Entanglement Dynamics for the Quantum Disordered XY Chain

Size: px
Start display at page:

Download "Entanglement Dynamics for the Quantum Disordered XY Chain"

Transcription

1 Entanglement Dynamics for the Quantum Disordered XY Chain Houssam Abdul-Rahman Joint with: B. Nachtergaele, R. Sims, G. Stolz AMS Southeastern Sectional Meeting University of Georgia March 6, 2016 Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 1 / 16

2 The Many-Body Hilbert Space Λ = [1, n] := {1, 2,..., n}. For each vertex x Λ we associate the Hilbert space H x := C 2. The Hilbert space associated with the system is H := H x = (C 2 ) n x Λ ρ B(H) is a pure state if ρ 0, Tr ρ = 1, and ρ 2 = ρ. There is a one to one correspondence between pure states and rank one projections. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 2 / 16

3 The Bipartite Entanglements Λ 0 Fix Λ 0 Λ, consider the decomposition: H = H Λ0 H Λ\Λ0, where H Λ0 = x Λ 0 H x, H Λ\Λ0 = Let ρ be a pure state in B(H), then ρ is separable: if there exist pure states ρ (1) B(H Λ0 ) and ρ (2) B(H Λ\Λ0 ), such that ρ = ρ (1) ρ (2). ρ is entangled: if it is not separable. x Λ\Λ 0 H x. (1) Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 3 / 16

4 Entanglement Entropy The Entanglement Entropy of a pure state ρ with respect to the decomposition H Λ0 H Λ\Λ0 is defined as follows: E(ρ) = Tr [ρ 1 log ρ 1 ], where ρ 1 = Tr H2 ρ. For any pure state ρ B(H): E(ρ) 0. E(ρ) = 0 if and only if ρ is product state (Not Entangled). E(ρ) (log 2) Λ 0 (volume scaling). Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 4 / 16

5 An XY Chain in Transversal Magnetic Field n 1 n H = µ j [(1 + γ j )σj x σj+1 x + (1 γ j )σ y j σy j+1 ] ν j σj z j=1 j=1 Hilbert space H = ( C 2) Λ. Λ = [1, n], Λ 0 a block of spins (subinterval of Λ). µ j, γ j and ν j are i.i.d. σ x = ( ) 0 1, σ y = 1 0 ( ) ( ) 0 i, σ z 1 0 =. i A j acts on the j th component of the tensor product, i.e. A j = 1 (j 1) A 1 (n j) Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 5 / 16

6 Jordan-Wigner Transform n 1 n H = µ j [(1 + γ j )σj x σj+1 x + (1 γ j )σ y j σy j+1 ] ν j σj z a = j=1 ( ) 0 0, a 1 0 = ( ) j=1 σ x j = a j + a j, σy j = i(a j a j ), and σz j = 2a j a j 1. c 1 := a 1, c j := σ z 1 σz 2... σz j 1 a j, j > 1. H = C MC, where C := (c 1, c 1, c 2, c 2,..., c n, c n) t. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 6 / 16

7 Effective One-Particle Hamiltonian H = C MC, C := (c 1, c 1, c 2, c 2,..., c n, c n) t. M is the block Jacobi matrix ν 1 σ z µ 1 S(γ 1 ) M := µ 1 S(γ 1 ) t µn 1 S(γ n 1 ), µ n 1 S(γ n 1 ) t ν n σ z ( ) 1 γ where S(γ) = σ z + iγσ y =. Recall that: σ γ 1 z = ( ) Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 7 / 16

8 Motivation Question For 1 l n, let H [1,l] and H [l+1,n] be the restrictions of H to the corresponding interval. Let ρ (1) and ρ (2) be any eigenstates of H [1,l] and H [l+1,n], respectively. We study the Schrödinger dynamics ρ t of ρ (1) ρ (2) with respect to the full chain: ρ t := e ith ( ρ (1) ρ (2)) e ith. Note that ρ t is an Entangled state with respect to H [1,l] H [l+1,n]. Question: What can we say about the Entanglement Entropy of ρ t? Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 8 / 16

