DLR equations for the Sineβ process and applications

Size: px
Start display at page:

Download "DLR equations for the Sineβ process and applications"

Transcription

1 DLR equations for the Sineβ process and applications Thomas Leble (Courant Institute - NYU) Columbia University - 09/28/2018 Joint work with D. Dereudre, A. Hardy, M. Maı da (Universite Lille 1)

2 Log-gases N point particles X N = (x 1,..., x N ) in R Logarithmic pairwise interaction log x y Confining field/potential V (x) (continuous + growth at infinity, e.g. V (x) = x 2 ). Energy in the state X N H N ( X N ) := 1 log x i x j + 2 i j N NV (x i ) i=1

3 Gibbs measure Canonical Gibbs measure at (inverse) temperature β dp N,β ( X N ) := 1 ( exp βh N ( Z ) X N ) dx N N,β dx N = Lebesgue on R N, with Z N,β (the partition function) ˆ ( Z N,β := exp βh N ( ) X N ) dx N. R N Questions Asymptotic behavior of the system (N )? Fluctuations? Dependency on β?

4 Motivation I - Random Matrix Theory (RMT) Classical Gaussian Hermitian ensembles Large (N N) matrix with Gaussian coefficients in R, C, H (quaternions) Coefficients independent up to symmetry (symmetric, Hermitian, self-dual). Observation (Dyson, Ginibre) Joint law of eigenvalues explicitly computable (thanks to Gaussian distribution). Coincides with the canonical Gibbs measure of a log-gas. dp RMT (λ 1,..., λ N ) = 1 Z N,β exp ( βh N (λ 1,..., λ N )) dλ 1... dλ N β = 1, 2, 4 (GOE, GUE, GSE), V quadratic. For all β, existence of a tridiagonal matrix model whose eigenvalues are distributed as P N,β (Dimitriu-Edelman).

5 Motivation II - Statistical physics Statistical physics Model with singular, long-range interactions in R. Real-life implementations: as square of wave-function for certain quantum many-body systems (Calogero-Sutherland model). d = 1 before d = 2.

6 Global behavior Empirical measure Encodes the global/macroscopic behavior µ N := 1 N N δ xi. i=1 lim µ N = µ eq,v equilibrium measure N V quadratic Wigner s semicircle law dµ(x) = 1 4 x 2π 2 dx.

7

8 What is known about microscopic behavior? For β > 0, existence of a limit point process (Valkó-Virág, also Killip-Stoiciu) named Sine β point process (for V quadratic). Starting point: tridiagonal model of Dumitriu-Edelman. The description of the infinite process involves a coupled one-parameter family of stochastic differential equations driven by a two-dimensional standard Brownian motion. Now: spectrum of a random differential operator (Valkó-Virág). Universality of the microscopic behavior with respect to V Bourgade-Erdös-Yau-Lin, Bekerman-Figalli-Guionnet

9 Properties of Sine β Some properties of the limit are known: A CLT for the number of points in [0, R] Kritchevski-Valkó-Virág with standard deviation log R. Maximal deviation of the counting process Holcomb-Paquette, overcrowding Holcomb-Valkó, large deviations for the number of points Holcomb-Valkó, large gaps Valkó-Virág Behavior as β + : crystallization, and β 0: Poisson Allez-Dumaz.

10 Physical description of the limit process? Finite N: dp N,β ( X N ) := 1 ( exp βh N ( Z ) X N ) dx N N,β X N = N i=1 δ xi N i=1 δ Nxi rescaling C = i Z The energy H N ( X N ) H(C) The volume d X N dp(c) (Poisson) Perhaps δ pi infinite configuration dsine β (C) := 1 Z exp ( βh(c)) dp(c)??? Answer: no.

11 DLR equations Dobrushin-Lanford-Ruelle (DLR) formalism: condition on the exterior. Λ γ Λ c η γ Λ c

12 DLR for Sine β Theorem (Dereudre - Hardy - L. - Maïda) Given a compact Λ R, and given an exterior configuration γ, the law of the configuration η in Λ knowing γ Λ c is given by a Gibbs measure with density Sine β (η γ Λ c ) exp ( β (H(η) + M(η, γ Λ c ))) db(η), H(η) is the logarithmic interaction of η with itself, and M(η, γ Λ c ) corresponds to the effect of the exterior configuration in Λ. db(η) Bernoulli point process with a fixed number of points. Already known for integrable case (β = 2) Bufetov, Kuijlaars- Miña-Díaz.

