RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

Size: px
Start display at page:

Download "RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS"

Transcription

1 RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS David García-García May 13, 2016 Faculdade de Ciências da Universidade de Lisboa

2 OVERVIEW Random Matrix Theory Introduction Matrix ensembles A sample computation: the density of the eigenvalues for GUE Toeplitz determinants Toeplitz operators The Strong Szegő Limit Theorem Minors of Toeplitz matrices

3 RANDOM MATRIX THEORY

4 INTRODUCTION The study of the asymptotics of statistics of the eigenvalues of random matrices

5 INTRODUCTION The study of the asymptotics of statistics of the eigenvalues of random matrices 2d Ising model: correlation functions along lines are determinants of Toeplitz matrices Montgomery s conjecture: the pair correlation between zeros of the Riemann zeta function is the same as the pair correlation between eigenvalues of the Gaussian Unitary Ensemble Baik-Deift-Johansson theorem: the length of the longest increasing subsequence of a random permutation of N numbers converges in distribution to the Tracy-Widom distribution of the largest eigenvalue of a random matrix from the Gaussian Unitary Ensemble Gauge theory, nuclear physics, engineering, telephone encription

6 INTRODUCTION The study of the asymptotics of statistics of the eigenvalues of random matrices 2d Ising model: correlation functions along lines are determinants of Toeplitz matrices Montgomery s conjecture: the pair correlation between zeros of the Riemann zeta function is the same as the pair correlation between eigenvalues of the Gaussian Unitary Ensemble Baik-Deift-Johansson theorem: the length of the longest increasing subsequence of a random permutation of N numbers converges in distribution to the Tracy-Widom distribution of the largest eigenvalue of a random matrix from the Gaussian Unitary Ensemble Gauge theory, nuclear physics, engineering, telephone encription We study matrix ensembles, which are spaces of matrices, often with certain symmetries, with a probability measure defined on the entries of the matrices

7 MATRIX ENSEMBLES The most studied ensembles are the invariant ensembles β = 1 Gaussian Orthogonal Ensemble (GOE), real symmetric matrices β = 2 Gaussian Unitary Ensemble (GUE), complex hermitian matrices β = 4 Gaussian Symplectic Ensemble (GSE), quaternionic self-dual matrices

8 MATRIX ENSEMBLES The most studied ensembles are the invariant ensembles β = 1 Gaussian Orthogonal Ensemble (GOE), real symmetric matrices β = 2 Gaussian Unitary Ensemble (GUE), complex hermitian matrices β = 4 Gaussian Symplectic Ensemble (GSE), quaternionic self-dual matrices together with a probability measure invariant under orthogonal, unitary or symplectic transformations respectively, and such that the entries of the matrices are independent random variables This makes the pdf to be of the form dp(m) = 1 exp( atr(m 2 ) + btr(m) + c)dm (a > 0; b, c R); Z N,β

9 MATRIX ENSEMBLES The most studied ensembles are the invariant ensembles β = 1 Gaussian Orthogonal Ensemble (GOE), real symmetric matrices β = 2 Gaussian Unitary Ensemble (GUE), complex hermitian matrices β = 4 Gaussian Symplectic Ensemble (GSE), quaternionic self-dual matrices together with a probability measure invariant under orthogonal, unitary or symplectic transformations respectively, and such that the entries of the matrices are independent random variables This makes the pdf to be of the form dp(m) = 1 exp( atr(m 2 ) + btr(m) + c)dm (a > 0; b, c R); Z N,β dp(x 1,, x N ) = 1 N N exp a x 2 j + b x j + c x j x i β dx 1 dx N Z N,β j=1 j=1 i<j

10 THE JOINT PROBABILITY FUNCTION: DETERMINANTAL FORM Starting from the Vandermonde determinant i<j (x j x i ) = x 1 x 2 x N x 2 1 x 2 2 x 2 N x N 1 1 x N 1 2 x N 1 N p 0 (x 1 ) p 0 (x 2 ) p 0 (x N ) p 1 (x 1 ) p 1 (x 2 ) p 1 (x N ) p N 1 (x 1 ) p N 1 (x 2 ) p N 1 (x N ),

