Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Size: px
Start display at page:

Download "Large deviations of the top eigenvalue of random matrices and applications in statistical physics"

Transcription

1 Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30, 2015 Collaborators: Alain Comtet (LPTMS, Orsay) Peter J. Forrester (Math. Dept., Univ. of Melbourne) Satya N. Majumdar (LPTMS, Orsay) S. N. Majumdar, G. S., J. Stat. Mech. P01012 (2014), arxiv:

2 Large spectrum of applications of random matrix theory «The Oxford handbook of random matrix theory», Ed. by G. Akemann, J. Baik and P. Di Francesco (2011) Physics: nuclear physics, quantum chaos, disordered systems, mesoscopic transport, quantum entanglement, neural networks, gauge theory, string theory, cosmology, statistical physics (growth models, interface, directed polymers),... Mathematics: number theory, combinatorics, knot theory, determinantal point processes, integrable systems, free probability,... Statistics: multivariate statistics, principal component analysis (PCA), image processing, data compression, Bayesian model selection,... Information theory: signal processing, wireless communications,... Biology: sequence matching, RNA folding, gene expression networks,... Economy and finance: time series and big data analysis,...

3 Spectral statistics in random matrix theory (RMT) Basic model: real, symmetric, Gaussian random matrix P (M) / exp / exp 2 4 N 2 apple X i,j M 2 i,j N 2 Tr(M 2 ) 3 5 Invariant under rotation Gaussian orthogonal ensemble (GOE) The matrix has real eigenvalues which are strongly correlated Spectral statistics in RMT: statistics of

4 Largest (top) eigenvalue of random matrices Density of eigenvalues for N 1 Wigner sea p 2 + p 2 λ

5 Largest (top) eigenvalue of random matrices Recent excitements in statistical physics and mathematics on largest eigenvalue WIGNER SEMI CIRCLE ρ (λ, Ν) LEFT LARGE DEVIATION TRACY WIDOM 2/3 N Typical fluctuations (small): Tracy-Widom distribution λ RIGHT LARGE DEVIATION

6 Tracy-Widom distribution exp 2 3 x3/2 log F 0 1(x) exp 1 24 x x

7 Largest (top) eigenvalue of random matrices Recent excitements in statistical physics and mathematics on largest eigenvalue WIGNER SEMI CIRCLE ρ (λ, Ν) LEFT LARGE DEVIATION TRACY WIDOM 2/3 N Typical fluctuations (small): Tracy-Widom distribution ubiquitous λ largest eigenvalue of RIGHT correlation matrices (Wishart-Laguerre) LARGE DEVIATION longest increasing subsequence of random permutations directed polymers and growth models in the KPZ universality class continuum KPZ equation sequence alignment problems mesoscopic fluctuations in quantum dots high-energy physics (Yang-Mills theory)...

8 Ubiquity of Tracy-Widom distributions Experimental observation of TW distributions for GOE and GUE in liquid crystals experiments (Carr-Helfrich instability) Takeuchi & Sano 10 Takeuchi, Sano, Sasamoto & Spohn 11 from Takeuchi, Sano, Sasamoto & Spohn, Sci. Rep. (Nature) 1, 34 (2011) Q: universality of the Tracy-Widom distributions?

9 Largest (top) eigenvalue of random matrices Recent excitements in statistical physics and mathematics on largest eigenvalue WIGNER SEMI CIRCLE 0 ρ (λ, Ν) LEFT LARGE DEVIATION 2 2 λ TRACY WIDOM 2/3 N RIGHT LARGE DEVIATION Typical fluctuations (small): Tracy-Widom distribution ubiquitous Q: universality of the Tracy-Widom distributions? In this talk: atypical and large fluctuations of Large deviation functions Third order phase transition

10 Stability of a large complex system Stable non-interacting population of densites Slightly perturbed densities species with equilibrium evolve via (assuming identical damping times) Switch on interactions between the species coupling strength random interaction matrix Q: what is the proba. that the system remains stable once the interactions are switched on?