13 Step 1: Defining the objects H(η) := 1 2 M(η, γ Λ c ) := 2 x y x y log x y dη(x)dη(y) log x y dη(x)dγ Λ c (y) Problem: if potential ψ(y) := log x y dη(x), we have ψ(y) log y as y. Fix a reference measure η 0 in Λ, with η 0 = η, define: M(η, γ Λ c ) := 2 log x y d(η η 0 )(x)dγ Λ c (y), x y formally shifts the energy by a constant partition function. Now ˆ ψ(y) := log x y d(η dη 0 )(x) 1 as y. y

14 Average density of points = 1, and ˆ lim R [ R,R]\Λ 1 dy converges y Need to compare dγ Λ c (y) to dy, discrepancy estimates: Discr [0,R] (γ) = γ [0,R] R R typically In fact E[Discr 2 [0,R]] R. Note that CLT says Discr of order log R, but convergence in law... M(η, γ Λ c ) := 2 log x y d(η η 0 )(x)dγ Λ c (y) converges a.s.. x y

15 Step 2: A reference model The Circular Unitary Ensemble (CUE β ): a log-gas on the unit circle, or with periodic interaction ( ) log x y sin. 2πN Converges also to Sine β (Killip-Stoiciu + Nakano, or Valkó-Virág). DLR equations are easy for CUE β, finite N. Then use convergence as N (and the fact that the limit objects exist...)

16 Step 3: Rigidity Yields canonical DLR equations, with fixed exterior and number of points, because we need η 0 = η. In fact: rigidity in the sense of Ghosh-Peres Proposition (Rigidity of Sine β ) γ Λ c almost surely prescribes the number of points inside Λ. Was known for β = 2, and recently Chhaibi-Najnudel (β arbitrary). Otherwise the cost of creating a point at 0 would be finite!

17 0 x Correlation 0 { x? 0 0 Create 0 Move x logjxj

18 Application: fluctuations Finite-N one-cut case (e.g. V quadratic) ˆ Fluct N [ϕ] := ( N ) ϕ δ xi Nµ eq,v Gaussian. i=1 No normalisation! Fluctuations are O(1). Well-known since Johansson, Shcherbina, Borot-Guionnet, see also Lambert-Ledoux-Webb, L.-Serfaty Also holds for ϕ living on mesoscopic scales (Bekerman-Lodhia) Fluctuations of Sine β?

19 CLT for fluctuations of Sine β Let ϕ be a C 4, compactly supported function. Define ( x ) ϕ l (x) := ϕ, l and fluctuations ˆ Fluct[ϕ l ](C) := ϕ l (x)(dc dx) Theorem (L.) If C is distributed under Sine β, then, in law Fluct[ϕ l ](C) Gaussian as l centered, variance: H 1/2 norm on the real line 1 2βπ 2 R R ( ) φ(x) φ(y) 2 dxdy. x y

20 How does DLR help? For finite-n, classical trick, computing Laplace transform = perturbation of potential ( ( exp β 1 2 i j log x i x j + )) N i=1 NV (x i) ( ( R exp β 1 N 2 i j log x i x j + )) N i=1 NV (x i) dx, N so E PN,β [e t N ( ( R exp β 1 = N 2 R exp N i=1 ϕ(x i ) ] i j log x i x j + N i=1 N ( V tϕ βn ( ( β 1 2 i j log x i x j + N i=1 NV (x i) Then comparison of partition functions. ) )) (x i ) dx N )) dx N

21 Fix l, and λ l, and γ in R \ [ λ, λ]. By DLR E Sineβ (e tfluct γ Λ c ) = ( ( exp β H(η) + M(η, γ Λ c ) t β ϕl (dη dx))) db(η), exp ( β (H(η) + M(η, γλ c ))) db(η) Could see M(η, γ Λ c ) as the potential.. Or re-write energy using background dx. In any case t β ϕ l( change in the potential ) change in the background density