9 Motivation Question For 1 l n, let H [1,l] and H [l+1,n] be the restrictions of H to the corresponding interval. Let ρ (1) and ρ (2) be any eigenstates of H [1,l] and H [l+1,n], respectively. We study the Schrödinger dynamics ρ t of ρ (1) ρ (2) with respect to the full chain: ρ t := e ith ( ρ (1) ρ (2)) e ith. Note that ρ t is an Entangled state with respect to H [1,l] H [l+1,n]. Question: What can we say about the Entanglement Entropy of ρ t? Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 8 / 16

10 Problem Setting Λ 0 Λ 1 Λ 2 Λ 3 Λ 4 In general Decompose Λ into disjoint intervals Λ 1, Λ 2,..., Λ m. H Λk is the restriction of H to Λ k. ψ k is an eigenfunction of H Λk, and ρ k = ψ k ψ k. Define ρ = m k=1 ρ k, and its dynamics ρ t = e ith ρe ith. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 9 / 16

11 Assumptions Assumptions: The XY chain H has almost sure simple spectrum. M( satisfies eigencorrelator ) localization, i.e E sup g 1 g(m) jk C 0 (1 + j k ) β, for some β > 6. Applications: µ j = µ, γ j = γ for all j N. ν j are i.i.d from an absolutely continuous, compactly supported distribution. Isotropic case (γ = 0): M Anderson Model. Anisotropic case (γ 0): Large disorder case: Elgart, Shamis, and Sodin (2012). Uniform Spectral gap for M around zero: Chapman and Stolz (2014). Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 10 / 16

12 An Area Law Theorem Then there exists C < such that ( E sup E(ρ t ) t,{ψ k } k=1,2,...,m ) C for all n, m, any choice of the interval Λ 0 Λ and all decompositions Λ 1,..., Λ m of Λ = [1, n]. Hamza/Sims/Stolz (2012). Nachtergale/Sims/Stolz (2013). Sims/Warzel (2016). Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 11 / 16

13 Corollaries Dynamics of Up-Down Spins If m = n number of decompositions is n. eigenfunctions are up and down spins: [ ] 1 e :=, e 0 := [ ] 0. 1 For α = (α 1, α 2,..., α n ) {, } n, define the up-down configuration associated with α: e α = e α1 e α2... e αn Result: ( ) Eigencorrelator localization of M E sup E(e ith e α e α e ith ) α < C. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 12 / 16

14 Corollaries Dynamics of Up-Down Spins If m = n number of decompositions is n. eigenfunctions are up and down spins: [ ] 1 e :=, e 0 := [ ] 0. 1 For α = (α 1, α 2,..., α n ) {, } n, define the up-down configuration associated with α: e α = e α1 e α2... e αn Result: ( ) Eigencorrelator localization of M E sup E(e ith e α e α e ith ) α < C. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 12 / 16

15 Corollaries Entanglement of Eigenstates For m = 1 (No Decomposition) Let ψ be an eigenfunction of the full XY chain H. Result: Eigencorrelator localization of M E ( sup E( ψ ψ ) ψ ) < C. Pasture/Slavin (2014). AR/Stolz (2015). Elgart/Pasture/Shcherbina (2015). Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 13 / 16

16 Corollaries Entanglement of Eigenstates For m = 1 (No Decomposition) Let ψ be an eigenfunction of the full XY chain H. Result: Eigencorrelator localization of M E ( sup E( ψ ψ ) ψ ) < C. Pasture/Slavin (2014). AR/Stolz (2015). Elgart/Pasture/Shcherbina (2015). Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 13 / 16

17 Particle Number Transport n 1 n H 0 = [σj x σj+1 x + σ y j σy j+1 ] ν j σj z j=1 The particle number operator N := n e e j. j=1 N e α = ke α, where k = #{j : α j = }. j=1 Let ρ = e α e α then N ρ := Tr N ρ = k. [e ith 0, N ] = 0 the number of up-spins is conserved in time. N S := j S e e j counts the number of up-spins in S Λ. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 14 / 16

18 d(λ 0,S) Λ 0 S Fix Λ 0 Λ and S Λ \ Λ 0. Initial state: ρ = φ φ, where φ = (e ) Λ 0 (e ) Λ\Λ 0 Theorem For the isotropic XY chain, there exist constants C, η < such that ( ) E sup N S ρt Ce ηd(λ 0,S) t Similar results for disordered Tonks-Girardeau Gas, Seiringer and Warzel (2016) Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 15 / 16