11 Linear stability criterion Linear dynamical system Eigenvalues of : The system is stable iff i.e. iff Proba. that the system is stable

12 Stable/Unstable transition for large systems Assuming that the interaction matrix is real, symmetric and Gaussian May observed a sharp transition in the limit : stable, weakly interacting phase : unstable, strongly interacting phase P stable (α,n)=prob.[λ max w =1/α] 1 STABLE WEAK COUPLING 0 UNSTABLE STRONG COUPLING w c = 2 w =1/α May 72

13 Stable/Unstable transition for large systems What happens for finite but large systems, of size? P stable (α,n)=prob.[λ max w =1/α] 1 LEFT TAIL STABLE WEAK COUPLING O(N 2/3 ) RIGHT TAIL 0 UNSTABLE STRONG COUPLING w c = 2 w =1/α Is there any thermodynamic sense to this transition? What is the analogue of the free energy? What is the order of this transition?

14 Coulomb Gas approach

15 Gaussian random matrix models random matrix : Standard Dyson s ensembles: Orthogonal, Unitary, Symplectic (GOE) (GUE) (GSE) Gaussian probability measure Joint PDF of the real eigenvalues Wigner 51 Partition function with (GOE), (GUE) and (GSE)

16 Coulomb Gas picture and Wigner semi-circle Rewrite the partition function as 2-d Coulomb gas confined to a line, with the inverse temperature Typical scale of the eigenvalues: Mean density of eigenvalues Wigner sea p 2 + p 2 λ

17 Coulomb Gas with a wall

18 Cumulative distribution function of wall eigenvalues What happens when the wall is moved?

19 Pushed vs. pulled Coulomb gas Saddle point analysis Dean & Majumdar 06, 08 Mean density of eigenvalues in presence of the wall w w w ρ w(λ) ρ w (λ) ρ w(λ) λ λ L(w) w< 2 w = 2 w> 2 PUSHED CRITICAL PULLED λ

20 Left large deviation function F (w, N) =Pr.[ max apple w] = Z N (w) Z N (w!1) exp[ N 2 (w)],w< p 2 i.e. lim N!1 1 F (w, N) = N 2 (w) Physically, N 2 (w) is the energy to push the Coulomb gas Left deviation function when Dean & Majumdar 06, 08

21 Right large deviation function w w w ρ w(λ) ρ w (λ) ρ w(λ) λ λ L(w) w< 2 w = 2 w> 2 PUSHED CRITICAL PULLED λ The saddle point equation yields a trivial result for Non trivial corrections requires a different approach

22 Right tail: pulled Coulomb gas : energy to pull a single charge out of the Wigner sea WIGNER SEMI CIRCLE 2 2 λ λ max = w Majumdar & Vergassola 09 when

23 Third order phase transition unstable This implies the behavior of the free energy stable The third derivative of the free energy is discontinuous Third order phase transition The crossover, for finite, between the two phases is described by the Tracy-Widom distribution S. N. Majumdar, G. S., J. Stat. Mech. P01012 (2014)

24 Third order phase transition 1 N crossover STABLE ( weakly interacting ) UNSTABLE ( strongly interacting ) 0 α = 1 w 1 2 S. N. Majumdar, G. S., J. Stat. Mech. P01012 (2014)

25 Similar third order phase transition in gauge theory

26 Similar third order phase transition in gauge theory U(N) lattice gauge theory in 2 d GROSS WITTEN WADIA transition (1980) 1 N 1 N crossover crossover WEAK STRONG STABLE ( weakly interacting ) UNSTABLE ( strongly interacting ) 0 g c coupling strength g 0 α = 1 w 1 2 Similar transition in lattice gauge theory Unstable phase = strong coupling phase of Yang-Mills gauge theory Stable phase = weak coupling phase of Yang-Mills gauge theory Tracy-Widom ditribution describes the crossover between the two regimes (at finite but large ): double scaling regime

27 Conclusion Largest eigenvalue of a Gaussian random matrix Application to the stability of large complex system Proba. distrib. func. (PDF) of : Coulomb gas (CG) with a wall Tracy-Widom distribution Physics of large deviation tails Left tail: pushed CG Right tail: unpushed CG Third order phase transition pushed/unpushed unstable/stable Similar third order transition in Yang-Mills gauge theories and other systems (conductance fluctuations, complexity in spin glasses, non-intersecting Brownian motions...)

Near extreme eigenvalues and the first gap of Hermitian random matrices

Near extreme eigenvalues and the first gap of Hermitian random matrices Near extreme eigenvalues and the first gap of Hermitian random matrices Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Sydney Random Matrix Theory Workshop 13-16 January 2014 Anthony Perret, G. S.,

More information

Maximal height of non-intersecting Brownian motions

Maximal height of non-intersecting Brownian motions Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay Collaborators: A. Comtet (LPTMS, Orsay) P. J.