22 Background density goes from dx to dx + t β µ λ where ˆ log x y µ λ (y) = ϕ(x) + const, Tricomi s formula ˆ PV 1 x y µ λ(y) = ϕ (x) µ λ (y) 1 λ λ 2 y PV 2 t 2 dy. 2 t y

23 To compare partition functions with background dx and dx + t β µ λ Find a transportation map Φ t, with Φ t = Id outside [ λ, λ]. Do the change of variable η Φ t (η). Compare the energies H(η) + M(η, γ Λ c ) vs H(Φ t (η)) + M(Φ t (η), γ Λ c ) Should have Φ t = Id + tψ +... and Taylor expand. (Transport in Bekerman-L.-Serfaty, and L.-Serfaty (2d), present in various forms in Shcherbina, Bekerman-Figalli-Guionnet, Guionnet-Shlyakhtenko).

24 All errors are expressed in terms of dη dx. Need local laws. For finite N, ϕ macroscopic, controls are easy to get + bootstrap (one term in only O(1) at first glance). For finite N, ϕ mesoscopic (Bekerman-Lodhia) use the local laws of Bourgade-Erdös-Yau Here we have E Sineβ [Discr [0,R] ] R, which is enough. This follows from the LDP at microscopic scale of L.-Serfaty, because Sine β must have finite renormalized energy.

25 Perspectives Non smooth test functions? Correlations? Forrester Two-dimensional log-gases?

26 Thank you for your attention!

Microscopic behavior for β-ensembles: an energy approach

Microscopic behavior for β-ensembles: an energy approach Microscopic behavior for β-ensembles: an energy approach Thomas Leblé (joint with/under the supervision of) Sylvia Serfaty Université Paris 6 BIRS workshop, 14 April 2016 Thomas Leblé (Université Paris

More information

DLR equations and rigidity for the Sine-beta process

DLR equations and rigidity for the Sine-beta process DLR equations and rigidity for the Sine-beta process David Dereudre, Adrien Hardy, Thomas Leblé, Mylène Maïda September 11, 018 This paper is dedicated to the memory of our colleague Hans-Otto Georgii

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Advances in Mathematics and Theoretical Physics, Roma, 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Workshop in geometric functional analysis, MSRI, nov. 13 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

Rigidity of the 3D hierarchical Coulomb gas. Sourav Chatterjee

Rigidity of the 3D hierarchical Coulomb gas. Sourav Chatterjee Rigidity of point processes Let P be a Poisson point process of intensity n in R d, and let A R d be a set of nonzero volume. Let N(A) := A P. Then E(N(A)) = Var(N(A)) = vol(a)n. Thus, N(A) has fluctuations

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Concentration for Coulomb gases

Concentration for Coulomb gases 1/32 and Coulomb transport inequalities Djalil Chafaï 1, Adrien Hardy 2, Mylène Maïda 2 1 Université Paris-Dauphine, 2 Université de Lille November 4, 2016 IHP Paris Groupe de travail MEGA 2/32 Motivation

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Free Probability and Random Matrices: from isomorphisms to universality

Free Probability and Random Matrices: from isomorphisms to universality Free Probability and Random Matrices: from isomorphisms to universality Alice Guionnet MIT TexAMP, November 21, 2014 Joint works with F. Bekerman, Y. Dabrowski, A.Figalli, E. Maurel-Segala, J. Novak, D.

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

Central Limit Theorem for discrete log gases

Central Limit Theorem for discrete log gases Central Limit Theorem for discrete log gases Vadim Gorin MIT (Cambridge) and IITP (Moscow) (based on joint work with Alexei Borodin and Alice Guionnet) April, 205 Setup and overview λ λ 2 λ N, l i = λ

More information

Gaussian Free Field in beta ensembles and random surfaces. Alexei Borodin

Gaussian Free Field in beta ensembles and random surfaces. Alexei Borodin Gaussian Free Field in beta ensembles and random surfaces Alexei Borodin Corners of random matrices and GFF spectra height function liquid region Theorem As Unscaled fluctuations Gaussian (massless) Free

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Homogenization of the Dyson Brownian Motion

Homogenization of the Dyson Brownian Motion Homogenization of the Dyson Brownian Motion P. Bourgade, joint work with L. Erdős, J. Yin, H.-T. Yau Cincinnati symposium on probability theory and applications, September 2014 Introduction...........

