Modeling Atmospheres of Neutron Stars

Size: px
Start display at page:

Download "Modeling Atmospheres of Neutron Stars"

Transcription

1 Moeling Atmospheres of Neutron Stars Isolate NSs: solitary NSs or those in binaries without accretion Slava Zavlin (NASA/MSFC) The 363- Heraeus Seminar, Ba Honnef, May 5-9, 2006

2 Short history Chiu & Salpeter (964) an Tsuruta (964): thermal raiation from the surface of a hot NS may be a source of cosmic X-rays First etections with Einstein (978-8) an EXOSAT (983-86): mile-age PSRs B0656+4, Geminga an B central compact sources in the SNRs RCW 03, Puppis A, PKS a few AXPs since 99, X-ray stuies with ROSAT, ASCA, EUVE, BeppoSax, Chanra an XMM-Newton In total, thermal emission etecte from about 30 NSs: from the whole surface (atmospheres?) of cooling NSs from polar caps heate by relativistic particles streaming own onto the surface from pulsar s magnetosphere

3 Thermal vs. Nonthermal emission in pulsars of ifferent ages Nonthermal (magnetospheric) emission, ~ ~ t -β, β ~ 2 4 NSs cool own from T 0 K (at birth) to MK in 0.- Myr E opt opt Young active (< kyr): Mile-age (0-00 kyr): Ol (> Myr): nonthermal raiation thermal component from thermal emission from ominates; the whole surface; hot polar caps; Crab, B509-58, Vela, B0656+4, B055-5, 6-ms J , B Geminga, J B

4 Main questions Why is stuying thermal emission neee? What is the state of the NS surface? Gaseuos or liqui, or soli? What is the chemical composition of the NS surface? Hyrogen or heavier elements (e.g., iron)? What is the proper moel for the thermal raiation?

5 Why is stuying thermal emission neee? Comparing observe emission with theoretical moels T surf, B, R, M T surf (t) thermal evolution R, M constraints on EOS an internal structure surface chemical composition formation of NSs an their interaction with environment What is the state of the NS surface? It epens on T surf, B an chemical composition. For hyrogen, the surface is in a conense state if: T surf < 0 5 B = 0 3 G T surf < B = 0 4 G (Lai & Salpeter 997) T surf < 0 6 B = G

6 What is the chemical composition of the NS surface? Heavy elements or hyrogen? A small amount of H, surface ensity g/cm² total amount g, ue to accretion from ISM or fallback of material eecte uring the SNR explosion. Otherwise, heavier elements may be present. What is the proper moel for the thermal raiation? Whatever is the physical state of the surface, its raiation shoul not be that of a black boy.

7 Main aspects of the NS atmosphere moeling What s special about NS atmospheres? Why not to use stanar stellar atmosphere moels?. Enormous gravity at the surface (M.4 M, R 0 km) g 0 4 vs. 0 4 cm²/s for usual stars NS atmospheres are strongly compresse ρ vs. 0-7 g/cm³ height kt sur /m P g 0-0 vs. 0 8 cm stratification of chemical elements non-ieality effects (pressure ionization, smoothe spectral features)

8 2. Huge magnetic fiels, B = G E ce =.6 (B/0 2 G) kev» kt sur 0. kev, E 0. kev NS atmospheres are essentially anisotropic opacities epen on irection an polarization of raiation raiation is polarize an epens on B γ = E ce / (Z² Ry) = 850 Z 2 (B/0 2 G)» atomic structure is istorte by B increase of bining (ionization) energies of boun states I/(Z²Ry) ln²(γ/z²)», I H 0.2 kev at B = 0 3 G altere ionization equilibrium an equation of state

9 NS atmosphere moels with low magnetic fiels, B < G (millisecon pulsars, NS transients in quiescence) General scheme (Mihalas 978): (Romani 987, Zavlin et al. 996, Gänsike et al. 200, Zavlin & Pavlov 2002) raiative transfer in isotropic -D meium for specific raiative intensity I ( z, μ) μ I = k [ I S ], μ = cosθ = n r, y = ρ z y k = σ + α S J [ J B ] = σ + α k = I μ 2 total raiative opacity, scattering+absorption mean intensity source function Comptonization is not important at T < K

10 [ ] B J J f y k y α = 0 = = y J h J f y k = y B J Most common (iffusion) approach: no incient emission equilibrium solution ) ( ] [ ] [ 2 ) ( ) ( = μ μ μ μ I I J h the Eington factors (accounting for anisotropy of raiation): spectral (monochromatic) flux 4 J f y k F π = ) ( ] [, = y I J f μ μ