More information

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES TOP EIGENVALUE OF CAUCHY RANDOM MATRICES with Satya N. Majumdar, Gregory Schehr and Dario Villamaina Pierpaolo Vivo (LPTMS - CNRS - Paris XI) Gaussian Ensembles N = 5 Semicircle Law LARGEST EIGENVALUE

More information

Top eigenvalue of a random matrix: Large deviations

Top eigenvalue of a random matrix: Large deviations Top eigenvalue of a random matrix: Large deviations Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France First Appearence of Random Matrices Covariance

More information

arxiv: v4 [cond-mat.stat-mech] 28 May 2015

arxiv: v4 [cond-mat.stat-mech] 28 May 2015 arxiv:1311.0580v4 [cond-mat.stat-mech] 28 May 2015 Top eigenvalue of a random matrix: large deviations and third order phase transition Satya N. Majumdar Université Paris-Sud, LPTMS, CNRS (UMR 8626), 91405

More information

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory Vicious Walkers, Random Matrices and 2-d Yang-Mills theory Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: A. Comtet (LPTMS, Orsay) P. J. Forrester

More information

KPZ growth equation and directed polymers universality and integrability

KPZ growth equation and directed polymers universality and integrability KPZ growth equation and directed polymers universality and integrability P. Le Doussal (LPTENS) with : Pasquale Calabrese (Univ. Pise, SISSA) Alberto Rosso (LPTMS Orsay) Thomas Gueudre (LPTENS,Torino)

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

Memory in Kardar-Parisi-Zhang growth:! exact results via the replica Bethe ansatz, and experiments

Memory in Kardar-Parisi-Zhang growth:! exact results via the replica Bethe ansatz, and experiments Memory in Kardar-Parisi-Zhang growth:! exact results via the replica Bethe ansatz, and experiments P. Le Doussal (LPTENS) - growth in plane, local stoch. rules => 1D KPZ class (integrability) - discrete

More information

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012 Noname manuscript No. will be inserted by the editor) arxiv:110.4438v1 [cond-mat.stat-mech] 16 Oct 01 Grégory Schehr Satya N. Majumdar Alain Comtet Peter J. Forrester Reunion probability of N vicious walkers:

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

Distribution of Bipartite Entanglement of a Random Pure State

Distribution of Bipartite Entanglement of a Random Pure State Distribution of Bipartite Entanglement of a Random Pure State Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: C. Nadal (Oxford

More information

Exact results from the replica Bethe ansatz from KPZ growth and random directed polymers

Exact results from the replica Bethe ansatz from KPZ growth and random directed polymers Exact results from the replica Bethe ansatz from KPZ growth and random directed polymers P. Le Doussal (LPTENS) with : Pasquale Calabrese (Univ. Pise, SISSA) Alberto Rosso (LPTMS Orsay) Thomas Gueudre

More information

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS David García-García May 13, 2016 Faculdade de Ciências da Universidade de Lisboa OVERVIEW Random Matrix Theory Introduction Matrix ensembles A sample computation:

More information

arxiv: v1 [cond-mat.stat-mech] 20 Nov 2017

arxiv: v1 [cond-mat.stat-mech] 20 Nov 2017 Large Deviations Satya N. ajumdar 1 and Grégory Schehr 1 1 LPTS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France (Dated: November 22, 2017) arxiv:1711.07571v1 [cond-mat.stat-mech] 20

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Real roots of random polynomials and zero crossing properties of diffusion equation

Real roots of random polynomials and zero crossing properties of diffusion equation Real roots of random polynomials and zero crossing properties of diffusion equation Grégory Schehr Laboratoire de Physique Théorique et Modèles Statistiques Orsay, Université Paris XI G. S., S. N. Majumdar,

More information

Geometric Dyson Brownian motion and May Wigner stability

Geometric Dyson Brownian motion and May Wigner stability Geometric Dyson Brownian motion and May Wigner stability Jesper R. Ipsen University of Melbourne Summer school: Randomness in Physics and Mathematics 2 Bielefeld 2016 joint work with Henning Schomerus

More information

Universal phenomena in random systems

Universal phenomena in random systems Tuesday talk 1 Page 1 Universal phenomena in random systems Ivan Corwin (Clay Mathematics Institute, Columbia University, Institute Henri Poincare) Tuesday talk 1 Page 2 Integrable probabilistic systems