More information

log x i x j + NV (x i ),

log x i x j + NV (x i ), CLT FO FLUCTUATIOS OF β-esembles WITH GEEAL POTETIAL FLOET BEKEMA, THOMAS LEBLÉ, AD SYLVIA SEFATY Abstract. We prove a central limit theorem for the linear statistics of one-dimensional log-gases, or β-ensembles.

More information

Update on the beta ensembles

Update on the beta ensembles Update on the beta ensembles Brian Rider Temple University with M. Krishnapur IISC, J. Ramírez Universidad Costa Rica, B. Virág University of Toronto The Tracy-Widom laws Consider a random Hermitian n

More information

Free probabilities and the large N limit, IV. Loop equations and all-order asymptotic expansions... Gaëtan Borot

Free probabilities and the large N limit, IV. Loop equations and all-order asymptotic expansions... Gaëtan Borot Free probabilities and the large N limit, IV March 27th 2014 Loop equations and all-order asymptotic expansions... Gaëtan Borot MPIM Bonn & MIT based on joint works with Alice Guionnet, MIT Karol Kozlowski,

More information

Concentration for Coulomb gases and Coulomb transport inequalities

Concentration for Coulomb gases and Coulomb transport inequalities Concentration for Coulomb gases and Coulomb transport inequalities Mylène Maïda U. Lille, Laboratoire Paul Painlevé Joint work with Djalil Chafaï and Adrien Hardy U. Paris-Dauphine and U. Lille ICERM,

More information

Gaussian Free Field in (self-adjoint) random matrices and random surfaces. Alexei Borodin

Gaussian Free Field in (self-adjoint) random matrices and random surfaces. Alexei Borodin Gaussian Free Field in (self-adjoint) random matrices and random surfaces Alexei Borodin Corners of random matrices and GFF spectra height function liquid region Theorem As Unscaled fluctuations Gaussian

More information

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Central Limit Theorems for linear statistics for Biorthogonal Ensembles Central Limit Theorems for linear statistics for Biorthogonal Ensembles Maurice Duits, Stockholm University Based on joint work with Jonathan Breuer (HUJI) Princeton, April 2, 2014 M. Duits (SU) CLT s

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS David García-García May 13, 2016 Faculdade de Ciências da Universidade de Lisboa OVERVIEW Random Matrix Theory Introduction Matrix ensembles A sample computation:

More information

The Matrix Dyson Equation in random matrix theory

The Matrix Dyson Equation in random matrix theory The Matrix Dyson Equation in random matrix theory László Erdős IST, Austria Mathematical Physics seminar University of Bristol, Feb 3, 207 Joint work with O. Ajanki, T. Krüger Partially supported by ERC

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

From the mesoscopic to microscopic scale in random matrix theory

From the mesoscopic to microscopic scale in random matrix theory From the mesoscopic to microscopic scale in random matrix theory (fixed energy universality for random spectra) With L. Erdős, H.-T. Yau, J. Yin Introduction A spacially confined quantum mechanical system

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

arxiv: v4 [math-ph] 28 Feb 2018

arxiv: v4 [math-ph] 28 Feb 2018 FLUCTUATIOS OF TWO DIMESIOAL COULOMB GASES THOMAS LEBLÉ AD SYLVIA SERFATY arxiv:1609.08088v4 [math-ph] 28 Feb 2018 Abstract. We prove a Central Limit Theorem for the linear statistics of two-dimensional

More information

1 Intro to RMT (Gene)

1 Intro to RMT (Gene) M705 Spring 2013 Summary for Week 2 1 Intro to RMT (Gene) (Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) ) We start with two independent families of R.V.s, {Z i,j } 1 i

More information

Convergence of spectral measures and eigenvalue rigidity

Convergence of spectral measures and eigenvalue rigidity Convergence of spectral measures and eigenvalue rigidity Elizabeth Meckes Case Western Reserve University ICERM, March 1, 2018 Macroscopic scale: the empirical spectral measure Macroscopic scale: the empirical

More information

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices S. Dallaporta University of Toulouse, France Abstract. This note presents some central limit theorems

More information

Random Fermionic Systems

Random Fermionic Systems Random Fermionic Systems Fabio Cunden Anna Maltsev Francesco Mezzadri University of Bristol December 9, 2016 Maltsev (University of Bristol) Random Fermionic Systems December 9, 2016 1 / 27 Background

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

The Tracy-Widom distribution is not infinitely divisible.