11 THE JOINT PROBABILITY FUNCTION: DETERMINANTAL FORM Starting from the Vandermonde determinant x 1 x 2 x N p 0 (x 1 ) p 0 (x 2 ) p 0 (x N ) (x j x i ) = x 2 1 x 2 2 x 2 p 1 (x 1 ) p 1 (x 2 ) p 1 (x N ) N i<j, x N 1 1 x N 1 2 x N 1 p N 1 (x 1 ) p N 1 (x 2 ) p N 1 (x N ) N we see that the joint pdf has the determinantal form K N (x 1, x 1) K N (x 1, x 2) K N (x 1, x N ) P(x 1,, x N ) = 1 K N (x 2, x 1 ) K N (x 2, x 2 ) K N (x 2, x N ) det Z N,β, K N (x N, x 1 ) K N (x N, x 2 ) K N (x N, x N ) where N 1 K N (x i, x j ) = e x2 i /2 e x2 j /2 p k (x i )p k (x j ) k=0

12 A SAMPLE COMPUTATION: THE DENSITY OF THE EIGENVALUES FOR GUE If we choose the polynomials p k to satisfy p j (x)p k (x)e x2 dx = c j δ jk, the Hermite polynomials, then K N is a reproducing kernel, and thus the density of the eigenvalues becomes σ N (x) = P(x, x 2,, x N )dx 2 dx N = K N (x, x) = e p 2 k(x) x2 N 1 k=0

13 A SAMPLE COMPUTATION: THE DENSITY OF THE EIGENVALUES FOR GUE If we choose the polynomials p k to satisfy p j (x)p k (x)e x2 dx = c j δ jk, the Hermite polynomials, then K N is a reproducing kernel, and thus the density of the eigenvalues becomes σ N (x) = P(x, x 2,, x N )dx 2 dx N = K N (x, x) = e Thanks to Christoffel-Darboux formula N 1 p k (x)p k (y) = p N 1 p N k=0 p N (x)p N 1 (y) p N 1 (x)p N (y), x y p 2 k(x) x2 N 1 the analysis of this expression is much simplified In the end, this leads to Wigner s semicircle law: σ N (x) 1 π 2N x 2 ( x < 2N) k=0

14 TOEPLITZ DETERMINANTS

15 TOEPLITZ OPERATORS The Fourier coefficients of functions f L 1 (T) are defined as f n = 1 2π π π f(e iθ )e inθ dθ (n Z)

16 TOEPLITZ OPERATORS The Fourier coefficients of functions f L 1 (T) are defined as f n = 1 2π π π f(e iθ )e inθ dθ (n Z) If f L (T), the following expression defines a bounded operator on the Hardy space H 2 (P denotes the projection P : L 2 H 2 ) T f (g) = P(fg) (g H 2 )

17 TOEPLITZ OPERATORS The Fourier coefficients of functions f L 1 (T) are defined as f n = 1 2π π π f(e iθ )e inθ dθ (n Z) If f L (T), the following expression defines a bounded operator on the Hardy space H 2 (P denotes the projection P : L 2 H 2 ) T f (g) = P(fg) (g H 2 ) This is called a Toeplitz operator, and it has the following matrix expression f 0 f 1 f 2 f 1 f 0 f 1 T f = (f i j ) i,j=1 = f 2 f 1 f 0 Its finite truncations T (N) f are called Toeplitz matrices

18 THE STRONG SZEGŐ LIMIT THEOREM Theorem (Szegő, 1952) Let f(e iθ ) = exp( k= c ke ikθ ), with k= k c k 2 < ; then ( ( ) ) lim det T (N) N f /e Nc 0 = exp kc k c k k=1

19 THE STRONG SZEGŐ LIMIT THEOREM Theorem (Szegő, 1952) Let f(e iθ ) = exp( k= c ke ikθ ), with k= k c k 2 < ; then ( ( ) ) lim det T (N) N f /e Nc 0 = exp kc k c k k=1 A consequence: for positive f, the eigenvalues are uniformly distributed 1 ( ) log λ (N) log λ (N) N c 0 = 1 π c k (e ikθ ) dθ N 2π π k=

20 THE STRONG SZEGŐ LIMIT THEOREM Theorem (Szegő, 1952) Let f(e iθ ) = exp( k= c ke ikθ ), with k= k c k 2 < ; then ( ( ) ) lim det T (N) N f /e Nc 0 = exp kc k c k k=1 A consequence: for positive f, the eigenvalues are uniformly distributed 1 ( ) log λ (N) log λ (N) N c 0 = 1 π c k (e ikθ ) dθ N 2π π There are at least 9 proofs of this result! k=