19 Thank you. Houssam Abdul-Rahman Entanglement Dynamics for XY Chains 16 / 16

arxiv: v2 [math-ph] 11 Mar 2016

arxiv: v2 [math-ph] 11 Mar 2016 ENTANGLEMENT DYNAMICS OF DISORDERED QUANTUM XY CHAINS HOUSSAM ABDUL-RAHMAN, BRUNO NACHTERGAELE, ROBERT SIMS, AND GÜNTER STOLZ arxiv:1510.00262v2 [math-ph] 11 Mar 2016 Abstract. We consider the dynamics

More information

On the Random XY Spin Chain

On the Random XY Spin Chain 1 CBMS: B ham, AL June 17, 2014 On the Random XY Spin Chain Robert Sims University of Arizona 2 The Isotropic XY-Spin Chain Fix a real-valued sequence {ν j } j 1 and for each integer n 1, set acting on

More information

arxiv: v2 [math-ph] 26 Feb 2017

arxiv: v2 [math-ph] 26 Feb 2017 February 28, 207 Localization Properties of the Disordered XY Spin Chain A review of mathematical results with an eye toward Many-Body Localization Houssam Abdul-Rahman, Bruno Nachtergaele 2, Robert Sims,

More information

Introduction to the Mathematics of the XY -Spin Chain

Introduction to the Mathematics of the XY -Spin Chain Introduction to the Mathematics of the XY -Spin Chain Günter Stolz June 9, 2014 Abstract In the following we present an introduction to the mathematical theory of the XY spin chain. The importance of this

More information

Review Article Localization properties of the disordered XY spin chain

Review Article Localization properties of the disordered XY spin chain Ann. Phys. Berlin 529, No. 7, 600280 207 / DOI 0.002/andp.20600280 Localization properties of the disordered XY spin chain A review of mathematical results with an eye toward many-body localization Houssam

More information

Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization

Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization Günter Stolz University of Alabama at Birmingham Arizona School of Analysis and Mathematical Physics Tucson, Arizona,

More information

Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization

Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization Günter Stolz University of Alabama at Birmingham Arizona School of Analysis and Mathematical Physics Tucson, Arizona,

More information

Shared Purity of Multipartite Quantum States

Shared Purity of Multipartite Quantum States Shared Purity of Multipartite Quantum States Anindya Biswas Harish-Chandra Research Institute December 3, 2013 Anindya Biswas (HRI) Shared Purity December 3, 2013 1 / 38 Outline of the talk 1 Motivation

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Quantum Many Body Systems and Tensor Networks

Quantum Many Body Systems and Tensor Networks Quantum Many Body Systems and Tensor Networks Aditya Jain International Institute of Information Technology, Hyderabad aditya.jain@research.iiit.ac.in July 30, 2015 Aditya Jain (IIIT-H) Quantum Hamiltonian

More information

Matrix Product States

Matrix Product States Matrix Product States Ian McCulloch University of Queensland Centre for Engineered Quantum Systems 28 August 2017 Hilbert space (Hilbert) space is big. Really big. You just won t believe how vastly, hugely,

More information

Random Fermionic Systems

Random Fermionic Systems Random Fermionic Systems Fabio Cunden Anna Maltsev Francesco Mezzadri University of Bristol December 9, 2016 Maltsev (University of Bristol) Random Fermionic Systems December 9, 2016 1 / 27 Background

More information

05. Multiparticle Systems

05. Multiparticle Systems 05. Multiparticle Systems I. -Particle Product Spaces Suppose: Particle and particle are represented by vector spaces V and W. Then: The composite -particle system is represented by a product vector space

More information

SPECTRAL PROPERTIES OF RANDOM BLOCK OPERATORS JACOB W. CHAPMAN GÜNTER STOLZ, COMMITTEE CHAIR LEONARD CHOUP BHARAT SONI RUDI WEIKARD ZHIJIAN WU

SPECTRAL PROPERTIES OF RANDOM BLOCK OPERATORS JACOB W. CHAPMAN GÜNTER STOLZ, COMMITTEE CHAIR LEONARD CHOUP BHARAT SONI RUDI WEIKARD ZHIJIAN WU SPECTRAL PROPERTIES OF RANDOM BLOCK OPERATORS by JACOB W. CHAPMAN GÜNTER STOLZ, COMMITTEE CHAIR LEONARD CHOUP BHARAT SONI RUDI WEIKARD ZHIJIAN WU A DISSERTATION Submitted to the graduate faculty of The