The Tracy-Widom distribution is not infinitely divisible. The Tracy-Widom distribution is not infinitely divisible. arxiv:1601.02898v1 [math.pr] 12 Jan 2016 J. Armando Domínguez-Molina Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa, México

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

Dynamical approach to random matrix theory

Dynamical approach to random matrix theory Dynamical approach to random matrix theory László Erdős, Horng-Tzer Yau May 9, 207 Partially supported by ERC Advanced Grant, RAMAT 338804 Partially supported by the SF grant DMS-307444 and a Simons Investigator

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Logarithmic, Coulomb and Riesz energy of point processes

Logarithmic, Coulomb and Riesz energy of point processes Logarithmic, Coulomb and Riesz energy of point processes Thomas Leblé September 7, 25 Abstract We define a notion of logarithmic, Coulomb and Riesz interactions in any dimension for random systems of infinite

More information

NUMERICAL SOLUTION OF DYSON BROWNIAN MOTION AND A SAMPLING SCHEME FOR INVARIANT MATRIX ENSEMBLES

NUMERICAL SOLUTION OF DYSON BROWNIAN MOTION AND A SAMPLING SCHEME FOR INVARIANT MATRIX ENSEMBLES NUMERICAL SOLUTION OF DYSON BROWNIAN MOTION AND A SAMPLING SCHEME FOR INVARIANT MATRIX ENSEMBLES XINGJIE HELEN LI AND GOVIND MENON Abstract. The Dyson Brownian Motion (DBM) describes the stochastic evolution

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

POINT PROCESS LIMITS OF RANDOM MATRICES

POINT PROCESS LIMITS OF RANDOM MATRICES POINT PROCESS LIMITS OF RANDOM MATRICES By Diane Holcomb A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Mathematics at the UNIVERSITY OF WISCONSIN

More information

Lectures 6 7 : Marchenko-Pastur Law

Lectures 6 7 : Marchenko-Pastur Law Fall 2009 MATH 833 Random Matrices B. Valkó Lectures 6 7 : Marchenko-Pastur Law Notes prepared by: A. Ganguly We will now turn our attention to rectangular matrices. Let X = (X 1, X 2,..., X n ) R p n

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES O THE COVERGECE OF THE EAREST EIGHBOUR EIGEVALUE SPACIG DISTRIBUTIO FOR ORTHOGOAL AD SYMPLECTIC ESEMBLES Dissertation zur Erlangung des Doktorgrades der aturwissenschaften an der Fakultät für Mathematik

More information

Fluctuations of the free energy of spherical spin glass

Fluctuations of the free energy of spherical spin glass Fluctuations of the free energy of spherical spin glass Jinho Baik University of Michigan 2015 May, IMS, Singapore Joint work with Ji Oon Lee (KAIST, Korea) Random matrix theory Real N N Wigner matrix

More information

Numerical analysis and random matrix theory. Tom Trogdon UC Irvine

Numerical analysis and random matrix theory. Tom Trogdon UC Irvine Numerical analysis and random matrix theory Tom Trogdon ttrogdon@math.uci.edu UC Irvine Acknowledgements This is joint work with: Percy Deift Govind Menon Sheehan Olver Raj Rao Numerical analysis and random

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part I Manuela Girotti based on M. Girotti s PhD thesis and A. Kuijlaars notes from Les Houches Winter School 202 Contents Point Processes

More information

Lecture Notes on the Matrix Dyson Equation and its Applications for Random Matrices

Lecture Notes on the Matrix Dyson Equation and its Applications for Random Matrices Lecture otes on the Matrix Dyson Equation and its Applications for Random Matrices László Erdős Institute of Science and Technology, Austria June 9, 207 Abstract These lecture notes are a concise introduction