More information

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008 Deformations of the Tracy-Widom distribution arxiv:0808.2434v1 [cond-mat.stat-mech] 18 Aug 2008 O. Bohigas 1, J. X. de Carvalho 2,3 and M. P. Pato 1,2 1 CNRS, Université Paris-Sud, UMR8626, LPTMS, Orsay

More information

The one-dimensional KPZ equation and its universality

The one-dimensional KPZ equation and its universality The one-dimensional KPZ equation and its universality T. Sasamoto Based on collaborations with A. Borodin, I. Corwin, P. Ferrari, T. Imamura, H. Spohn 28 Jul 2014 @ SPA Buenos Aires 1 Plan of the talk

More information

Integrable Probability. Alexei Borodin

Integrable Probability. Alexei Borodin Integrable Probability Alexei Borodin What is integrable probability? Imagine you are building a tower out of standard square blocks that fall down at random time moments. How tall will it be after a large

More information

Fluctuations of interacting particle systems

Fluctuations of interacting particle systems Stat Phys Page 1 Fluctuations of interacting particle systems Ivan Corwin (Columbia University) Stat Phys Page 2 Interacting particle systems & ASEP In one dimension these model mass transport, traffic,

More information

Grégory Schehr. Citizenship : French Date of birth : March 29, Senior Researcher (DR2) at CNRS in Theoretical Physics.

Grégory Schehr. Citizenship : French Date of birth : March 29, Senior Researcher (DR2) at CNRS in Theoretical Physics. Curriculum Vitae Grégory Schehr Citizenship : French Date of birth : March 29, 1977 Current position Senior Researcher (DR2) at CNRS in Theoretical Physics. Professional address Laboratoire de Physique

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Airy and Pearcey Processes

Airy and Pearcey Processes Airy and Pearcey Processes Craig A. Tracy UC Davis Probability, Geometry and Integrable Systems MSRI December 2005 1 Probability Space: (Ω, Pr, F): Random Matrix Models Gaussian Orthogonal Ensemble (GOE,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003 arxiv:cond-mat/0303262v1 [cond-mat.stat-mech] 13 Mar 2003 Quantum fluctuations and random matrix theory Maciej M. Duras Institute of Physics, Cracow University of Technology, ulica Podchor ażych 1, PL-30084

More information

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Craig A. Tracy UC Davis RHPIA 2005 SISSA, Trieste 1 Figure 1: Paul Painlevé,

More information

Grégory Schehr. Citizenship : French Date of birth : March 29, First class Junior Scientist (CR1) at CNRS in Theoretical Physics.

Grégory Schehr. Citizenship : French Date of birth : March 29, First class Junior Scientist (CR1) at CNRS in Theoretical Physics. Curriculum Vitae Grégory Schehr Citizenship : French Date of birth : March 29, 1977 Current position First class Junior Scientist (CR1) at CNRS in Theoretical Physics. Professional address Laboratoire

More information

A determinantal formula for the GOE Tracy-Widom distribution

A determinantal formula for the GOE Tracy-Widom distribution A determinantal formula for the GOE Tracy-Widom distribution Patrik L. Ferrari and Herbert Spohn Technische Universität München Zentrum Mathematik and Physik Department e-mails: ferrari@ma.tum.de, spohn@ma.tum.de

More information

Integrable probability: Beyond the Gaussian universality class

Integrable probability: Beyond the Gaussian universality class SPA Page 1 Integrable probability: Beyond the Gaussian universality class Ivan Corwin (Columbia University, Clay Mathematics Institute, Institute Henri Poincare) SPA Page 2 Integrable probability An integrable

More information

Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces

Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces * This is a simplified ppt intended for public opening Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces Kazumasa A. Takeuchi (Tokyo Tech) Joint work with Yohsuke T. Fukai (Univ. Tokyo &

More information

Fourier-like bases and Integrable Probability. Alexei Borodin

Fourier-like bases and Integrable Probability. Alexei Borodin Fourier-like bases and Integrable Probability Alexei Borodin Over the last two decades, a number of exactly solvable, integrable probabilistic systems have been analyzed (random matrices, random interface

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

1 Intro to RMT (Gene)

1 Intro to RMT (Gene) M705 Spring 2013 Summary for Week 2 1 Intro to RMT (Gene) (Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) ) We start with two independent families of R.V.s, {Z i,j } 1 i

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Universal Fluctuation Formulae for one-cut β-ensembles