21 MINORS OF TOEPLITZ MATRICES If we consider a minor of a Toeplitz matrix, such as f 0 f 1 f 2 f 3 f 4 f 5 f 1 f 0 f 1 f 2 f 3 f 4 f 2 f 1 f 0 f 1 f 2 f 3 f 3 f 2 f 1 f 0 f 1 f 2 = (f i j ) N i,j=1, f 4 f 3 f 2 f 1 f 0 f 1

22 MINORS OF TOEPLITZ MATRICES If we consider a minor of a Toeplitz matrix, such as f 0 f 1 f 2 f 3 f 4 f 5 f 1 f 0 f 1 f 2 f 3 f 4 f 2 f 1 f 0 f 1 f 2 f 3 f 3 f 2 f 1 f 0 f 1 f 2 = (f i j ) N i,j=1, f 4 f 3 f 2 f 1 f 0 f 1

23 MINORS OF TOEPLITZ MATRICES If we consider a minor of a Toeplitz matrix, such as f 0 f 1 f 2 f 3 f 4 f 5 f 1 f 0 f 1 f 2 f 3 f 4 f 2 f 1 f 0 f 1 f 2 f 3 f 3 f 2 f 1 f 0 f 1 f 2 = (f i j µi ) N i,j=1, f 4 f 3 f 2 f 1 f 0 f 1

24 MINORS OF TOEPLITZ MATRICES If we consider a minor of a Toeplitz matrix, such as f 0 f 1 f 2 f 3 f 4 f 5 f 1 f 0 f 1 f 2 f 3 f 4 f 2 f 1 f 0 f 1 f 2 f 3 f 3 f 2 f 1 f 0 f 1 f 2 = (f i j µi ) N i,j=1, f 4 f 3 f 2 f 1 f 0 f 1 the following formula holds ( ( ) lim det T (N) N f,µ /enc 0 = 1 ) χ µ (π) (σ, π) exp kc k c k, m! π S m where µ is a partition of m, and (σ, π) = where π has γ k cycles of order k (kc k ) γ k, k=1 k=1

25 BIBLIOGRAPHY P Deift and D Gioev Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics 18 (2009) E Basor Toeplitz determinants, Fisher-Hartwig symbols, and random matrices, in Recent Perspectives in Random Matrix Theory and Number Theory , Cambridge University Press (2005) P Deift, A Its and I Krasovsky Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model Some history and some recent results, Comm Pure Appl Math, 66, (2013) [arxiv: v3 [mathfa]] D Bump and P Diaconis Toeplitz Minors, J Combin Theory Ser A, 97(2), (2002) Beamer template Metropolis, by Matthias Vogelgesang

26 THANK YOU!

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Craig A. Tracy UC Davis RHPIA 2005 SISSA, Trieste 1 Figure 1: Paul Painlevé,

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

The Tracy-Widom distribution is not infinitely divisible.

The Tracy-Widom distribution is not infinitely divisible. The Tracy-Widom distribution is not infinitely divisible. arxiv:1601.02898v1 [math.pr] 12 Jan 2016 J. Armando Domínguez-Molina Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa, México

More information

Airy and Pearcey Processes

Airy and Pearcey Processes Airy and Pearcey Processes Craig A. Tracy UC Davis Probability, Geometry and Integrable Systems MSRI December 2005 1 Probability Space: (Ω, Pr, F): Random Matrix Models Gaussian Orthogonal Ensemble (GOE,

More information

Fredholm determinant with the confluent hypergeometric kernel

Fredholm determinant with the confluent hypergeometric kernel Fredholm determinant with the confluent hypergeometric kernel J. Vasylevska joint work with I. Krasovsky Brunel University Dec 19, 2008 Problem Statement Let K s be the integral operator acting on L 2

More information

Random matrices and determinantal processes

Random matrices and determinantal processes Random matrices and determinantal processes Patrik L. Ferrari Zentrum Mathematik Technische Universität München D-85747 Garching 1 Introduction The aim of this work is to explain some connections between

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

A determinantal formula for the GOE Tracy-Widom distribution

A determinantal formula for the GOE Tracy-Widom distribution A determinantal formula for the GOE Tracy-Widom distribution Patrik L. Ferrari and Herbert Spohn Technische Universität München Zentrum Mathematik and Physik Department e-mails: ferrari@ma.tum.de, spohn@ma.tum.de