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

Spectral Universality of Random Matrices

Spectral Universality of Random Matrices Spectral Universality of Random Matrices László Erdős IST Austria (supported by ERC Advanced Grant) Szilárd Leó Colloquium Technical University of Budapest February 27, 2018 László Erdős Spectral Universality

More information

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

i=1 α i. Given an m-times continuously

i=1 α i. Given an m-times continuously 1 Fundamentals 1.1 Classification and characteristics Let Ω R d, d N, d 2, be an open set and α = (α 1,, α d ) T N d 0, N 0 := N {0}, a multiindex with α := d i=1 α i. Given an m-times continuously differentiable

More information

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES TOP EIGENVALUE OF CAUCHY RANDOM MATRICES with Satya N. Majumdar, Gregory Schehr and Dario Villamaina Pierpaolo Vivo (LPTMS - CNRS - Paris XI) Gaussian Ensembles N = 5 Semicircle Law LARGEST EIGENVALUE

More information

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

Lattice spin models: Crash course

Lattice spin models: Crash course Chapter 1 Lattice spin models: Crash course 1.1 Basic setup Here we will discuss the basic setup of the models to which we will direct our attention throughout this course. The basic ingredients are as

More information

Near extreme eigenvalues and the first gap of Hermitian random matrices

Near extreme eigenvalues and the first gap of Hermitian random matrices Near extreme eigenvalues and the first gap of Hermitian random matrices Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Sydney Random Matrix Theory Workshop 13-16 January 2014 Anthony Perret, G. S.,

More information

Integrable Probability. Alexei Borodin

Integrable Probability. Alexei Borodin Integrable Probability Alexei Borodin What is integrable probability? Imagine you are building a tower out of standard square blocks that fall down at random time moments. How tall will it be after a large

More information

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws Symeon Chatzinotas February 11, 2013 Luxembourg Outline 1. Random Matrix Theory 1. Definition 2. Applications 3. Asymptotics 2. Ensembles

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Universality for random matrices and log-gases Lecture Notes for Current Developments in Mathematics, 2012

Universality for random matrices and log-gases Lecture Notes for Current Developments in Mathematics, 2012 Universality for random matrices and log-gases Lecture Notes for Current Developments in Mathematics, 202 László Erdős Institute of Mathematics, University of Munich, Theresienstr. 39, D-80333 Munich,

More information

Directed random polymers and Macdonald processes. Alexei Borodin and Ivan Corwin

Directed random polymers and Macdonald processes. Alexei Borodin and Ivan Corwin Directed random polymers and Macdonald processes Alexei Borodin and Ivan Corwin Partition function for a semi-discrete directed random polymer are independent Brownian motions [O'Connell-Yor 2001] satisfies

More information

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Stochastic Differential Equations Related to Soft-Edge Scaling Limit Stochastic Differential Equations Related to Soft-Edge Scaling Limit Hideki Tanemura Chiba univ. (Japan) joint work with Hirofumi Osada (Kyushu Unv.) 2012 March 29 Hideki Tanemura (Chiba univ.) () SDEs

More information

Geometric Dyson Brownian motion and May Wigner stability

Geometric Dyson Brownian motion and May Wigner stability Geometric Dyson Brownian motion and May Wigner stability Jesper R. Ipsen University of Melbourne Summer school: Randomness in Physics and Mathematics 2 Bielefeld 2016 joint work with Henning Schomerus

More information

The Transition to Chaos

The Transition to Chaos Linda E. Reichl The Transition to Chaos Conservative Classical Systems and Quantum Manifestations Second Edition With 180 Illustrations v I.,,-,,t,...,* ', Springer Dedication Acknowledgements v vii 1

More information

Fluctuations from the Semicircle Law Lecture 1

Fluctuations from the Semicircle Law Lecture 1 Fluctuations from the Semicircle Law Lecture 1 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 20, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 1 May 20, 2014

More information

Finite Rank Perturbations of Random Matrices and Their Continuum Limits. Alexander Bloemendal

Finite Rank Perturbations of Random Matrices and Their Continuum Limits. Alexander Bloemendal Finite Rank Perturbations of Random Matrices and Their Continuum Limits by Alexander Bloemendal A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