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

On solving many-body Lindblad equation and quantum phase transition far from equilibrium

On solving many-body Lindblad equation and quantum phase transition far from equilibrium On solving many-body Lindblad equation and quantum phase transition far from equilibrium Department of Physics, FMF, University of Ljubljana, SLOVENIA MECO 35, Pont-a-Mousson 16.3.2010 Outline of the talk

More information

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015)

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015) Graduate Quantum Mechanics I: Prelims and Solutions (Fall 015 Problem 1 (0 points Suppose A and B are two two-level systems represented by the Pauli-matrices σx A,B σ x = ( 0 1 ;σ 1 0 y = ( ( 0 i 1 0 ;σ

More information

Asymptotic distribution of eigenvalues of Laplace operator

Asymptotic distribution of eigenvalues of Laplace operator Asymptotic distribution of eigenvalues of Laplace operator 23.8.2013 Topics We will talk about: the number of eigenvalues of Laplace operator smaller than some λ as a function of λ asymptotic behaviour

More information

The Framework of Quantum Mechanics

The Framework of Quantum Mechanics The Framework of Quantum Mechanics We now use the mathematical formalism covered in the last lecture to describe the theory of quantum mechanics. In the first section we outline four axioms that lie at

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Weak Localization for the alloy-type 3D Anderson Model

Weak Localization for the alloy-type 3D Anderson Model Outline Statement of the result Proof of the Theorem Weak Localization in the alloy-type 3D Anderson Model Zhenwei Cao Math Department Virginia Tech Arizona School of Analysis and Mathematical Physics

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11 1 The AKLT Model Lecture 5 Amanda Young Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/31/11 This talk will follow pg. 26-29 of Lieb-Robinson Bounds in Quantum Many-Body Physics by B. Nachtergaele

More information

A classification of gapped Hamiltonians in d = 1

A classification of gapped Hamiltonians in d = 1 A classification of gapped Hamiltonians in d = 1 Sven Bachmann Mathematisches Institut Ludwig-Maximilians-Universität München Joint work with Yoshiko Ogata NSF-CBMS school on quantum spin systems Sven

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Journal Club: Brief Introduction to Tensor Network

Journal Club: Brief Introduction to Tensor Network Journal Club: Brief Introduction to Tensor Network Wei-Han Hsiao a a The University of Chicago E-mail: weihanhsiao@uchicago.edu Abstract: This note summarizes the talk given on March 8th 2016 which was

More information

Maximal vectors in Hilbert space and quantum entanglement

Maximal vectors in Hilbert space and quantum entanglement Maximal vectors in Hilbert space and quantum entanglement William Arveson arveson@math.berkeley.edu UC Berkeley Summer 2008 arxiv:0712.4163 arxiv:0801.2531 arxiv:0804.1140 Overview Quantum Information

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Matthias Täufer (TU Chemnitz)

Matthias Täufer (TU Chemnitz) 2. Random breather model. Landau operators Wegner estimate for Landau operators with random breather potential Matthias Täufer (TU Chemnitz) Mainz, 5 September 206 (joint work with I. Veselić) 3. Wegner

More information

Propagation bounds for quantum dynamics and applications 1

Propagation bounds for quantum dynamics and applications 1 1 Quantum Systems, Chennai, August 14-18, 2010 Propagation bounds for quantum dynamics and applications 1 Bruno Nachtergaele (UC Davis) based on joint work with Eman Hamza, Spyridon Michalakis, Yoshiko

More information

Stability of local observables

Stability of local observables Stability of local observables in closed and open quantum systems Angelo Lucia anlucia@ucm.es Universidad Complutense de Madrid NSF/CBMS Conference Quantum Spin Systems UAB, June 20, 2014 A. Lucia (UCM)

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. QMI PRELIM 013 All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. Problem 1 L = r p, p = i h ( ) (a) Show that L z = i h y x ; (cyclic

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Relativistic Quantum Mechanics p.1/42 Collaborators F. Coester (ANL), B. Keister (NSF), W. H. Klink (Iowa), G. L. Payne