11 raiative equilibrium (electron conuctivity is not important) 0 4 μ I μ = σ [ ] SB eff T α J B - 0 = 0 hyrostatic equilibrium (raiative force is not important) P = k B N T = g y ionization equilibrium base on the occupation-probability formalism for non-ieal plasmas (e.g., Hummer & Mihalas 988)

12 raiative opacities: absorption ue to free-free, boun-free an boun-boun transitions the Thomson scattering on electrons k E -3

13 Moel input: T eff, M, R (or g ), chemical composition Moel output: F I = 4π h J spectral (monochromatic) flux at y = μ S k exp [ k x] μ y 0 0 y = 0 specific intensity atmospheric structure: T ( y), ρ( y)

14 Spectra of nonmagnetic NS atmospheres

15 Spectra of nonmagnetic NS atmospheres with various abunances of heavy elements

16 Angular epenences of specific intensities Fe raiation is anisotropic even in nonmagnetic case limb-arkening effect

17 NS atmosphere moels with strong magnetic fiels, B = G (all orinary pulsars, magnetars, raio-quiet INSs [?]) raiative transfer for two polarization moes, extra- an orinary ones, with ortogonal polarizations (Gnein & Pavlov 974) + = = 2 ) ( ), ( ) ( ) ( ) ( ) ( i i 2 i B I I k I y α σ μ n n n n n n n n ), (, ) ( i 2 n n n n = + = = σ σ σ α i k total raiative opacity, scattering+absorption raiative an hyrostatic equilibrium

18 Diffusion approximation: ] [ ] [ 2 3 B J J J J y D y α σ = ) ( 4 n n α π α = ), ( 4 2 n n n n = σ π σ μ μ μ μ ) ( 2,, sin cos = = Θ + Θ = k D k D D D D B B cos r B Moel output: specific intensity an spectral flux at = ΘB y x k J B I y exp 2 ] [ ] [ i i = + = μ σ α μ = 0 y μ μ 0 = I F

19 NS atmosphere moels with strong magnetic fiels, B = G

20 Angular epenence of raiation from a magnetize NS atmosphere: B r pencil -like structure along fan -like structure at larger angles B

21 proton cyclotron line B = 0 4 G electron cyclotron line B = 3 0 G atomic transitions T eff < K B=2 0 2 G

22 Iron magnetize NS atmosphere moels (Raagopal et al. 997)

23 More on hyrogen NS moels for B > G, fully ionize case: Özel 200, Zane et al. 200, Ho & Lai 200 stuying vacuum-polarization effects (Gnein et al. 977): conversion of normal moes of raiation in particular, it affects cyclotron lines (makes them very narrow) More on partially ionize hyrogen atmosphere moels: Ho et al. 2003, Ho & Lai 2004 spectral features ue to boun-free an boun-boun transitions First magnetize NS atmosphere moels for C, O, Ne chemical compositions (Mori et al. 2006)

24 Thermal emission as seen by a istant observer General case: F( E) = g r I( g r E) S 2 S μ [ exp( nhσ )] 2GM / 2 g r = [ 2 ] reshift parameter c R E observe (reshifte) energy S visible emitting area istance to the obect nonuniform surface temerature an magnetic fiel gravitational bening of photon traectories Doppler shifts of photon energies (for fast rotators) Small heate spots (polar caps): F( E) S a = g I( g r r E 2 μ, )

25 Gravitational bening of photon traectories 2GM / 2 g r = [ 2 ] c R the whole surface is visible if g r < 0.66

26 Effect of the Doppler shift Spectra from the whole surface of a nonmagnetize NS (iron atmosphere)

27 Light curves of raiation from a magnetize NS

28 Practical aspect: NS atmosphere vs. blackboy moel T bb / T atm 2-3 S atm / S bb

29 Successful applications of hyrogen atmosphere moels: young pulsars, Vela, J , B (0 30 kyr), whose thermal emission originates from the whole NS surface of T> MK millisecon an ol pulsars with thermal X-ray component emitte from heate polar caps, J , J , J , J , B , J compact central sources in the SNR Puppis A, RX J , an in the SNR CTA, RX J thermal emission from the whole NS surface transiently accreting NSs in X-ray binaries, Aql X-, Cen X-4, KS , 4U , MXB quiescent raiation is interprete as emitte from the whole NS surface ue to heat release in the compresse material hyrogen atmosphere moels can be useful for istinguishing between transiently accreting NSs an black holes, in quiescence