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Fredholm Determinants

Fredholm Determinants Fredholm Determinants Estelle Basor American Institute of Mathematics Palo Alto, California The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 2014

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices Michel Ledoux Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse, France E-mail: ledoux@math.ups-tlse.fr

More information

Schur polynomials, banded Toeplitz matrices and Widom s formula

Schur polynomials, banded Toeplitz matrices and Widom s formula Schur polynomials, banded Toeplitz matrices and Widom s formula Per Alexandersson Department of Mathematics Stockholm University S-10691, Stockholm, Sweden per@math.su.se Submitted: Aug 24, 2012; Accepted:

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Update on the beta ensembles

Update on the beta ensembles Update on the beta ensembles Brian Rider Temple University with M. Krishnapur IISC, J. Ramírez Universidad Costa Rica, B. Virág University of Toronto The Tracy-Widom laws Consider a random Hermitian n

More information

Lectures 6 7 : Marchenko-Pastur Law

Lectures 6 7 : Marchenko-Pastur Law Fall 2009 MATH 833 Random Matrices B. Valkó Lectures 6 7 : Marchenko-Pastur Law Notes prepared by: A. Ganguly We will now turn our attention to rectangular matrices. Let X = (X 1, X 2,..., X n ) R p n

More information

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES DEVIATION INEQUALITIES ON LARGEST EIGENVALUES M. Ledoux University of Toulouse, France In these notes, we survey developments on the asymptotic behavior of the largest eigenvalues of random matrix and

More information

ORTHOGONAL POLYNOMIALS

ORTHOGONAL POLYNOMIALS ORTHOGONAL POLYNOMIALS 1. PRELUDE: THE VAN DER MONDE DETERMINANT The link between random matrix theory and the classical theory of orthogonal polynomials is van der Monde s determinant: 1 1 1 (1) n :=

More information

Extreme eigenvalue fluctutations for GUE

Extreme eigenvalue fluctutations for GUE Extreme eigenvalue fluctutations for GUE C. Donati-Martin 204 Program Women and Mathematics, IAS Introduction andom matrices were introduced in multivariate statistics, in the thirties by Wishart [Wis]

More information

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31 STAT C26A / MATH C223A : Stein s method and applications Lecture 3 Lecture date: Nov. 7, 27 Scribe: Anand Sarwate Gaussian concentration recap If W, T ) is a pair of random variables such that for all

More information

arxiv:math/ v2 [math.pr] 10 Aug 2005

arxiv:math/ v2 [math.pr] 10 Aug 2005 arxiv:math/0403090v2 [math.pr] 10 Aug 2005 ORTHOGOAL POLYOMIAL ESEMBLES I PROBABILITY THEORY By Wolfgang König 1 10 August, 2005 Abstract: We survey a number of models from physics, statistical mechanics,

More information

1 Intro to RMT (Gene)

1 Intro to RMT (Gene) M705 Spring 2013 Summary for Week 2 1 Intro to RMT (Gene) (Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) ) We start with two independent families of R.V.s, {Z i,j } 1 i

More information

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES Ann. Inst. Fourier, Grenoble 55, 6 (5), 197 7 MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES b Craig A. TRACY & Harold WIDOM I. Introduction. For a large class of finite N determinantal

More information

From the mesoscopic to microscopic scale in random matrix theory

From the mesoscopic to microscopic scale in random matrix theory From the mesoscopic to microscopic scale in random matrix theory (fixed energy universality for random spectra) With L. Erdős, H.-T. Yau, J. Yin Introduction A spacially confined quantum mechanical system

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

On the Error Bound in the Normal Approximation for Jack Measures (Joint work with Le Van Thanh)

On the Error Bound in the Normal Approximation for Jack Measures (Joint work with Le Van Thanh) On the Error Bound in the Normal Approximation for Jack Measures (Joint work with Le Van Thanh) Louis H. Y. Chen National University of Singapore International Colloquium on Stein s Method, Concentration

More information

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA LIMITING DISTRIBUTION OF LAST PASSAGE PERCOLATION MODELS JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA E-mail: baik@umich.edu We survey some results and applications

More information

Random matrices and the Riemann zeros

Random matrices and the Riemann zeros Random matrices and the Riemann zeros Bruce Bartlett Talk given in Postgraduate Seminar on 5th March 2009 Abstract Random matrices and the Riemann zeta function came together during a chance meeting between

More information

Determinants of Perturbations of Finite Toeplitz Matrices. Estelle Basor American Institute of Mathematics

