Using the commutation relations for the angular momentum operators, prove the Jacobi identity Problem : [ˆL x, [ˆL y, ˆL z ]] + [ˆL y, [ˆL z, ˆL x

More information

The Matrix Dyson Equation in random matrix theory

The Matrix Dyson Equation in random matrix theory The Matrix Dyson Equation in random matrix theory László Erdős IST, Austria Mathematical Physics seminar University of Bristol, Feb 3, 207 Joint work with O. Ajanki, T. Krüger Partially supported by ERC

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Advanced Statistical Mechanics

Advanced Statistical Mechanics Advanced Statistical Mechanics Victor Gurarie Fall 0 Week 3: D and D transverse field Ising models, exact solution D Ising Model: Peierls Argument D Ising model is defined on a D lattice. Each spin of

More information

Condensation properties of Bethe roots in the XXZ chain

Condensation properties of Bethe roots in the XXZ chain Condensation properties of Bethe roots in the XXZ chain K K Kozlowski CNRS, aboratoire de Physique, ENS de yon 25 th of August 206 K K Kozlowski "On condensation properties of Bethe roots associated with

More information

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain V. Terras CNRS & ENS Lyon, France People involved: N. Kitanine, J.M. Maillet, N. Slavnov and more recently: J.

More information

Entanglement Dynamics for the Quantum Disordered XY Chain

Entanglement Dynamics for the Quantum Disordered XY Chain Entanglement Dynamics for the Quantum Disordered XY Chain Houssam Abdul-Rahman Joint with: B. Nachtergaele, R. Sims, G. Stolz AMS Southeastern Sectional Meeting University of Georgia March 6, 2016 Houssam

More information

An introduction to integrable techniques for one-dimensional quantum systems

An introduction to integrable techniques for one-dimensional quantum systems Fabio Franchini arxiv:1609.0100v3 [cond-mat.stat-mech] Jun 017 Ruđer Bošković Institute Bijenčka cesta 54, 10000 Zagreb, Croatia SISSA Via Bonomea 65, 34136, Trieste, Italy An introduction to integrable

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Classical and quantum aspects of ultradiscrete solitons. Atsuo Kuniba (Univ. Tokyo) 2 April 2009, Glasgow

Classical and quantum aspects of ultradiscrete solitons. Atsuo Kuniba (Univ. Tokyo) 2 April 2009, Glasgow Classical and quantum aspects of ultradiscrete solitons Atsuo Kuniba (Univ. Tokyo) 2 April 29, Glasgow Tau function of KP hierarchy ( N τ i (x) = i e H(x) exp j=1 ) c j ψ(p j )ψ (q j ) i (e H(x) = time

More information

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables Véronique TERRAS CNRS & Université Paris Sud, France Workshop: Beyond integrability.

More information

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015)

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015) Graduate Quantum Mechanics I: Prelims and Solutions (Fall 015 Problem 1 (0 points Suppose A and B are two two-level systems represented by the Pauli-matrices σx A,B σ x = ( 0 1 ;σ 1 0 y = ( ( 0 i 1 0 ;σ

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

To Eleonora & Annalisa, for their patience and support

To Eleonora & Annalisa, for their patience and support To Eleonora & Annalisa, for their patience and support Fabio Franchini Ruđer Bošković Institute Bijenčka cesta 54, 10000 Zagreb, Croatia SISSA Via Bonomea 65, 34136, Trieste, Italy An introduction to integrable

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

(Quantum) chaos theory and statistical physics far from equilibrium:

(Quantum) chaos theory and statistical physics far from equilibrium: (Quantum) chaos theory and statistical physics far from equilibrium: Introducing the group for Non-equilibrium quantum and statistical physics Department of physics, Faculty of mathematics and physics,

More information

APPENDIX E SPIN AND POLARIZATION

APPENDIX E SPIN AND POLARIZATION APPENDIX E SPIN AND POLARIZATION Nothing shocks me. I m a scientist. Indiana Jones You ve never seen nothing like it, no never in your life. F. Mercury Spin is a fundamental intrinsic property of elementary