30 XSPEC coes: NSA, NSAGRAV spectral fluxes for a wie range of surface temperature, magnetic fiel, surface gravitational acceleration

31 NS atmospheres o not work: mile-age pulsars ( kyr), Geminga, PSRs , PSR J9-627 (toay s talk) ol raio-quiet isolate NSs, RX J , J , J These have lower surface temperatures, ( ) MK, an high magnetic fiels atmospheres may not exist

32 Problems, future work boun-boun transitions in superstrong fiel B > 0 4 G, when the lines get into observable X-ray range molecules an molecular chains in strong magnetic fiels reliable moels for partially ionize atmospheres for for various chemical compositions raiative transfer approach base on two polarization moes is inaccurate for partially ionize plasma solving the raiative transfer equations for the four Stokes parameters using the polarizability tensor constracte with ai of the Kramers-Kronig relation thin atmosphere moels optically thick only at lower energies

33 From atmospheres to conense surfaces solis an liquis in strong magnetic fiels phase transition from atmospheres to conense surface reliable moels for emissivity of conense surface Everyone is welcome to contribute...

Emission from Isolated Neutron Stars. Observations and model applications

Emission from Isolated Neutron Stars. Observations and model applications Thermal Emission from Isolated Neutron Stars Theoretical aspects Observations and model applications Slava Zavlin (MPE, Garching) A Short History Chi & Salpeter (1964) and Tsuruta (1964): thermal radiation

More information

Thermal Emission from Isolated Neutron Stars

Thermal Emission from Isolated Neutron Stars Thermal Emission from Isolated Neutron Stars R. Turolla Dept. of Physics, University of Padova, Italy IWARA09 - Maresias, October 4-8 2009 1 Outline Are INSs thermal emitters? Observations of INSs Importance

More information

Thermal Radiation from Isolated Neutron Stars

Thermal Radiation from Isolated Neutron Stars Thermal Radiation from Isolated Neutron Stars George Pavlov Penn State Slava Zavlin MSFC (Huntsville) Divas Sanwal Penn State Oleg Kargaltsev Penn State Roger Romani Stanford Thermal emission: Why important?

More information

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars George Pavlov (Penn State; Polytech.Univ SPb) Collaborators: Oleg Kargaltsev (George Washington Univ.) Bettina Posselt

More information

Surface emission of neutron stars

Surface emission of neutron stars Surface emission of neutron stars NS Radii A NS with homogeneous surface temperature and local blackbody emission L 4 R 2 T 4 From dispersion measure F 4 L D 2 2 R / D T 4 From X-ray spectroscopy NS Radii

More information

X-ray Observations of Rotation Powered Pulsars

X-ray Observations of Rotation Powered Pulsars X-ray Observations of Rotation Powered Pulsars George Pavlov (Penn State) Oleg Kargaltsev (George Washington Univ.) Martin Durant (Univ. of Toronto) Bettina Posselt (Penn State) Isolated neutron stars

More information

Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars

Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars Dong Lai Cornell University The Coming Age of X-Ray Polarimetry, April 29, 2009, Rome, Italy Thermal (Surface) Radiation from Neutron Stars

More information

Progress in Pulsar detection

Progress in Pulsar detection Progress in Pulsar detection With EINSTEIN & EXOSAT: 7 radio pulsars detected in X-rays With ROSAT, ASCA & BSAX: 33 radio pulsars detected in X-rays After ~8 yrs with XMM & Chandra: 81 radio pulsars detected

More information

Cooling Limits for the

Cooling Limits for the Cooling Limits for the Page et al. 2004 Youngest Neutron Stars Cooling from the Youngest NSs SNR Zone NSs younger than ~50 kyr offer strong constraints on rapid cooling - the associated physical processes

More information

XMM observations of three middle-aged pulsars

XMM observations of three middle-aged pulsars Mem. S.A.It. Vol. 75, 458 c SAIt 2004 Memorie della MM observations of three middle-aged pulsars V. E. Zavlin 1 and G. G. Pavlov 2 1 Max-Planck Institut für extraterrestrische Physik, 85748 Garching, Germany

More information

The Magnificent Seven Similarities and Differences

The Magnificent Seven Similarities and Differences The Magnificent Seven Similarities and Differences Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching The discovery of thermal, radio quiet isolated neutron stars New XMM-Newton

More information

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs) X-ray emission properties vary with spin-down age Crab-like pulsars (< 10 4 yrs) X-ray emission properties vary with spin-down age Crab-like pulsars (< 10 4 yrs) Cooling neutron stars ( ~10 5-10 6 yrs)