More information

Studying quantum systems using a quantum computer Ph/CS 219, 23 February 2009

Studying quantum systems using a quantum computer Ph/CS 219, 23 February 2009 Studying quantum systems using a quantum computer Ph/CS 219, 23 February 2009 Estimating energy eigenvalues and preparing energy eigenstates Ph/CS 219, 2 March 2009 We have argued that a quantum

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Decay of correlations in 2d quantum systems

Decay of correlations in 2d quantum systems Decay of correlations in 2d quantum systems Costanza Benassi University of Warwick Quantissima in the Serenissima II, 25th August 2017 Costanza Benassi (University of Warwick) Decay of correlations in

More information

Multifractality in simple systems. Eugene Bogomolny

Multifractality in simple systems. Eugene Bogomolny Multifractality in simple systems Eugene Bogomolny Univ. Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques, Orsay, France In collaboration with Yasar Atas Outlook 1 Multifractality Critical

More information

Chapter 5. Density matrix formalism

Chapter 5. Density matrix formalism Chapter 5 Density matrix formalism In chap we formulated quantum mechanics for isolated systems. In practice systems interect with their environnement and we need a description that takes this feature

More information

The Postulates of Quantum Mechanics

The Postulates of Quantum Mechanics p. 1/23 The Postulates of Quantum Mechanics We have reviewed the mathematics (complex linear algebra) necessary to understand quantum mechanics. We will now see how the physics of quantum mechanics fits

More information

CONTINUITY WITH RESPECT TO DISORDER OF THE INTEGRATED DENSITY OF STATES

CONTINUITY WITH RESPECT TO DISORDER OF THE INTEGRATED DENSITY OF STATES Illinois Journal of Mathematics Volume 49, Number 3, Fall 2005, Pages 893 904 S 0019-2082 CONTINUITY WITH RESPECT TO DISORDER OF THE INTEGRATED DENSITY OF STATES PETER D. HISLOP, FRÉDÉRIC KLOPP, AND JEFFREY

More information

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain TNSAA 2018-2019 Dec. 3-6, 2018, Kobe, Japan Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain Kouichi Seki, Kouichi Okunishi Niigata University,

More information

Ising Model on Hyperbolic Lattices: toward Transverse Field Ising Model under Hyperbolic Deformation

Ising Model on Hyperbolic Lattices: toward Transverse Field Ising Model under Hyperbolic Deformation Ising Model on Hyperbolic Lattices: toward Transverse Field Ising Model under Hyperbolic Deformation T. Nishino, T. Iharagi (Kobe Universty) A. Gendiar (Slovak Academy of Sciences) H. Ueda (Osaka University)

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 Davis, January 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard Werner

More information

Unitary Process Discrimination with Error Margin

Unitary Process Discrimination with Error Margin Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui),

More information

Frustration and Area law

Frustration and Area law Frustration and Area law When the frustration goes odd S. M. Giampaolo Institut Ruder Bošković, Zagreb, Croatia Workshop: Exactly Solvable Quantum Chains Natal 18-29 June 2018 Coauthors F. Franchini Institut

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 FRG2011, Harvard, May 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard

More information

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains Bruno Nachtergaele and Wolfgang L. Spitzer Department of Mathematics University of California, Davis Davis, CA 95616-8633, USA bxn@math.ucdavis.edu

More information

Generalized Bell Inequality and Entanglement Witness

Generalized Bell Inequality and Entanglement Witness Nonlocal Seminar 2005 Bratislava, April 29th 2005 Reinhold A. Bertlmann Generalized Bell Inequality and Entanglement Witness Institute for Theoretical Physics University of Vienna Motivation Composite

More information

(Quantum) chaos theory and statistical physics far from equilibrium:

(Quantum) chaos theory and statistical physics far from equilibrium: (Quantum) chaos theory and statistical physics far from equilibrium: Introducing the group for Non-equilibrium quantum and statistical physics Department of physics, Faculty of mathematics and physics,

More information

Combined systems in PT-symmetric quantum mechanics

Combined systems in PT-symmetric quantum mechanics Combined systems in PT-symmetric quantum mechanics Brunel University London 15th International Workshop on May 18-23, 2015, University of Palermo, Italy - 1 - Combined systems in PT-symmetric quantum

More information

Density Operators and Ensembles

Density Operators and Ensembles qitd422 Density Operators and Ensembles Robert B. Griffiths Version of 30 January 2014 Contents 1 Density Operators 1 1.1 Introduction.............................................. 1 1.2 Partial trace..............................................