Universal Fluctuation Formulae for one-cut β-ensembles Universal Fluctuation Formulae for one-cut β-ensembles with a combinatorial touch Pierpaolo Vivo with F. D. Cunden Phys. Rev. Lett. 113, 070202 (2014) with F.D. Cunden and F. Mezzadri J. Phys. A 48, 315204

More information

Statistical Inference and Random Matrices

Statistical Inference and Random Matrices Statistical Inference and Random Matrices N.S. Witte Institute of Fundamental Sciences Massey University New Zealand 5-12-2017 Joint work with Peter Forrester 6 th Wellington Workshop in Probability and

More information

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications J.P Bouchaud with: M. Potters, G. Biroli, L. Laloux, M. A. Miceli http://www.cfm.fr Portfolio theory: Basics Portfolio

More information

Spectral properties of random geometric graphs

Spectral properties of random geometric graphs Spectral properties of random geometric graphs C. P. Dettmann, O. Georgiou, G. Knight University of Bristol, UK Bielefeld, Dec 16, 2017 Outline 1 A spatial network model: the random geometric graph ().

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

The Tracy-Widom distribution is not infinitely divisible.

The Tracy-Widom distribution is not infinitely divisible. The Tracy-Widom distribution is not infinitely divisible. arxiv:1601.02898v1 [math.pr] 12 Jan 2016 J. Armando Domínguez-Molina Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa, México

More information

Insights into Large Complex Systems via Random Matrix Theory

Insights into Large Complex Systems via Random Matrix Theory Insights into Large Complex Systems via Random Matrix Theory Lu Wei SEAS, Harvard 06/23/2016 @ UTC Institute for Advanced Systems Engineering University of Connecticut Lu Wei Random Matrix Theory and Large

More information

Random matrices and determinantal processes

Random matrices and determinantal processes Random matrices and determinantal processes Patrik L. Ferrari Zentrum Mathematik Technische Universität München D-85747 Garching 1 Introduction The aim of this work is to explain some connections between

More information

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA LIMITING DISTRIBUTION OF LAST PASSAGE PERCOLATION MODELS JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA E-mail: baik@umich.edu We survey some results and applications

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Differential Equations for Dyson Processes

Differential Equations for Dyson Processes Differential Equations for Dyson Processes Joint work with Harold Widom I. Overview We call Dyson process any invariant process on ensembles of matrices in which the entries undergo diffusion. Dyson Brownian

More information

Directed random polymers and Macdonald processes. Alexei Borodin and Ivan Corwin

Directed random polymers and Macdonald processes. Alexei Borodin and Ivan Corwin Directed random polymers and Macdonald processes Alexei Borodin and Ivan Corwin Partition function for a semi-discrete directed random polymer are independent Brownian motions [O'Connell-Yor 2001] satisfies

More information

The Wasteland of Random with Supergravities. Liam McAllister Cornell

The Wasteland of Random with Supergravities. Liam McAllister Cornell The Wasteland of Random with Supergravities Liam McAllister Cornell String Phenomenology 2012, Cambridge June 27, 2012 Based on: The Wasteland of Random Supergravities David Marsh, L.M., Timm Wrase, 1112.3034,

More information

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Elisabeth Agoritsas (1), Thierry Giamarchi (2) Vincent Démery (3), Alberto Rosso (4) Reinaldo García-García (3),

More information

Geometric RSK, Whittaker functions and random polymers

Geometric RSK, Whittaker functions and random polymers Geometric RSK, Whittaker functions and random polymers Neil O Connell University of Warwick Advances in Probability: Integrability, Universality and Beyond Oxford, September 29, 2014 Collaborators: I.

More information

From the mesoscopic to microscopic scale in random matrix theory

From the mesoscopic to microscopic scale in random matrix theory From the mesoscopic to microscopic scale in random matrix theory (fixed energy universality for random spectra) With L. Erdős, H.-T. Yau, J. Yin Introduction A spacially confined quantum mechanical system

More information

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny Modification of the Porter-Thomas distribution by rank-one interaction Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Théorique et Modèles Statistiques, Orsay France XII Brunel-Bielefeld

More information

Spherical models of interface growth

Spherical models of interface growth Spherical models of interface growth Malte Henkel Groupe de Physique Statistique Institut Jean Lamour, Université de Lorraine Nancy, France co-author: X. Durang (KIAS Seoul) CompPhys 14, Leipzig, 27 th