More information

Measuring MNS, RNS, MNS/RNS or R

Measuring MNS, RNS, MNS/RNS or R Measuring MNS, RNS, MNS/RNS or R Sebastien Guillot Advisor: Robert Rutledge Galileo Galilei Institute, Firenze March 2014 Some Reviews Lattimer and Prakash, 2007 Miller C., 2013 Heinke et al., 2013 Reminder

More information

XMM-Observations of Pulsars: A study of thermal- vs. non-thermal emission W. Becker & J. Tríumper Max-Planck-Institut fíur extraterr. Physik, Giessenb

XMM-Observations of Pulsars: A study of thermal- vs. non-thermal emission W. Becker & J. Tríumper Max-Planck-Institut fíur extraterr. Physik, Giessenb XMM-Observations of Pulsars: A study of thermal- vs. non-thermal emission W. Becker & J. Tríumper Max-Planck-Institut fíur extraterr. Physik, Giessenbachstrasse 1, D-85740 Garching ABSTRACT Recent X-ray

More information

Magnetized neutron star atmospheres: beyond the cold plasma approximation

Magnetized neutron star atmospheres: beyond the cold plasma approximation Magnetized neutron star atmospheres: beyond the cold plasma approximation IAAT, University of Tübingen, Germany Kazan Federal University, Russia E-mail: suleimanov@astro.uni-tuebingen.de George Pavlov

More information

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS D.G. Yakovlev Ioffe Physical Technical Institute, Saint-Petersburg, Russia Introduction Thermal evolution of ordinary neutron stars Thermal evolution

More information

arxiv:astro-ph/ v1 23 Nov 2003

arxiv:astro-ph/ v1 23 Nov 2003 Young Neutron Stars and Their Environments IAU Symposium, Vol. 218, 2004 F. Camilo and B. M. Gaensler, eds. Central Compact Objects in Supernova Remnants arxiv:astro-ph/0311526v1 23 Nov 2003 George G.

More information

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching A legacy of ROSAT Proper motions and distances Observations

More information

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS]

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS] SOLUTION & ANSWER FOR KCET-009 VERSION A [PHYSICS]. The number of significant figures in the numbers.8000 ---- 5 an 7.8000 5 significant igits 8000.50 7 significant igits. β-ecay means emission of electron

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

arxiv:astro-ph/ v2 11 Jun 2002

arxiv:astro-ph/ v2 11 Jun 2002 Thermal Radiation from Neutron Stars: Chandra Results G.G. Pavlov 1, V.E. Zavlin 2 and D. Sanwal 1 arxiv:astro-ph/0206024v2 11 Jun 2002 1 The Pennsylvania State University, 525 Davey Lab., University Park,

More information

X-ray Isolated Neutron Stars: The Challenge of Simplicity

X-ray Isolated Neutron Stars: The Challenge of Simplicity X-ray Isolated Neutron Stars: The Challenge of Simplicity The Magnificent Seven R Turolla Department of Physics University of Padova, Italy M Cropper, CP De Vries, JJ Drake, F Haberl, A Treves J Vink,

More information

The magnetic spectrum of X-ray binary pulsars

The magnetic spectrum of X-ray binary pulsars The magnetic spectrum of X-ray binary pulsars C. Ferrigno & R. Farinelli ISDC & ESSC, University of Geneva 1 High B-field: an ubiquitous property High mass X-ray binaries are normally young systems, where

More information

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Powering Anomalous X-ray Pulsars by Neutron Star Cooling Powering Anomalous X-ray Pulsars by Neutron Star Cooling Jeremy S. Heyl Lars Hernquist 1 Lick Observatory, University of California, Santa Cruz, California 95064, USA ABSTRACT Using recently calculated

More information

The Radius of Neutron Stars

The Radius of Neutron Stars The Radius of Neutron Stars Bob Rutledge McGill University Collaborators: Sebastien Guillot (McGill). Mathieu Servillat (Saclay) Natalie Webb (Toulouse). Ed Brown (MSU) Lars Bildsten (UCSB/KITP) George

More information

Anomalous X-ray Pulsars

Anomalous X-ray Pulsars Anomalous X-ray Pulsars GRBs: The Brightest Explosions in the Universe Harvard University, May 23, 2002 Vicky Kaspi Montreal, Canada What are Anomalous X-ray Pulsars? exotic class of objects 1st discovered

More information

Spectral Lines from Rotating Neutron Stars

Spectral Lines from Rotating Neutron Stars Submitted to The Astrophysical Journal Letters Spectral Lines from Rotating Neutron Stars Feryal Özel1 and Dimitrios Psaltis Institute for Advanced Study, School of Natural Sciences, Einstein Dr., Princeton,

More information

New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W.

