The Radius of Neutron Stars

Size: px
Start display at page:

Download "The Radius of Neutron Stars"

Transcription

1 The Radius of Neutron Stars Bob Rutledge McGill University Collaborators: Sebastien Guillot (McGill). Mathieu Servillat (Saclay) Natalie Webb (Toulouse). Ed Brown (MSU) Lars Bildsten (UCSB/KITP) George Pavlov (PSU) Vyacheslav Zavlin (MSFC).

2 A physicist, in 203, cannot solve equations which permit an analytic prediction from the physics of the strong force regarding the systems where this force is important: the properties and behavior of matter at and above nuclear density. This can be done for gravitation, the weak force, and electromagnetic forces. This is a major hole in modern physics.

3 The Dense Matter Equation of State is an important Strong Force Regime Each different proposed deos produces a different massradius relationship for neutron stars. 5% Accuracy Thus, measure the massradius relationship of neutron stars, and you have a measurement of the deos. Precision requirement -- 5% in mass and radius, separately. A larger uncertainty is useless to nuclear physics. Lattimer et al

4 Mass-Radius Relation from the Equation of State Measuring the Mass and Radius simultaneously is difficult. Lattimer & Prakash (2000) High-mass measurements prefer EOSs which produce a nearly constant radius at astrophysically interesting masses. PSR J0348 (Antoniadis et al 203) PSR J64 (Demorest et al 200) Precision Radius Measurements (<5%) may be they key to measuring the deos.

5 Neutron Star Structure: The Cartoon Picture Atmosphere Envelope Crust Outer Core Inner Core Credit: Dany Page

6 Estimated Equations of State Different calculational (approximation) methods Different input physics Different nuclear parameters (example: nuclear compressibility as a function of fractional neutron excess). Lattimer and Prakash (2000)

7 From Neutron Star Mass-Radius Relation to the Equation of State P = f( ) Lindblom (992) showed that each Dense Matter Equation of State maps to a unique Mass-Radius relationship for neutron stars. Ozel and Psaltis (2009) demonstrate how to perform the inverse problem: take the mass-radius relationship, and produce an equation of state. Only ~5-7 such objects are needed, but with different masses, to derive a new dense matter equation of state. Thus, measurement of the neutron star mass-radius relationship would implicate a unique deos. Short Course: Gravity pulls inward Pressure Pushes Outward Result: R=f(M) F g M(< R)

8 Timing measurements -- which permit NS mass measurements -- are limited in precision by the stability of rotation in NS (very high) and the precision of the comparison clocks (very high). Pulsars VERY LOW SYSTEMATIC UNCERTAINTIES Result: Masses are measured to 0.000%

9 Quiescent Low Mass e X-ray Binaries (qlmxb) Companion Star Composition: 75% H 23% He 2% other Outburst X-ray image (in quiescence) Optical image (in outburst) Quiescence Optical image (in outburst) Transient LMXBs in quiescence are H atmosphere neutron stars, powered by a core heated through equilibrium nuclear reactions in the crust. Brown, Bildsten & RR (998)

10 Gravity qlmxbs, in this scenario, have pure Hydrogen atmospheres When accretion stops, the He (and heavier elements, gravitationally settle on a timescale of ~0s of seconds (like rocks in water), leaving the photosphere to be pure Hydrogen (Alcock & Illarionov 980, Bildsten et al 992). H Photosphere He Brown, Bildsten & RR (998)

11 Emergent Spectrum of a Neutron Star Hydrogen Atmosphere H atmosphere calculated Spectra are ab initio radiative transfer calculations using the Eddington equations. Zavlin, Pavlov and Shibanov(996) - NSA Rajagopal and Romani (996); Zavlin et al (996); Pons et al (2002; Heinke et al (2006) -- NSATMOS; Gaensicke, Braje & Romani (200); Haakonsen et al (202) All comparisons show consistency within ~few % (e.g. Webb et al 2007, Haakonsen 202). Vetted : X-ray spectra of Zavlin, Heinke together have been used in several dozen works. 4 R F = 4πT eff, D R = R 2GM c 2 R 2 RR et al (999,2000)