Universal Fluctuation Formulae for one-cut β-ensembles

Universal Fluctuation Formulae for one-cut β-ensembles Universal Fluctuation Formulae for one-cut β-ensembles with a combinatorial touch Pierpaolo Vivo with F. D. Cunden Phys. Rev. Lett. 113, 070202 (2014) with F.D. Cunden and F. Mezzadri J. Phys. A 48, 315204

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

Progress in the method of Ghosts and Shadows for Beta Ensembles

Progress in the method of Ghosts and Shadows for Beta Ensembles Progress in the method of Ghosts and Shadows for Beta Ensembles Alan Edelman (MIT) Alex Dubbs (MIT) and Plamen Koev (SJS) Oct 8, 2012 1/47 Wishart Matrices (arbitrary covariance) G=mxn matrix of Gaussians

More information

Spectral properties of random geometric graphs

Spectral properties of random geometric graphs Spectral properties of random geometric graphs C. P. Dettmann, O. Georgiou, G. Knight University of Bristol, UK Bielefeld, Dec 16, 2017 Outline 1 A spatial network model: the random geometric graph ().

More information

THE ONE-DIMENSIONAL LOG-GAS FREE ENERGY HAS A UNIQUE MINIMISER

THE ONE-DIMENSIONAL LOG-GAS FREE ENERGY HAS A UNIQUE MINIMISER THE ONE-DIMENSIONAL LOG-GAS FREE ENERGY HAS A UNIQUE MINIMISER MATTHIAS ERBAR, MARTIN HUESMANN, THOMAS LEBLÉ Abstract. We prove that, at every positive temperature, the infinite-volume free energy of the

More information

Fluctuations from the Semicircle Law Lecture 4

Fluctuations from the Semicircle Law Lecture 4 Fluctuations from the Semicircle Law Lecture 4 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 23, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 4 May 23, 2014

More information

Integrable probability: Beyond the Gaussian universality class

Integrable probability: Beyond the Gaussian universality class SPA Page 1 Integrable probability: Beyond the Gaussian universality class Ivan Corwin (Columbia University, Clay Mathematics Institute, Institute Henri Poincare) SPA Page 2 Integrable probability An integrable

More information

arxiv: v1 [math-ph] 19 Oct 2018

arxiv: v1 [math-ph] 19 Oct 2018 COMMENT ON FINITE SIZE EFFECTS IN THE AVERAGED EIGENVALUE DENSITY OF WIGNER RANDOM-SIGN REAL SYMMETRIC MATRICES BY G.S. DHESI AND M. AUSLOOS PETER J. FORRESTER AND ALLAN K. TRINH arxiv:1810.08703v1 [math-ph]

More information

Numerical Methods for Random Matrices

Numerical Methods for Random Matrices Numerical Methods for Random Matrices MIT 18.95 IAP Lecture Series Per-Olof Persson (persson@mit.edu) January 23, 26 1.9.8.7 Random Matrix Eigenvalue Distribution.7.6.5 β=1 β=2 β=4 Probability.6.5.4.4

More information

Universal phenomena in random systems

Universal phenomena in random systems Tuesday talk 1 Page 1 Universal phenomena in random systems Ivan Corwin (Clay Mathematics Institute, Columbia University, Institute Henri Poincare) Tuesday talk 1 Page 2 Integrable probabilistic systems

More information

III. Quantum ergodicity on graphs, perspectives

III. Quantum ergodicity on graphs, perspectives III. Quantum ergodicity on graphs, perspectives Nalini Anantharaman Université de Strasbourg 24 août 2016 Yesterday we focussed on the case of large regular (discrete) graphs. Let G = (V, E) be a (q +

More information

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne Outline Eigenvalue PDFs Peter Forrester, M&S, University of Melbourne Hermitian matrices with real, complex or real quaternion elements Circular ensembles and classical groups Products of random matrices

More information

Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation

Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Vol. 5 (00), Paper no. 8, pages 56 603. Journal URL http://www.math.washington.edu/~ejpecp/ Universality of sine-kernel for Wigner matrices with

More information

Microscopic description of Log and Coulomb gases

Microscopic description of Log and Coulomb gases Microscopic description of Log and Coulomb gases Sylvia Serfaty June 3, 2017 1 1 Introduction and motivations We are interested in the following class of energies (1.1 H (x 1,..., x := g(x i x j + V (x