New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W. New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W. HO (SOUTHAMPTON) RX J1856...a puzzle! Featureless BB spectrum instead of harder

More information

Due to Sun s (and rest of solar system s) motion [Fig 16-3, relative_motion.avi]

Due to Sun s (and rest of solar system s) motion [Fig 16-3, relative_motion.avi] Chapter 6: Basic Properties of Stars Star Names Ancient Arabic, Greek or Latin names By constellation, ecreasing orer of brightness α alpha, β beta, γ gamma... Stellar istances Pre-telescope Observations

More information

Object Index. Einstein, 118, 177, 347 EXO , 312, 318 EXO , 264, 268, 273 EXOSAT, 118, 299

Object Index. Einstein, 118, 177, 347 EXO , 312, 318 EXO , 264, 268, 273 EXOSAT, 118, 299 Object Index 1E 1048.1-5937, 270, 330, 332, 336 1E 1207.4-5209, 51, 185 1E 2259+586, 336 1E 2259+589, 332 1E 2259+59, 270, 330 1RXS J130848.6+212708, 122 1RXS J1708-4009, 332 1RXS J214303.7+065419, 122

More information

Supernova remnants: X-ray observations with XMM-Newton

Supernova remnants: X-ray observations with XMM-Newton Supernova remnants: X-ray observations with XMM-Newton Anne DECOURCHELLE, Service d Astrophysique, IRFU, DSM, CEA Supernova remnants: key ingredients to understand our Universe Chemical enrichment, heating

More information

(ii).conversion from 0 C to Fahrenheit:- 0 C= 5 9. (F- 32) (ii).conversion from Fahrenheit to 0 C:- F= 9 5 C + 32 Relation between different scales:-

(ii).conversion from 0 C to Fahrenheit:- 0 C= 5 9. (F- 32) (ii).conversion from Fahrenheit to 0 C:- F= 9 5 C + 32 Relation between different scales:- Thermal properties of matter Heat: - Heat is a form of energy transferre between two (or more) systems or a system an its surrounings by virtue of temperature ifference. **Conventionally, the heat energy

More information

Chapter 0 Introduction X-RAY BINARIES

Chapter 0 Introduction X-RAY BINARIES X-RAY BINARIES 1 Structure of this course 0. Introduction 1. Compact stars: formation and observational appearance. Mass transfer in binaries 3. Observational properties of XRBs 4. Formation and evolution

More information

Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy

Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy Bob Rutledge McGill University Collaborators: Lars Bildsten (ITP/UCSB) Ed Brown (MSU) George Pavlov (PSU) Slava Zavlin (MSFC)

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

Probing Neutron Star Physics using Thermonuclear X-ray Bursts Probing Neutron Star Physics using Thermonuclear X-ray Bursts Sudip Bhattacharyya University of Maryland (CRESST) NASA s Goddard Space Flight Center Outline Neutron Stars: why do we care? Thermonuclear

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

X-ray and multiwavelength observations of pulsarwind

X-ray and multiwavelength observations of pulsarwind X-ray and multiwavelength observations of pulsarwind nebulae. Oleg Kargaltsev (George Washington University) Collaborators: Martin Durant ( University of Toronto) George Pavlov (Penn State University)

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 11. Synchrotron Radiation & Compton Scattering Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Synchrotron Self-Absorption synchrotron emission is accompanied

More information

The Radius of Neutron Stars. Bob Rutledge, Sebastien Guillot (McGill) Matthieu Servillat (CNRS), Natalie Webb (Toulouse)

The Radius of Neutron Stars. Bob Rutledge, Sebastien Guillot (McGill) Matthieu Servillat (CNRS), Natalie Webb (Toulouse) The Radius of Neutron Stars Bob Rutledge, Sebastien Guillot (McGill) Matthieu Servillat (CNRS), Natalie Webb (Toulouse) Quiescent Low Mass e X-ray Binaries (qlmxb) Companion Star Composition: 75% H 23%

More information

Victoria Kaspi (McGill University, Montreal, Canada)

Victoria Kaspi (McGill University, Montreal, Canada) Victoria Kaspi (McGill University, Montreal, Canada) C. Espinoza M. Gonzalez M. Kramer M. Livingstone A. Lyne M. McLaughlin S. Olausen C.Y. Ng G. Pavlov W. Zhu Victoria Kaspi (McGill University, Montreal,