More information

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap Institute of Fundamental Sciences Massey University New Zealand 29 August 2017 A. A. Kapaev Memorial Workshop Michigan

More information

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Thomas Quella University of Cologne Workshop on Low-D Quantum Condensed Matter University of Amsterdam, 8.7.2013 Based

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

Quantum quenches in the thermodynamic limit

Quantum quenches in the thermodynamic limit Quantum quenches in the thermodynamic limit Marcos Rigol Department of Physics The Pennsylvania State University Correlations, criticality, and coherence in quantum systems Evora, Portugal October 9, 204

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains Bruno Nachtergaele and Wolfgang L. Spitzer Department of Mathematics University of California, Davis Davis, CA 95616-8633, USA bxn@math.ucdavis.edu

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Temperature Correlation Functions in the XXO Heisenberg Chain

Temperature Correlation Functions in the XXO Heisenberg Chain CONGRESSO NAZIONALE DI FISICA DELLA MATERIA Brescia, 13-16 June, 1994 Temperature Correlation Functions in the XXO Heisenberg Chain F. Colomo 1, A.G. Izergin 2,3, V.E. Korepin 4, V. Tognetti 1,5 1 I.N.F.N.,

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Representation theory & the Hubbard model

Representation theory & the Hubbard model Representation theory & the Hubbard model Simon Mayer March 17, 2015 Outline 1. The Hubbard model 2. Representation theory of the symmetric group S n 3. Representation theory of the special unitary group

More information

Gaudin Hypothesis for the XYZ Spin Chain

Gaudin Hypothesis for the XYZ Spin Chain Gaudin Hypothesis for the XYZ Spin Chain arxiv:cond-mat/9908326v3 2 Nov 1999 Yasuhiro Fujii and Miki Wadati Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7 3 1, Bunkyo-ku,

More information

Entanglement Entropy of Quantum Spin Chains:

Entanglement Entropy of Quantum Spin Chains: : Infinitely Degenerate Ground States Olalla A. Castro-Alvaredo School of Engineering and Mathematical Sciences Centre for Mathematical Science City University London 8th Bologna Workshop on CFT and Integrable

More information

Session 1 - XY model in two dimensions

Session 1 - XY model in two dimensions Ecole de Physique des Houches August, 007 Predoctoral school in statistical physics Quantum Statistical Mechanics Session 1 - XY model in two dimensions The XY model is defined as H = J r ˆµ=ˆ ŷ S r+ˆµ

More information

Basic Concepts and Tools in Statistical Physics

Basic Concepts and Tools in Statistical Physics Chapter 1 Basic Concepts and Tools in Statistical Physics 1.1 Introduction Statistical mechanics provides general methods to study properties of systems composed of a large number of particles. It establishes

More information

Frustration and Area law

Frustration and Area law Frustration and Area law When the frustration goes odd S. M. Giampaolo Institut Ruder Bošković, Zagreb, Croatia Workshop: Exactly Solvable Quantum Chains Natal 18-29 June 2018 Coauthors F. Franchini Institut

More information

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal.

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Lecture 5: continued But what happens when free (i.e. unbound charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Ĥ = 1 2m (ˆp qa(x, t2 + qϕ(x, t,

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

Decay of correlations in 2d quantum systems

Decay of correlations in 2d quantum systems Decay of correlations in 2d quantum systems Costanza Benassi University of Warwick Quantissima in the Serenissima II, 25th August 2017 Costanza Benassi (University of Warwick) Decay of correlations in

More information

Nonlinear Sigma Model(NLSM) and its Topological Terms

Nonlinear Sigma Model(NLSM) and its Topological Terms Nonlinear Sigma Model(NLSM) and its Topological Terms Dec 19, 2011 @ MIT NLSM and topological terms Motivation - Heisenberg spin chain 1+1-dim AFM spin-z and Haldane gap 1+1-dim AFM spin-z odd /2 and gapless

More information

Quantization of the Spins

Quantization of the Spins Chapter 5 Quantization of the Spins As pointed out already in chapter 3, the external degrees of freedom, position and momentum, of an ensemble of identical atoms is described by the Scödinger field operator.