More information

The polyanalytic Ginibre ensembles

The polyanalytic Ginibre ensembles The polyanalytic Ginibre ensembles Haakan Hedenmalm (joint with Antti Haimi) Royal Institute of Technology, Stockholm haakanh@kth.se June 30, 2011 Haakan Hedenmalm (joint with Antti Haimi) (U of X) Short

More information

1D Log Gases and the Renormalized Energy : Crystallization at Vanishing Temperature

1D Log Gases and the Renormalized Energy : Crystallization at Vanishing Temperature 1D Log Gases and the Renormalized Energy : Crystallization at Vanishing Temperature Etienne Sandier and Sylvia Serfaty August 11, 2014 Abstract We study the statistical mechanics of a one-dimensional log

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

Random matrix theory and log-correlated Gaussian fields

Random matrix theory and log-correlated Gaussian fields Random matrix theory and log-correlated Gaussian fields Nick Simm Collaborators : Yan Fyodorov and Boris Khoruzhenko (Queen Mary, London) Mathematics Institute, Warwick University, Coventry, UK XI Brunel-Bielefeld

More information

Local microscopic behavior for 2D Coulomb gases

Local microscopic behavior for 2D Coulomb gases Local microscopic behavior for 2D Coulomb gases Thomas Leblé October 0, 206 Abstract The study of two-dimensional Coulomb gases lies at the interface of statistical physics and non-hermitian random matrix

More information

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny Modification of the Porter-Thomas distribution by rank-one interaction Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Théorique et Modèles Statistiques, Orsay France XII Brunel-Bielefeld

More information

Ferromagnets and the classical Heisenberg model. Kay Kirkpatrick, UIUC

Ferromagnets and the classical Heisenberg model. Kay Kirkpatrick, UIUC Ferromagnets and the classical Heisenberg model Kay Kirkpatrick, UIUC Ferromagnets and the classical Heisenberg model: asymptotics for a mean-field phase transition Kay Kirkpatrick, Urbana-Champaign June

More information

Ferromagnets and superconductors. Kay Kirkpatrick, UIUC

Ferromagnets and superconductors. Kay Kirkpatrick, UIUC Ferromagnets and superconductors Kay Kirkpatrick, UIUC Ferromagnet and superconductor models: Phase transitions and asymptotics Kay Kirkpatrick, Urbana-Champaign October 2012 Ferromagnet and superconductor

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

Quantum chaos in composite systems

Quantum chaos in composite systems Quantum chaos in composite systems Karol Życzkowski in collaboration with Lukasz Pawela and Zbigniew Pucha la (Gliwice) Smoluchowski Institute of Physics, Jagiellonian University, Cracow and Center for

More information

Operator limits of random matrices

Operator limits of random matrices Operator limits of random matrices arxiv:804.06953v [math.pr] 9 Apr 208 Bálint Virág May 25, 204 Abstract We present a brief introduction to the theory of operator limits of random matrices to non-experts.

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

MICROSCOPIC DESCRIPTION OF LOG AND COULOMB GASES

MICROSCOPIC DESCRIPTION OF LOG AND COULOMB GASES MICROSCOPIC DESCRIPTIO OF LOG AD COULOMB GASES SYLVIA SERFATY Abstract. These are the lecture notes of a course taught at the Park City Mathematics Institute in June 2017. They are intended to review some

More information

The Fyodorov-Bouchaud formula and Liouville conformal field theory

The Fyodorov-Bouchaud formula and Liouville conformal field theory The Fyodorov-Bouchaud formula and Liouville conformal field theory Guillaume Remy École Normale Supérieure February 1, 218 Guillaume Remy (ENS) The Fyodorov-Bouchaud formula February 1, 218 1 / 39 Introduction

More information

On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices

On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices Sandrine Dallaporta To cite this version: Sandrine Dallaporta. On the Central Limit Theorem for the Eigenvalue

More information

Concentration inequalities: basics and some new challenges

Concentration inequalities: basics and some new challenges Concentration inequalities: basics and some new challenges M. Ledoux University of Toulouse, France & Institut Universitaire de France Measure concentration geometric functional analysis, probability theory,

More information