More information

The total luminosity of a disk with the viscous dissipation rate D(R) is

The total luminosity of a disk with the viscous dissipation rate D(R) is Chapter 10 Advanced Accretion Disks The total luminosity of a disk with the viscous dissipation rate D(R) is L disk = 2π D(R)RdR = 1 R 2 GM Ṁ. (10.1) R The disk luminosity is half of the total accretion

More information

QED, Neutron Stars, X-ray Polarimetry

QED, Neutron Stars, X-ray Polarimetry QED,, X-ray Polarimetry 20 July 2016 Ilaria Caiazzo; Yoram Lithwick, Don Lloyd, Dan Mazur, Nir Shaviv; Roberto Turolla, Roberto Taverna; Wynn Ho, Dong Lai, Rosalba Perna and others. QED,, X-ray Polarimetry

More information

Isolated And Accreting Magnetars Viewed In Hard X-rays

Isolated And Accreting Magnetars Viewed In Hard X-rays The XXVII Texas Symposium on Relativistic Astrophysics Isolated And Accreting Magnetars Viewed In Hard X-rays Wei Wang National Astronomical Observatories, Beijing China Dec 8 13 2013, Dallas TX, USA Contents

More information

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774 XMM-Newton Observations of the Isolated Neutron Star 1RXS J214303.7+065419 / RBS 1774 Mark Cropper, Silvia Zane Roberto Turolla Luca Zampieri Matteo Chieregato Jeremy Drake Aldo Treves MSSL/UCL Univ Padova

More information

The spectacular stellar explosion - GRB A: synchrotron modeling in the wind and the ISM

The spectacular stellar explosion - GRB A: synchrotron modeling in the wind and the ISM The spectacular stellar explosion - GRB 17A: synchrotron moeling in the win an the ISM University of Johannesburg, Department of Physics, Aucklan Park 6, Johannesburg, South Africa E-mail: jessymolkt@uj.ac.za

More information

X-ray bursts and the equation of state

X-ray bursts and the equation of state X-ray bursts and the equation of state Juri Poutanen (Univ. of Oulu, Finland) with Valery Suleimanov, Klaus Werner (Tuebingen University), Jari Kajava, Joonas Nättilä, Outi-Marja Latvala (U. Oulu), Mikhail

More information

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/ Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/0608311 Introduction 11 Rotating RAdio Transients (RRATs) (Mclaughlin et al 2006) Repeated, irregular radio bursts

More information

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004 (Anomalous) X-Ray Pulsars Vicky Kaspi Montreal, Canada Texas @ Stanford December 16, 2004 Summary Introduction to AXPs Evidence that AXPs are magnetars Open Issues and Recent Results: IR emission Transient

More information

Cooling Neutron Stars. What we actually see.

Cooling Neutron Stars. What we actually see. Cooling Neutron Stars What we actually see. The Equilibrium We discussed the equilibrium in neutron star cores through this reaction (direct Urca). nëp + e à + ö e ö n = ö p + ö e + ö öe Does the reaction

More information

Prospects in space-based Gamma-Ray Astronomy

Prospects in space-based Gamma-Ray Astronomy Prospects in space-based Gamma-Ray Astronomy On behalf of the European Gamma-Ray community Jürgen Knödlseder Centre d Etude Spatiale des Rayonnements, Toulouse, France Gamma-Ray Astronomy in Europe Europe

More information

Natalie Webb & Mathieu Servillat, Sean Farrell, Didier Barret. Centre d Etude Spatiale des Rayonnements Toulouse, France

Natalie Webb & Mathieu Servillat, Sean Farrell, Didier Barret. Centre d Etude Spatiale des Rayonnements Toulouse, France Natalie Webb & Mathieu Servillat, Sean Farrell, Didier Barret Centre d Etude Spatiale des Rayonnements Toulouse, France XMM-Newton observations of Galactic globular clusters Natalie Webb & Mathieu Servillat,

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

Young Neutron Stars and the Role of Magnetic Fields in their Evolution

Young Neutron Stars and the Role of Magnetic Fields in their Evolution Young Neutron Stars and the Role of Magnetic Fields in their Evolution Eric Gotthelf (Columbia University) The X-ray Universe 2011 28 June 2011, Berlin Germany Talk Outline Recent Highlights of Young Isolated