More information

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv: v2 [quant-ph] 12 Aug 2008 Complexity of thermal states in quantum spin chains arxiv:85.449v [quant-ph] Aug 8 Marko Žnidarič, Tomaž Prosen and Iztok Pižorn Department of physics, FMF, University of Ljubljana, Jadranska 9, SI- Ljubljana,

More information

Phase transitions in discrete structures

Phase transitions in discrete structures Phase transitions in discrete structures Amin Coja-Oghlan Goethe University Frankfurt Overview 1 The physics approach. [following Mézard, Montanari 09] Basics. Replica symmetry ( Belief Propagation ).

More information

SOLVING SOME GAUGE SYSTEMS AT INFINITE N

SOLVING SOME GAUGE SYSTEMS AT INFINITE N SOLVING SOME GAUGE SYSTEMS AT INFINITE N G. Veneziano, J.W. 1 YANG-MILLS QUANTUM MECHANICS QCD V = QCD V = H = 1 2 pi ap i a + g2 4 ǫ abcǫ ade x i bx j cx i dx j e + ig 2 ǫ abcψ aγ k ψ b x k c, i = 1,..,

More information

Space from Superstring Bits 1. Charles Thorn

Space from Superstring Bits 1. Charles Thorn Space from Superstring Bits 1 Charles Thorn University of Florida Miami 2014 1 Much of this work in collaboration with Songge Sun A single superstring bit: quantum system with finite # of states Superstring

More information

Using Entropy to Detect Quantum Phase Transitions. Davida J. Kollmar

Using Entropy to Detect Quantum Phase Transitions. Davida J. Kollmar Using Entropy to Detect Quantum Phase Transitions Presented to the S. Daniel Abraham Honors Program in Partial Fulfillment of the Requirements for Completion of the Program Stern College for Women Yeshiva

More information

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Thomas Quella University of Cologne Presentation given on 18 Feb 2016 at the Benasque Workshop Entanglement in Strongly

More information

The Farey Fraction Spin Chain

The Farey Fraction Spin Chain The Farey Fraction Spin Chain Peter Kleban (Univ. of Maine) Jan Fiala (Clark U.) Ali Özlük (Univ. of Maine) Thomas Prellberg (Queen Mary) Supported by NSF-DMR Materials Theory Statistical Mechanics Dynamical

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

arxiv: v1 [hep-lat] 30 Oct 2014

arxiv: v1 [hep-lat] 30 Oct 2014 arxiv:1410.8308v1 [hep-lat] 30 Oct 2014 Matteo Giordano Institute for Nuclear Research of the Hungarian Academy of Sciences Bem tér 18/c H-4026 Debrecen, Hungary E-mail: kgt@atomki.mta.hu Institute for

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

Physics 4022 Notes on Density Matrices

Physics 4022 Notes on Density Matrices Physics 40 Notes on Density Matrices Definition: For a system in a definite normalized state ψ > the density matrix ρ is ρ = ψ >< ψ 1) From Eq 1 it is obvious that in the basis defined by ψ > and other

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Integrable defects: an algebraic approach

Integrable defects: an algebraic approach University of Patras Bologna, September 2011 Based on arxiv:1106.1602. To appear in NPB. General frame Integrable defects (quantum level) impose severe constraints on relevant algebraic and physical quantities

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from

More information

First Problem Set for Physics 847 (Statistical Physics II)

First Problem Set for Physics 847 (Statistical Physics II) First Problem Set for Physics 847 (Statistical Physics II) Important dates: Feb 0 0:30am-:8pm midterm exam, Mar 6 9:30am-:8am final exam Due date: Tuesday, Jan 3. Review 0 points Let us start by reviewing

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 11 Sep 1997

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 11 Sep 1997 Z. Phys. B 92 (1993) 307 LPSN-93-LT2 arxiv:cond-mat/9306013v2 [cond-mat.stat-mech] 11 Sep 1997 Surface magnetization of aperiodic Ising quantum chains 1. Introduction L Turban and B Berche Laboratoire

More information

Quantum Phase Transitions

Quantum Phase Transitions 1 Davis, September 19, 2011 Quantum Phase Transitions A VIGRE 1 Research Focus Group, Fall 2011 Spring 2012 Bruno Nachtergaele See the RFG webpage for more information: http://wwwmathucdavisedu/~bxn/rfg_quantum_

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS February 18, 2011 2 Contents 1 Need for Statistical Mechanical Description 9 2 Classical Statistical Mechanics 13 2.1 Phase Space..............................