12 ρ (g cm -3 ) Begi Non-Equilibrium Processes in the Outer Crust inning with 56 Fe (Haensel &Zdunik 990, 2003) Reaction Δρ ρ Q (Mev/np) Fe 56 Cr - 2e- + 2ν e Cr 56 Ti - 2e- + 2ν e Ti 56 Ca - 2e- + 2ν e Ca 56 Ar - 2e- + 2ν e Ar 52 S +4n - 2e- + 2ν e Non-Equilibrium Processes in the Inner Crust ρ (g cm -3) Reaction X Q n (Mev/np) S 46 Si +6n - 2e- + 2ν e Si 40 Mg + 6n - 2e- + 2ν e Deep Crustal Heating Begins Here Ends Here Mg 34 Ne + 6n - 2e- + 2ν e 34 Ne+ 34 Ne 68 Ca Ca 62 Ar +6n - 2e- + 2ν e Ar 56 S + 6n - 2e- + 2ν e S 50 Si + 6n - 2e- + 2ν e Si 44 Mg + 6n - 2e- + 2ν e Mg 36 Ne + 6n - 2e- + 2ν e 36 Ne+ 36 Ne 72 Ca 68 Ca 62 Ar + 6n - 2e- + 2ν e Ar 60 S + 6n - 2e- + 2ν e S 54 Si + 6n - 2e- + 2ν e Si 48 Mg + 6n - 2e- + 2ν e Mg+ 48 Mg 96 Cr Cr 88 Ti + 8n - 2e- + 2ν e Mev per np Brown, Bildsten & RR (998)

13 Assumptions -- the systematic uncertainties. H atmosphere neutron stars. Expected from a Hydrogen companion LMXB; can be supported through optical observations of a H companion. Low B-field (<0 0 G) neutron stars. This is true for standard LMXBs as a class, but difficult to prove on a case-by-case basis. Emitting isotropically. Occurs naturally when powered by a hot core. Non-Rotating neutron stars. qlmxbs are observed to rotate at Hz. This can be a significant fraction of the speed of light. Doppler boosting and deviation from NS spheroidal geometry are not included in emission models. These effects should be calculated, but have not yet been. If you don t like these assumptions: We find the assumptions not strongly supported and therefore ignore this result.

14 Instruments for measurements of qlmxbs Chandra X-ray Observatory Launched 999 (NASA) resolution XMM/Newton Launched 999 (ESA) 6 resolution ~4x area of Chandra. Every photon is time tagged (~ sec), with its energy measured (E/deltaE = 0) with full resolution imaging.

15 Aql X- with Chandra -- Field Source X-ray Absorption (α p =) F pl =5% (0.5-0 kev) RR et al (200b) R (d/5 kpc) kt eff, (e20 cm -2 ) N H km ev 35 7

16 The LMXB Factories: Globular Clusters GCs : overproduce LMXBs by 000x vs. field stars Many have accurate distances measured. NGC D (kpc) +/-(%) qlmxbs can be identified by their soft X-ray spectra, and confirmed with optical counterparts Carretta et al (2000)

17 NGC 539 (Omega Cen) qlmxbs can be identified by their soft X-ray spectra, and confirmed with optical counterparts. Rc=56.7Rc The identified optical counterpart demonstrates unequivocally the X-ray source is a qlmxb. An X-ray source well outside the cluster core Spitzer (Infrared)

18 NGC 539 (Omega Cen) X-ray Spectrum is inconsistent with any other type of known GC source (pulsars, CVs, coronal sources). Full confirmation as LMXB requires Hubble photometry R (d/5 kpc) kt eff, (e20 cm -2 ) N H 4.3 ± 2. km ev (9) RR et al (2002)

19 All qlmxbs used in this work were previously identified and analysed, with resulting R published. Name kt_eff(infty) (ev) NH Fx (0-3 cgsflux) Band (kev) Ref. R(infty) 47 Tuc X7 05(5) 0.04(2) Heinke et al (2006) <: 5 47 Tuc X5 00(20) 0.09(7) Heinke et al (2003) < 5 M28 90(+30-0) 0.26(4) Becker et al (2003) <5 NGC 6304 X9 5(20) [0.266] Guillot et al (2009) NGC 6304 X4 20(20) [0.266] Guillot et al (2009) +++ <5 NGC 6397 (U24) 74(8) Grindlay et al (200 < 5 M3 76(3) [0.0] Gendre et al (2003) DONE NGC 320 X6 70 (50) [0.4] Webb et al (2006) Data taken NGC 6553 X9 00 (20) [0.35] Guillot et al (in prep) +++ Omega Cen 67(2) 0.09(3) Rutledge et al (2002), Gendre et al (2003) NGC 6637 X3 00 (40) [0.] Guillot et al (in prep) +++ M30 A- 94(5) 0.03() Lugger (2007) NGC 6553 X3 27(+7-45) [0.35] Guillot et al (in prep) <: 5 DONE <0 NGC 6304 X5 70(25) [0.266] Guillot et al (2008) +++ NGC 6553 x35 88 (60) [0.35] Guillot et al (in prep) +++ NGC 2808 C Servillat et al (2008) <5 M80 CX2 82(2) 0.09(2) Heinke et al (2003) <5 M80 CX6 76(6) 0.22(7) Heinke et al (2003) <5