Determinants of Perturbations of Finite Toeplitz Matrices. Estelle Basor American Institute of Mathematics Determinants of Perturbations of Finite Toeplitz Matrices Estelle Basor American Institute of Mathematics October 2010 One of the purposes of this talk is to describe a Helton observation that fundamentally

More information

Near extreme eigenvalues and the first gap of Hermitian random matrices

Near extreme eigenvalues and the first gap of Hermitian random matrices Near extreme eigenvalues and the first gap of Hermitian random matrices Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Sydney Random Matrix Theory Workshop 13-16 January 2014 Anthony Perret, G. S.,

More information

Eigenvalue Statistics for Beta-Ensembles. Ioana Dumitriu

Eigenvalue Statistics for Beta-Ensembles. Ioana Dumitriu Eigenvalue Statistics for Beta-Ensembles by Ioana Dumitriu B.A., New York University, 1999 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of DOCTOR

More information

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Central Limit Theorems for linear statistics for Biorthogonal Ensembles Central Limit Theorems for linear statistics for Biorthogonal Ensembles Maurice Duits, Stockholm University Based on joint work with Jonathan Breuer (HUJI) Princeton, April 2, 2014 M. Duits (SU) CLT s

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

Maximal height of non-intersecting Brownian motions

Maximal height of non-intersecting Brownian motions Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay Collaborators: A. Comtet (LPTMS, Orsay) P. J.

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part I Manuela Girotti based on M. Girotti s PhD thesis and A. Kuijlaars notes from Les Houches Winter School 202 Contents Point Processes

More information

References 167. dx n x2 =2

References 167. dx n x2 =2 References 1. G. Akemann, J. Baik, P. Di Francesco (editors), The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011. 2. G. Anderson, A. Guionnet, O. Zeitouni, An Introduction

More information

Random matrix theory and log-correlated Gaussian fields

Random matrix theory and log-correlated Gaussian fields Random matrix theory and log-correlated Gaussian fields Nick Simm Collaborators : Yan Fyodorov and Boris Khoruzhenko (Queen Mary, London) Mathematics Institute, Warwick University, Coventry, UK XI Brunel-Bielefeld

More information

OPSF, Random Matrices and Riemann-Hilbert problems

OPSF, Random Matrices and Riemann-Hilbert problems OPSF, Random Matrices and Riemann-Hilbert problems School on Orthogonal Polynomials in Approximation Theory and Mathematical Physics, ICMAT 23 27 October, 2017 Plan of the course lecture 1: Orthogonal

More information

Random Toeplitz Matrices

Random Toeplitz Matrices Arnab Sen University of Minnesota Conference on Limits Theorems in Probability, IISc January 11, 2013 Joint work with Bálint Virág What are Toeplitz matrices? a0 a 1 a 2... a1 a0 a 1... a2 a1 a0... a (n

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

Random Growth and Random Matrices

Random Growth and Random Matrices Random Growth and Random Matrices Kurt Johansson Abstract. We give a survey of some of the recent results on certain two-dimensional random growth models and their relation to random matrix theory, in

More information

Orthogonal Polynomials, Perturbed Hankel Determinants. and. Random Matrix Models

Orthogonal Polynomials, Perturbed Hankel Determinants. and. Random Matrix Models Orthogonal Polynomials, Perturbed Hankel Determinants and Random Matrix Models A thesis presented for the degree of Doctor of Philosophy of Imperial College London and the Diploma of Imperial College by

More information

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications Quantum Billiards Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications University of Bristol, June 21-24 2010 Most pictures are courtesy of Arnd Bäcker

More information

Fluctuations from the Semicircle Law Lecture 4

Fluctuations from the Semicircle Law Lecture 4 Fluctuations from the Semicircle Law Lecture 4 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 23, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 4 May 23, 2014

More information

Discrete Toeplitz Determinants and their Applications

Discrete Toeplitz Determinants and their Applications Discrete Toeplitz Determinants and their Applications by Zhipeng Liu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Mathematics in The University

More information

Asymptotics of Hermite polynomials

Asymptotics of Hermite polynomials Asymptotics of Hermite polynomials Michael Lindsey We motivate the study of the asymptotics of Hermite polynomials via their appearance in the analysis of the Gaussian Unitary Ensemble (GUE). Following

More information

Differential Equations for Dyson Processes

Differential Equations for Dyson Processes Differential Equations for Dyson Processes Joint work with Harold Widom I. Overview We call Dyson process any invariant process on ensembles of matrices in which the entries undergo diffusion. Dyson Brownian

More information

Homogenization of the Dyson Brownian Motion

Homogenization of the Dyson Brownian Motion Homogenization of the Dyson Brownian Motion P. Bourgade, joint work with L. Erdős, J. Yin, H.-T. Yau Cincinnati symposium on probability theory and applications, September 2014 Introduction...........