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

arxiv:astro-ph/ v2 23 Feb 2007

arxiv:astro-ph/ v2 23 Feb 2007 Mon. Not. R. Astron. Soc. 000, 1 16 (2006) Printed 28 August 2018 (MN LATEX style file v2.2) Modelling mid-z element atmospheres for strongly-magnetized neutron stars Kaya Mori 1,2, Wynn C.G. Ho 3,4 1

More information

X-ray Spectra from Magnetar Candidates

X-ray Spectra from Magnetar Candidates X-ray Spectra from Magnetar Candidates A Twist in the Field R Turolla Department of Physics University of Padova, Italy With L Nobili, S Zane, N. Sartore GL Israel, N Rea SGRs and AXPs X-ray Spectra SGR

More information

Crustal cooling in accretion heated neutron stars

Crustal cooling in accretion heated neutron stars Crustal cooling in accretion heated neutron stars Ed Cackett ecackett@umich.edu University of Michigan Collaborators: Rudy Wijnands, Jon Miller, Jeroen Homan, Walter Lewin, Manuel Linares Outline X-ray

More information

Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version

Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version Purpose: To determine if two end products of stellar evolution GK Per and Cen X-3 could be white dwarfs or neutron stars by calculating

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

arxiv:astro-ph/ v2 30 Dec 2001

arxiv:astro-ph/ v2 30 Dec 2001 Evolution of Isolated Neutron Stars Sergei Popov Sternberg Astronomical Institute November 10, 2000 arxiv:astro-ph/0101031v2 30 Dec 2001 Abstract. In this paper we briefly review our recent results on

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Compact Stars. Lecture 4

Compact Stars. Lecture 4 Compact Stars Lecture 4 X-ray binaries We have talked about the basic structure of accretion disks in X-ray binaries and evolutionary scenarios of low mass and high mass XRBs I will now present the observational

More information

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA The Secret Life of Neutron Stars Jeremy Heyl Harvard-Smithsonian CfA The Life of a 10 M Star PNS 10 5 yr 10 6 yr 10 7 yr 10 8 yr 10 9 yr 10 10 yr PMS MS Radio Pulsars Thermal Accretion-, Nuclear-, GWpowered

More information

Thermal Emission. Cooling Neutron Stars

Thermal Emission. Cooling Neutron Stars Neutron Stars and Pulsars: about 40 Years after their Discovery 363th Heraeus-Seminar, Bad Honnef, May 14-19, 19, 2006 Thermal Emission from Cooling Neutron Stars Dany Page Instituto de Astronomía, UNAM,

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way Chapter 33 The History of a Star Introduction Did you read chapter 33 before coming to class? A. Yes B. No You can see about 10,000 stars with the naked eye. The milky way Radio telescopes allow us to

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Cyclotron v

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Probing Extreme Physics with Compact Objects

Probing Extreme Physics with Compact Objects Probing Extreme Physics with Compact Objects Dong Lai Department of Astronomy Cornell University Extremes in Astrophysics: Most energetic particles: 10 20 ev Most energetic photons: 10 14 ev Highest temperature:

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

Recent NIR-optical-UV Observations. of Rotation-powered

Recent NIR-optical-UV Observations. of Rotation-powered Recent NIR-optical-UV Observations Pulsars of Rotation-powered George Pavlov (Penn State; Polytech.Univ SPb) Martin Durant (Univ. of Florida) Oleg Kargaltsev (Univ. of Florida) Collaborators: Roberto Mignani

More information

What can we learn from the AGN radio quiet continuum with SIMBOL-X?

What can we learn from the AGN radio quiet continuum with SIMBOL-X? What can we learn from the AGN radio quiet continuum with SIMBOL-X? Pierre-Olivier Petrucci LAOG, Grenoble, France Generalities about the RQ AGN X-ray emission - continuum - reflection component Expected

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Neutron Stars. Melissa Louie

Neutron Stars. Melissa Louie Neutron Stars Melissa Louie 11-08-10 Outline History, Formation, Properties Detection Pulsars Crab Nebula Pulsar Pulsar Timing Pulsars in Binary Systems Isolated Neutron Stars J185635-3754 Summary 2 The

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

Extreme gravity in neutron-star systems with XEUS

Extreme gravity in neutron-star systems with XEUS Extreme gravity in neutron-star systems with XEUS Mariano Méndez Kapteyn Astronomical Institute, University of Groningen, The Netherlands Probing strong gravitational fields Adapted from Kramer et al.