More information

Entanglement negativity in a two dimensional harmonic lattice: Area law and corner contributions arxiv: v2 [cond-mat.stat-mech] 19 Apr 2017

Entanglement negativity in a two dimensional harmonic lattice: Area law and corner contributions arxiv: v2 [cond-mat.stat-mech] 19 Apr 2017 Entanglement negativity in a two dimensional harmonic lattice: rea law and corner contributions arxiv:1604.02609v2 [cond-mat.stat-mech] 19 pr 2017 Cristiano De Nobili 1, ndrea Coser 2 and Erik Tonni 1

More information

Realizing non-abelian statistics in quantum loop models

Realizing non-abelian statistics in quantum loop models Realizing non-abelian statistics in quantum loop models Paul Fendley Experimental and theoretical successes have made us take a close look at quantum physics in two spatial dimensions. We have now found

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Aug 2000

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Aug 2000 LA-UR-00-XXXX February, 008 submitted to Physical Review Letters June st Generalized Jordan-Wigner Transformations C.D. Batista and G. Ortiz Theoretical Division, Los Alamos National Laboratory, Los Alamos,

More information

NON EQUILIBRIUM DYNAMICS OF QUANTUM ISING CHAINS IN THE PRESENCE OF TRANSVERSE AND LONGITUDINAL MAGNETIC FIELDS

NON EQUILIBRIUM DYNAMICS OF QUANTUM ISING CHAINS IN THE PRESENCE OF TRANSVERSE AND LONGITUDINAL MAGNETIC FIELDS NON EQUILIBRIUM DYNAMICS OF QUANTUM ISING CHAINS IN THE PRESENCE OF TRANSVERSE AND LONGITUDINAL MAGNETIC FIELDS by Zahra Mokhtari THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

T 1. A Rigorous Derivation of the Landauer-Büttiker Formalism. Okayama University, December Model Landauer-Büttiker formalism Remarks

T 1. A Rigorous Derivation of the Landauer-Büttiker Formalism. Okayama University, December Model Landauer-Büttiker formalism Remarks A Rigorous Derivation of the Landauer-Büttiker Formalism 0000000 1111111 0000000 1111111 0000000 1111111 0000000 T 1 T 1111111 2 Walter H. Aschbacher Okayama University, December 2010 (Ecole Polytechnique/TU

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System Commun. Theor. Phys. Beijing, China 50 008 pp. 43 47 c Chinese Physical Society Vol. 50, o. 1, July 15, 008 Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System LI Jia-Liang,

More information

P3317 HW from Lecture and Recitation 10

P3317 HW from Lecture and Recitation 10 P3317 HW from Lecture 18+19 and Recitation 10 Due Nov 6, 2018 Problem 1. Equipartition Note: This is a problem from classical statistical mechanics. We will need the answer for the next few problems, and

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

arxiv:nlin/ v1 [nlin.cd] 8 Jan 2001

arxiv:nlin/ v1 [nlin.cd] 8 Jan 2001 The Riemannium P. Leboeuf, A. G. Monastra, and O. Bohigas Laboratoire de Physique Théorique et Modèles Statistiques, Bât. 100, Université de Paris-Sud, 91405 Orsay Cedex, France Abstract arxiv:nlin/0101014v1

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 12 Jun 2003

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 12 Jun 2003 arxiv:cond-mat/0306326v1 [cond-mat.dis-nn] 12 Jun 2003 CONVEX REPLICA SIMMETRY BREAKING FROM POSITIVITY AND THERMODYNAMIC LIMIT Pierluigi Contucci, Sandro Graffi Dipartimento di Matematica Università di

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information