More information

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Interacting Particle Systems, Growth Models and Random Matrices Workshop Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Leonid Petrov Department of Mathematics, Northeastern University,

More information

A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices

A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices Journal of Statistical Physics, Vol. 18, Nos. 5/6, September ( ) A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices Alexander Soshnikov 1 Received

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne Outline Eigenvalue PDFs Peter Forrester, M&S, University of Melbourne Hermitian matrices with real, complex or real quaternion elements Circular ensembles and classical groups Products of random matrices

More information

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES O THE COVERGECE OF THE EAREST EIGHBOUR EIGEVALUE SPACIG DISTRIBUTIO FOR ORTHOGOAL AD SYMPLECTIC ESEMBLES Dissertation zur Erlangung des Doktorgrades der aturwissenschaften an der Fakultät für Mathematik

More information

arxiv: v2 [cond-mat.dis-nn] 9 Feb 2011

arxiv: v2 [cond-mat.dis-nn] 9 Feb 2011 Level density and level-spacing distributions of random, self-adjoint, non-hermitian matrices Yogesh N. Joglekar and William A. Karr Department of Physics, Indiana University Purdue University Indianapolis

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Advances in Mathematics and Theoretical Physics, Roma, 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Rectangular Young tableaux and the Jacobi ensemble

Rectangular Young tableaux and the Jacobi ensemble Rectangular Young tableaux and the Jacobi ensemble Philippe Marchal October 20, 2015 Abstract It has been shown by Pittel and Romik that the random surface associated with a large rectangular Young tableau

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

A Generalization of Wigner s Law

A Generalization of Wigner s Law A Generalization of Wigner s Law Inna Zakharevich June 2, 2005 Abstract We present a generalization of Wigner s semicircle law: we consider a sequence of probability distributions (p, p 2,... ), with mean

More information

Numerical Methods for Random Matrices

Numerical Methods for Random Matrices Numerical Methods for Random Matrices MIT 18.95 IAP Lecture Series Per-Olof Persson (persson@mit.edu) January 23, 26 1.9.8.7 Random Matrix Eigenvalue Distribution.7.6.5 β=1 β=2 β=4 Probability.6.5.4.4

More information

Increasing and Decreasing Subsequences

Increasing and Decreasing Subsequences Increasing and Decreasing Subsequences Richard P. Stanley M.I.T. Permutations Permutations First lecture: increasing and decreasing subsequences Permutations First lecture: increasing and decreasing

More information

Two-periodic Aztec diamond

Two-periodic Aztec diamond Two-periodic Aztec diamond Arno Kuijlaars (KU Leuven) joint work with Maurice Duits (KTH Stockholm) Optimal and Random Point Configurations ICERM, Providence, RI, U.S.A., 27 February 2018 Outline 1. Aztec

More information

Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities

Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities arxiv:math/9908063v [math.pr] 3 Aug 999 Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities Alexander Soshnikov California Institute of Technology

More information

Integrable probability: Beyond the Gaussian universality class

Integrable probability: Beyond the Gaussian universality class SPA Page 1 Integrable probability: Beyond the Gaussian universality class Ivan Corwin (Columbia University, Clay Mathematics Institute, Institute Henri Poincare) SPA Page 2 Integrable probability An integrable

More information

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Stochastic Differential Equations Related to Soft-Edge Scaling Limit Stochastic Differential Equations Related to Soft-Edge Scaling Limit Hideki Tanemura Chiba univ. (Japan) joint work with Hirofumi Osada (Kyushu Unv.) 2012 March 29 Hideki Tanemura (Chiba univ.) () SDEs

More information

arxiv:math/ v1 [math.fa] 1 Jan 2001

arxiv:math/ v1 [math.fa] 1 Jan 2001 arxiv:math/0101008v1 [math.fa] 1 Jan 2001 On the determinant formulas by Borodin, Okounkov, Baik, Deift, and Rains A. Böttcher We give alternative proofs to (block case versions of) some formulas for Toeplitz