More information

Feshbach-Schur RG for the Anderson Model

Feshbach-Schur RG for the Anderson Model Feshbach-Schur RG for the Anderson Model John Z. Imbrie University of Virginia Isaac Newton Institute October 26, 2018 Overview Consider the localization problem for the Anderson model of a quantum particle

More information

A Glimpse of Quantum Computation

A Glimpse of Quantum Computation A Glimpse of Quantum Computation Zhengfeng Ji (UTS:QSI) QCSS 2018, UTS 1. 1 Introduction What is quantum computation? Where does the power come from? Superposition Incompatible states can coexist Transformation

More information

Minimally Entangled Typical Thermal States (METTS)

Minimally Entangled Typical Thermal States (METTS) Minimally Entangled Typical Thermal States (METTS) Vijay B. Shenoy Centre for Condensed Matter Theory, IISc Bangalore shenoy@physics.iisc.ernet.in Quantum Condensed Matter Journal Club April 17, 2012 1

More information

arxiv: v1 [math-ph] 21 Apr 2008

arxiv: v1 [math-ph] 21 Apr 2008 GENERALIZED EIGENVALUE-COUNTING ESTIMATES FOR THE ANDERSON MODEL arxiv:0804.3202v1 [math-ph] 21 Apr 2008 JEAN-MICHEL COMBES, FRANÇOIS GERMINET, AND ABEL KLEIN Abstract. We show how spectral averaging for

More information

The quantum speed limit

The quantum speed limit The quantum speed limit Vittorio Giovannetti a,sethlloyd a,b, and Lorenzo Maccone a a Research Laboratory of Electronics b Department of Mechanical Engineering Massachusetts Institute of Technology 77

More information

The general reason for approach to thermal equilibrium of macroscopic quantu

The general reason for approach to thermal equilibrium of macroscopic quantu The general reason for approach to thermal equilibrium of macroscopic quantum systems 10 May 2011 Joint work with S. Goldstein, J. L. Lebowitz, C. Mastrodonato, and N. Zanghì. Claim macroscopic quantum

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities.

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities. Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In

More information

Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics

Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics Simons Conference on Reversible and Quantum Computation Stony Brook, May 28-31 2003 Guifre Vidal Institute for Quantum

More information

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences Superadditivity of Fisher Information: Classical vs. Quantum Shunlong Luo Academy of Mathematics and Systems Science Chinese Academy of Sciences luosl@amt.ac.cn Information Geometry and its Applications

More information

arxiv: v1 [quant-ph] 2 Nov 2018

arxiv: v1 [quant-ph] 2 Nov 2018 Entanglement and Measurement-induced quantum correlation in Heisenberg spin models arxiv:1811.733v1 [quant-ph] 2 Nov 218 Abstract Indrajith V S, R. Muthuganesan, R. Sankaranarayanan Department of Physics,

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

The XXZ chain and the six-vertex model

The XXZ chain and the six-vertex model Chapter 5 The XXZ chain and the six-vertex model The purpose of this chapter is to focus on two models fundamental to the study of both 1d quantum systems and 2d classical systems. They are the XXZ chain

More information

Persistence as a spectral property

Persistence as a spectral property , Georgia Tech. Joint work with Naomi Feldheim and Ohad Feldheim. March 18, 2017 Advertisement. SEAM2018, March 23-25, 2018. Georgia Tech, Atlanta, GA. Organizing committee: Michael Lacey Wing Li Galyna

More information

FRG Workshop in Cambridge MA, May

FRG Workshop in Cambridge MA, May FRG Workshop in Cambridge MA, May 18-19 2011 Programme Wednesday May 18 09:00 09:10 (welcoming) 09:10 09:50 Bachmann 09:55 10:35 Sims 10:55 11:35 Borovyk 11:40 12:20 Bravyi 14:10 14:50 Datta 14:55 15:35

More information

Anderson Localization on the Sierpinski Gasket

Anderson Localization on the Sierpinski Gasket Anderson Localization on the Sierpinski Gasket G. Mograby 1 M. Zhang 2 1 Department of Physics Technical University of Berlin, Germany 2 Department of Mathematics Jacobs University, Germany 5th Cornell