More information

Fluctuations of the free energy of spherical spin glass

Fluctuations of the free energy of spherical spin glass Fluctuations of the free energy of spherical spin glass Jinho Baik University of Michigan 2015 May, IMS, Singapore Joint work with Ji Oon Lee (KAIST, Korea) Random matrix theory Real N N Wigner matrix

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009 onintersecting Brownian Interfaces and Wishart Random Matrices Céline adal and Satya. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques UMR 866 du CRS, Université Paris-Sud, Bâtiment 945

More information

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws Symeon Chatzinotas February 11, 2013 Luxembourg Outline 1. Random Matrix Theory 1. Definition 2. Applications 3. Asymptotics 2. Ensembles

More information

EIGENVECTOR OVERLAPS (AN RMT TALK) J.-Ph. Bouchaud (CFM/Imperial/ENS) (Joint work with Romain Allez, Joel Bun & Marc Potters)

EIGENVECTOR OVERLAPS (AN RMT TALK) J.-Ph. Bouchaud (CFM/Imperial/ENS) (Joint work with Romain Allez, Joel Bun & Marc Potters) EIGENVECTOR OVERLAPS (AN RMT TALK) J.-Ph. Bouchaud (CFM/Imperial/ENS) (Joint work with Romain Allez, Joel Bun & Marc Potters) Randomly Perturbed Matrices Questions in this talk: How similar are the eigenvectors

More information

From longest increasing subsequences to Whittaker functions and random polymers

From longest increasing subsequences to Whittaker functions and random polymers From longest increasing subsequences to Whittaker functions and random polymers Neil O Connell University of Warwick British Mathematical Colloquium, April 2, 2015 Collaborators: I. Corwin, T. Seppäläinen,

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

Distinct sites, common sites and maximal displacement of N random walkers

Distinct sites, common sites and maximal displacement of N random walkers Distinct sites, common sites and maximal displacement of N random walkers Anupam Kundu GGI workshop Florence Joint work with Satya N. Majumdar, LPTMS Gregory Schehr, LPTMS Outline 1. N independent walkers

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

Gaussian Free Field in beta ensembles and random surfaces. Alexei Borodin

Gaussian Free Field in beta ensembles and random surfaces. Alexei Borodin Gaussian Free Field in beta ensembles and random surfaces Alexei Borodin Corners of random matrices and GFF spectra height function liquid region Theorem As Unscaled fluctuations Gaussian (massless) Free

More information

Lectures 6 7 : Marchenko-Pastur Law

Lectures 6 7 : Marchenko-Pastur Law Fall 2009 MATH 833 Random Matrices B. Valkó Lectures 6 7 : Marchenko-Pastur Law Notes prepared by: A. Ganguly We will now turn our attention to rectangular matrices. Let X = (X 1, X 2,..., X n ) R p n

More information

Quantum central limit theorems

Quantum central limit theorems GREG ANDERSON University of Minnesota Ubiquity of algebraic Stieltjes transforms In joint work with O. Zeitouni we have introduced a soft method for proving algebraicity of Stieltjes transforms under hypotheses

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

Multifractality in simple systems. Eugene Bogomolny

Multifractality in simple systems. Eugene Bogomolny Multifractality in simple systems Eugene Bogomolny Univ. Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques, Orsay, France In collaboration with Yasar Atas Outlook 1 Multifractality Critical

More information

Rigidity of the 3D hierarchical Coulomb gas. Sourav Chatterjee

Rigidity of the 3D hierarchical Coulomb gas. Sourav Chatterjee Rigidity of point processes Let P be a Poisson point process of intensity n in R d, and let A R d be a set of nonzero volume. Let N(A) := A P. Then E(N(A)) = Var(N(A)) = vol(a)n. Thus, N(A) has fluctuations

More information

Gaussian Free Field in (self-adjoint) random matrices and random surfaces. Alexei Borodin

Gaussian Free Field in (self-adjoint) random matrices and random surfaces. Alexei Borodin Gaussian Free Field in (self-adjoint) random matrices and random surfaces Alexei Borodin Corners of random matrices and GFF spectra height function liquid region Theorem As Unscaled fluctuations Gaussian

More information

The Coulomb Gas of Random Supergravities. David Marsh Cornell University

The Coulomb Gas of Random Supergravities. David Marsh Cornell University The Coulomb Gas of Random Supergravities David Marsh Cornell University Based on: D.M., L. McAllister, T. Wrase, JHEP 3 (2012), 102, T. Bachlechner, D.M., L. McAllister, T. Wrase, to appear. 1. Random

More information

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES DEVIATION INEQUALITIES ON LARGEST EIGENVALUES M. Ledoux University of Toulouse, France In these notes, we survey developments on the asymptotic behavior of the largest eigenvalues of random matrix and

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

Tail sums of Wishart and GUE eigenvalues beyond the bulk edge.