More information

DLR equations for the Sineβ process and applications

DLR equations for the Sineβ process and applications DLR equations for the Sineβ process and applications Thomas Leble (Courant Institute - NYU) Columbia University - 09/28/2018 Joint work with D. Dereudre, A. Hardy, M. Maı da (Universite Lille 1) Log-gases

More information

Random Matrix Theory for the Wilson-Dirac operator

Random Matrix Theory for the Wilson-Dirac operator Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of Physics and Astronomy SUNY Stony Brook (NY, USA) Bielefeld, December 14th, 2011 Outline Introduction in Lattice QCD and in

More information

Primes, partitions and permutations. Paul-Olivier Dehaye ETH Zürich, October 31 st

Primes, partitions and permutations. Paul-Olivier Dehaye ETH Zürich, October 31 st Primes, Paul-Olivier Dehaye pdehaye@math.ethz.ch ETH Zürich, October 31 st Outline Review of Bump & Gamburd s method A theorem of Moments of derivatives of characteristic polynomials Hypergeometric functions

More information

Geometric RSK, Whittaker functions and random polymers

Geometric RSK, Whittaker functions and random polymers Geometric RSK, Whittaker functions and random polymers Neil O Connell University of Warwick Advances in Probability: Integrability, Universality and Beyond Oxford, September 29, 2014 Collaborators: I.

More information

Universal Fluctuation Formulae for one-cut β-ensembles

Universal Fluctuation Formulae for one-cut β-ensembles Universal Fluctuation Formulae for one-cut β-ensembles with a combinatorial touch Pierpaolo Vivo with F. D. Cunden Phys. Rev. Lett. 113, 070202 (2014) with F.D. Cunden and F. Mezzadri J. Phys. A 48, 315204

More information

Asymptotic Behavior of the Random 3-Regular Bipartite Graph

Asymptotic Behavior of the Random 3-Regular Bipartite Graph Asymptotic Behavior of the Random 3-Regular Bipartite Graph Tim Novikoff Courant Institute New York University, 10012 December 17,2002 Abstract In 2001, two numerical experiments were performed to observe

More information

arxiv: v2 [math.pr] 2 Nov 2009

arxiv: v2 [math.pr] 2 Nov 2009 arxiv:0904.2958v2 [math.pr] 2 Nov 2009 Limit Distribution of Eigenvalues for Random Hankel and Toeplitz Band Matrices Dang-Zheng Liu and Zheng-Dong Wang School of Mathematical Sciences Peking University

More information

Numerical Evaluation of Standard Distributions in Random Matrix Theory

Numerical Evaluation of Standard Distributions in Random Matrix Theory Numerical Evaluation of Standard Distributions in Random Matrix Theory A Review of Folkmar Bornemann s MATLAB Package and Paper Matt Redmond Department of Mathematics Massachusetts Institute of Technology

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Workshop in geometric functional analysis, MSRI, nov. 13 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

Triangular matrices and biorthogonal ensembles

Triangular matrices and biorthogonal ensembles /26 Triangular matrices and biorthogonal ensembles Dimitris Cheliotis Department of Mathematics University of Athens UK Easter Probability Meeting April 8, 206 2/26 Special densities on R n Example. n

More information

Random matrix pencils and level crossings

Random matrix pencils and level crossings Albeverio Fest October 1, 2018 Topics to discuss Basic level crossing problem 1 Basic level crossing problem 2 3 Main references Basic level crossing problem (i) B. Shapiro, M. Tater, On spectral asymptotics

More information

Multiple orthogonal polynomials. Bessel weights

Multiple orthogonal polynomials. Bessel weights for modified Bessel weights KU Leuven, Belgium Madison WI, December 7, 2013 Classical orthogonal polynomials The (very) classical orthogonal polynomials are those of Jacobi, Laguerre and Hermite. Classical

More information

Symmetrized random permutations

Symmetrized random permutations Symmetrized random permutations Jinho Baik and Eric M. Rains September 23, 1999 Abstract Selecting N random points in a unit square corresponds to selecting a random permutation. Placing symmetry restrictions