More information

III. Quantum ergodicity on graphs, perspectives

III. Quantum ergodicity on graphs, perspectives III. Quantum ergodicity on graphs, perspectives Nalini Anantharaman Université de Strasbourg 24 août 2016 Yesterday we focussed on the case of large regular (discrete) graphs. Let G = (V, E) be a (q +

More information

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv: v2 [quant-ph] 12 Aug 2008 Complexity of thermal states in quantum spin chains arxiv:85.449v [quant-ph] Aug 8 Marko Žnidarič, Tomaž Prosen and Iztok Pižorn Department of physics, FMF, University of Ljubljana, Jadranska 9, SI- Ljubljana,

More information

Entropic security using conditional min-entropy

Entropic security using conditional min-entropy Entropic security using conditional min-entropy Frédéric Dupuis and Simon Pierre Desrosiers March 4, 007 1 Preliminary We will use the usual bra and ket notation for pure states where a unit length complex

More information

The Quantum Hall Conductance: A rigorous proof of quantization

The Quantum Hall Conductance: A rigorous proof of quantization Motivation The Quantum Hall Conductance: A rigorous proof of quantization Spyridon Michalakis Joint work with M. Hastings - Microsoft Research Station Q August 17th, 2010 Spyridon Michalakis (T-4/CNLS

More information

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013). 1 / 24 Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, 032324 (2013). G. Tóth 1,2,3 and D. Petz 4,5 1 Theoretical Physics, University of the Basque Country UPV/EHU,

More information

Algebraic Theory of Entanglement

Algebraic Theory of Entanglement Algebraic Theory of (arxiv: 1205.2882) 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

Quantum phase transitions and entanglement in (quasi)1d spin and electron models

Quantum phase transitions and entanglement in (quasi)1d spin and electron models Quantum phase transitions and entanglement in (quasi)1d spin and electron models Elisa Ercolessi - Università di Bologna Group in Bologna: G.Morandi, F.Ortolani, E.E., C.Degli Esposti Boschi, A.Anfossi

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

Mean-Field Limits for Large Particle Systems Lecture 2: From Schrödinger to Hartree

Mean-Field Limits for Large Particle Systems Lecture 2: From Schrödinger to Hartree for Large Particle Systems Lecture 2: From Schrödinger to Hartree CMLS, École polytechnique & CNRS, Université Paris-Saclay FRUMAM, Marseilles, March 13-15th 2017 A CRASH COURSE ON QUANTUM N-PARTICLE DYNAMICS

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

and S is in the state ( )

and S is in the state ( ) Physics 517 Homework Set #8 Autumn 2016 Due in class 12/9/16 1. Consider a spin 1/2 particle S that interacts with a measuring apparatus that is another spin 1/2 particle, A. The state vector of the system

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

Quantum Phase Transitions

Quantum Phase Transitions 1 Davis, September 19, 2011 Quantum Phase Transitions A VIGRE 1 Research Focus Group, Fall 2011 Spring 2012 Bruno Nachtergaele See the RFG webpage for more information: http://wwwmathucdavisedu/~bxn/rfg_quantum_

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

04. Five Principles of Quantum Mechanics

04. Five Principles of Quantum Mechanics 04. Five Principles of Quantum Mechanics () States are represented by vectors of length. A physical system is represented by a linear vector space (the space of all its possible states). () Properties

More information

Multipartite entanglement in fermionic systems via a geometric

Multipartite entanglement in fermionic systems via a geometric Multipartite entanglement in fermionic systems via a geometric measure Department of Physics University of Pune Pune - 411007 International Workshop on Quantum Information HRI Allahabad February 2012 In

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Asymptotic Pure State Transformations

Asymptotic Pure State Transformations Asymptotic Pure State Transformations PHYS 500 - Southern Illinois University April 18, 2017 PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations April 18, 2017 1 / 15 Entanglement

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

arxiv:quant-ph/ v3 26 Jul 2006

arxiv:quant-ph/ v3 26 Jul 2006 Statics and Dynamics of Quantum XY and Heisenberg Systems on Graphs arxiv:quant-ph/0312126v3 26 Jul 2006 Tobias J Osborne 1,2, 1 School of Mathematics, University of Bristol, University Walk, Bristol BS8

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information