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Particle acceleration and pulsars

Particle acceleration and pulsars Meudon, nov. 2013 p. 1/17 Particle acceleration and pulsars Fabrice Mottez LUTH - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Meudon, nov. 2013 p. 2/17 Pulsars (PSR) and pulsar wind nebulae (PWNe) Mostly

More information

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars INTEGRAL & Magnetars: a high energy approach to extreme neutron stars Diego Götz CEA - Saclay - Irfu/Service d Astrophysique N. Rea (UvA), S. Zane (MSSL), R. Turolla (Uni Padova), M. Lyutikov (Purdue Univ.)

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

X-ray spectroscopy of low-mass X-ray binaries

X-ray spectroscopy of low-mass X-ray binaries X-ray spectroscopy of low-mass X-ray binaries Laurence Boirin Observatoire astronomique de Strasbourg (Handout version) Artistic impression of a low-mass X-ray binary An X-ray binary spectrum (from the

More information

Monte Carlo Simulator to Study High Mass X-ray Binary System

Monte Carlo Simulator to Study High Mass X-ray Binary System SLAC-PUB-11350 Monte Carlo Simulator to Study High Mass X-ray Binary System S. Watanabe, F. Nagase, T. Takahashi ISAS/JAXA, Sagamihara, Kanagawa 229-8510, Japan M. Sako, S.M. Kahn KIPAC/Stanford, Stanford,

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS Image: Mirabel 2006 1 Pulsars & massive stars Young pulsars, magnetic

More information

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission Magnetars, the most extreme Neutron Stars. Multiwavelenght emission Silvia Zane, MSSL, UCL Black Holes, jets and outflows Kathmandu, Nepal 14-18 Oct 2013 o SGRs/AXPs as magnetars, the most extreme compact

More information

Radiation-hydrodynamic Models for ULXs and ULX-pulsars

Radiation-hydrodynamic Models for ULXs and ULX-pulsars Radiation-hydrodynamic Models for ULXs and ULX-pulsars Tomohisa KAWASHIMA Division of Theoretical Astrophysics, NAOJ in collaboration with Ken OHSUGA, Hiroyuki TAKAHASHI (NAOJ) Shin MINESHIGE, Takumi OGAWA

More information

Special relativity and light RL 4.1, 4.9, 5.4, (6.7)

Special relativity and light RL 4.1, 4.9, 5.4, (6.7) Special relativity and light RL 4.1, 4.9, 5.4, (6.7) First: Bremsstrahlung recap Braking radiation, free-free emission Important in hot plasma (e.g. coronae) Most relevant: thermal Bremsstrahlung What

More information

Pulsar Observations with the Fermi Large Area Telescope

Pulsar Observations with the Fermi Large Area Telescope Pulsar Observations with the Fermi Large Area Telescope First Light sky survey (4 days of exposure)) Launch: 11 June 2008 Gottfried Kanbach & Matthew Baring for the Fermi-LAT Collaboration 1 The high-energy

More information

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L.

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L. X-Ray Eclipse Time Delays in 4U2129+47 E. Bozzo M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L. Burderi Università di Roma Tor Vergata, Italy

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

PULSE PHASE VARIATIONS OF THE X-RAY SPECTRAL FEATURES IN THE RADIO-QUIET NEUTRON STAR 1E S. Mereghetti, A. De Luca, and P. A.

PULSE PHASE VARIATIONS OF THE X-RAY SPECTRAL FEATURES IN THE RADIO-QUIET NEUTRON STAR 1E S. Mereghetti, A. De Luca, and P. A. The Astrophysical Journal, 581:1280 1285, 2002 December 20 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. PULSE PHASE VARIATIONS OF THE X-RAY SPECTRAL FEATURES IN THE

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Millisecond Pulsar Populations in Globular Clusters

Millisecond Pulsar Populations in Globular Clusters Millisecond Pulsar Populations in Globular Clusters David C. Y. Hui Department of Astronomy & Space Science Chungnam National University 1. Introduction 2. Dynamical formation of millisecond pulsars (MSPs)

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM,

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM, Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM, Room WEL 2.256 Lecture 19 posted today Reading: Chapter

More information

What Can Neutron Stars Tell Us about QED and Vice Versa?

What Can Neutron Stars Tell Us about QED and Vice Versa? What Can Neutron Stars Tell Us about QED and Vice Versa? 17 April 2018 Ilaria Caiazzo, Roberto Mignami, Roberto Taverna, Roberto Turolla, Silvia Zane, and others. Outline Birefringence Magnetars X-ray

More information

Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters

Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters Juri Poutanen (University of Turku, Finland) Collaborators:! Valery Suleimanov (Univ. Tübingen, Germany), Joonas

More information