More information

RANDOM HERMITIAN MATRICES AND GAUSSIAN MULTIPLICATIVE CHAOS NATHANAËL BERESTYCKI, CHRISTIAN WEBB, AND MO DICK WONG

RANDOM HERMITIAN MATRICES AND GAUSSIAN MULTIPLICATIVE CHAOS NATHANAËL BERESTYCKI, CHRISTIAN WEBB, AND MO DICK WONG RANDOM HERMITIAN MATRICES AND GAUSSIAN MULTIPLICATIVE CHAOS NATHANAËL BERESTYCKI, CHRISTIAN WEBB, AND MO DICK WONG Abstract We prove that when suitably normalized, small enough powers of the absolute value

More information

MATRIX INTEGRALS AND MAP ENUMERATION 2

MATRIX INTEGRALS AND MAP ENUMERATION 2 MATRIX ITEGRALS AD MAP EUMERATIO 2 IVA CORWI Abstract. We prove the generating function formula for one face maps and for plane diagrams using techniques from Random Matrix Theory and orthogonal polynomials.

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

New York Journal of Mathematics. Spectral Approximation of Multiplication Operators

New York Journal of Mathematics. Spectral Approximation of Multiplication Operators New York Journal of Mathematics New York J. Math. 1 (1995) 75 96. Spectral Approximation of Multiplication Operators Kent E. Morrison Abstract. A linear operator on a Hilbert space may be approximated

More information

Rigidity of the 3D hierarchical Coulomb gas. Sourav Chatterjee

Rigidity of the 3D hierarchical Coulomb gas. Sourav Chatterjee Rigidity of point processes Let P be a Poisson point process of intensity n in R d, and let A R d be a set of nonzero volume. Let N(A) := A P. Then E(N(A)) = Var(N(A)) = vol(a)n. Thus, N(A) has fluctuations

More information

Statistical Inference and Random Matrices

Statistical Inference and Random Matrices Statistical Inference and Random Matrices N.S. Witte Institute of Fundamental Sciences Massey University New Zealand 5-12-2017 Joint work with Peter Forrester 6 th Wellington Workshop in Probability and

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

Orthogonal Polynomial Ensembles

Orthogonal Polynomial Ensembles Chater 11 Orthogonal Polynomial Ensembles 11.1 Orthogonal Polynomials of Scalar rgument Let wx) be a weight function on a real interval, or the unit circle, or generally on some curve in the comlex lane.

More information

Insights into Large Complex Systems via Random Matrix Theory

Insights into Large Complex Systems via Random Matrix Theory Insights into Large Complex Systems via Random Matrix Theory Lu Wei SEAS, Harvard 06/23/2016 @ UTC Institute for Advanced Systems Engineering University of Connecticut Lu Wei Random Matrix Theory and Large

More information

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES TOP EIGENVALUE OF CAUCHY RANDOM MATRICES with Satya N. Majumdar, Gregory Schehr and Dario Villamaina Pierpaolo Vivo (LPTMS - CNRS - Paris XI) Gaussian Ensembles N = 5 Semicircle Law LARGEST EIGENVALUE

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS Sheehan Olver NA Group, Oxford We are interested in numerically computing eigenvalue statistics of the GUE ensembles, i.e.,

More information

Determinantal Processes And The IID Gaussian Power Series

Determinantal Processes And The IID Gaussian Power Series Determinantal Processes And The IID Gaussian Power Series Yuval Peres U.C. Berkeley Talk based on work joint with: J. Ben Hough Manjunath Krishnapur Bálint Virág 1 Samples of translation invariant point

More information

ON THE SECOND-ORDER CORRELATION FUNCTION OF THE CHARACTERISTIC POLYNOMIAL OF A HERMITIAN WIGNER MATRIX

ON THE SECOND-ORDER CORRELATION FUNCTION OF THE CHARACTERISTIC POLYNOMIAL OF A HERMITIAN WIGNER MATRIX ON THE SECOND-ORDER CORRELATION FUNCTION OF THE CHARACTERISTIC POLYNOMIAL OF A HERMITIAN WIGNER MATRIX F. GÖTZE AND H. KÖSTERS Abstract. We consider the asymptotics of the second-order correlation function

More information

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap Institute of Fundamental Sciences Massey University New Zealand 29 August 2017 A. A. Kapaev Memorial Workshop Michigan

More information

Introduction to determinantal point processes from a quantum probability viewpoint

Introduction to determinantal point processes from a quantum probability viewpoint Introduction to determinantal point processes from a quantum probability viewpoint Alex D. Gottlieb January 2, 2006 Abstract Determinantal point processes on a measure space (X, Σ, µ) whose kernels represent

More information