Tail sums of Wishart and GUE eigenvalues beyond the bulk edge. Tail sums of Wishart and GUE eigenvalues beyond the bulk edge. arxiv:74.6398v2 [math.st] 24 Jul 27 Iain M. Johnstone Stanford University and Australian National University July 26, 27 Abstract Consider

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich From random matrices to free groups, through non-crossing partitions Michael Anshelevich March 4, 22 RANDOM MATRICES For each N, A (N), B (N) = independent N N symmetric Gaussian random matrices, i.e.

More information

Universality in Numerical Computations with Random Data. Case Studies.

Universality in Numerical Computations with Random Data. Case Studies. Universality in Numerical Computations with Random Data. Case Studies. Percy Deift and Thomas Trogdon Courant Institute of Mathematical Sciences Govind Menon Brown University Sheehan Olver The University

More information

Quantum Chaos as a Practical Tool in Many-Body Physics

Quantum Chaos as a Practical Tool in Many-Body Physics Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008 THANKS B. Alex

More information

Where Probability Meets Combinatorics and Statistical Mechanics

Where Probability Meets Combinatorics and Statistical Mechanics Where Probability Meets Combinatorics and Statistical Mechanics Daniel Ueltschi Department of Mathematics, University of Warwick MASDOC, 15 March 2011 Collaboration with V. Betz, N.M. Ercolani, C. Goldschmidt,

More information

Convergence of spectral measures and eigenvalue rigidity

Convergence of spectral measures and eigenvalue rigidity Convergence of spectral measures and eigenvalue rigidity Elizabeth Meckes Case Western Reserve University ICERM, March 1, 2018 Macroscopic scale: the empirical spectral measure Macroscopic scale: the empirical

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Advances in Mathematics and Theoretical Physics, Roma, 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

arxiv: v1 [math-ph] 25 Aug 2016

arxiv: v1 [math-ph] 25 Aug 2016 Modification of the Porter-Thomas distribution by rank-one interaction E. Bogomolny CNRS, Université Paris-Sud, UMR 8626 arxiv:68.744v [math-ph] 25 Aug 26 Laboratoire de Physique Théorique et Modèles Statistiques,

More information

Free Probability and Random Matrices: from isomorphisms to universality

Free Probability and Random Matrices: from isomorphisms to universality Free Probability and Random Matrices: from isomorphisms to universality Alice Guionnet MIT TexAMP, November 21, 2014 Joint works with F. Bekerman, Y. Dabrowski, A.Figalli, E. Maurel-Segala, J. Novak, D.

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 2 08 June 2006 Brownian Motion - Diffusion Einstein-Sutherland Relation for electric

More information

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Vladimir Zelevinsky NSCL/ Michigan State University Stony Brook October 3, 2008 Budker Institute of Nuclear Physics, Novosibirsk

More information

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications Quantum Billiards Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications University of Bristol, June 21-24 2010 Most pictures are courtesy of Arnd Bäcker

More information

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne Outline Eigenvalue PDFs Peter Forrester, M&S, University of Melbourne Hermitian matrices with real, complex or real quaternion elements Circular ensembles and classical groups Products of random matrices

More information

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator Stony Brook University Department of Physics and Astronomy The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator Savvas Zafeiropoulos July 29-August 3, 2013 Savvas

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories

The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories Hong Liu Massachusetts Institute of Technology based on Guido Festuccia, HL, to appear The arrow of time and space-like

More information

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES Ann. Inst. Fourier, Grenoble 55, 6 (5), 197 7 MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES b Craig A. TRACY & Harold WIDOM I. Introduction. For a large class of finite N determinantal

More information

arxiv: v1 [cond-mat.mes-hall] 23 Jun 2009

arxiv: v1 [cond-mat.mes-hall] 23 Jun 2009 EPJ manuscript No. (will be inserted by the editor) Conductance distribution in two-dimensional localized systems with and without magnetic fields J. Prior 1,2, A. M. Somoza 3 and M. Ortuño 3 arxiv:0906.4188v1

More information