20 Measuring the Radius of Neutron Stars from qlmxbs in Globular Clusters The 2.0 solar mass neutron stars favor hadronic deoss over quark and phasetransition deoss. These have the property of a quasi-constant neutron star radius. Analysis goal: Using all suitable qlmxb X- ray data sets of targets (there are five) provide the most reliable neutron star radius measurement possible. Assume the radius of neutron stars is quasi-constant (a constant, at astrophysically important masses, within measurement error). Perform a Markoff-Chain-Monte-Carlo (MCMC) and include all known uncertainties and use conservative assumptions.

21 All previous EoS work treated measurements of each NS independently, and combined their statistics = Source Source 2 R M T NH, R2 M2 T2 NH,2 0 2 a,2 a,3 a, R R a 2, 2 a 2,3 a 2, M M a 3, a 3,2 2 a 3, T T a 4, a 4,2 a 4, N H NH, a 5,6 a 5,7 a 5,8 R 2 R a 6,5 2 a 6,7 a 6,8 M 2 M a 7,5 a 7,6 2 a 7,8 C T 2 A T a 8,5 a 8,6 a 8,7 2 N H2 NH,2 T Increase M increase R increase Absorption Increase

22 Joint Fits - the major difference from previous = Source Source 2 0 R M T NH, R M2 T2 NH,2 2 a,2 a,3 a,4 2 a,6 a,7 a,8 R R a 2, 2 a 2,3 a 2,4 a 2,5 2 a 2,7 a 2,8 M M,M 2 a 3, a 3,2 2 a 3,4 a 3,5 a 3,6 2 a 3,8 T T,T 2 a 4, a 4,2 a 4,3 2 a 4,5 a 4,6 a 4,7 2 N H 2 a 5,2 a 5,3 a 5,4 2 a 5,6 a 5,7 a 5,8 R R a 6, 2 a 6,3 a 6,4 a 6,5 2 a 6,7 a 6,8 M 2,M M 2 7, a 7,2 2 a 7,4 a 7,5 a 7,6 2 a 7,8 T 2,T T 2 a 8, a 8,2 a 8,3 2 a 8,5 a 8,6 a 8,7 2 N H2,N H N H,N H2 Every parameter (M, R, T, N_H) of all five sources affects every other parameter of every source N H2 C A R M T NH, R2 M2 T2 NH,2 S N / N 2 (# of Source Matrix Elements) N(# of sources) = N In comparison to using the sources independently, its as if we have 25 sources, instead of 5 sources.

23 Best H atmosphere (+ PL) spectral fit of all 5 qlmxbs This model is a statistically acceptable fit to the X-ray spectral data. This is an a posteriori confirmation that the data are consistent with our assumptions. After finding the best fit a MCMC method was used to find the uncertainty regions for all parameters - -- the Radius, Mass, Temperature, absorption, distance, and power-law normalization. 2 /dof = 0.98/628(prob. = 0.64) Guillot et al (203)

24 NH free, D gaussian bayesian priors, PL included. Guillot et al (203)

25 The Neutron Star Radius < km (99% conf) km (90%conf.) M-R by J. Lattimer WFF= Wiring, Fiks and Fabrocini (988) Guillot et al (203) Contains uncertainties from: Distance All spectral parameters Calibration

The Radius of Neutron Stars. Bob Rutledge, Sebastien Guillot (McGill) Matthieu Servillat (CNRS), Natalie Webb (Toulouse)

The Radius of Neutron Stars. Bob Rutledge, Sebastien Guillot (McGill) Matthieu Servillat (CNRS), Natalie Webb (Toulouse) The Radius of Neutron Stars Bob Rutledge, Sebastien Guillot (McGill) Matthieu Servillat (CNRS), Natalie Webb (Toulouse) Quiescent Low Mass e X-ray Binaries (qlmxb) Companion Star Composition: 75% H 23%

More information

Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy

Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy Bob Rutledge McGill University Collaborators: Lars Bildsten (ITP/UCSB) Ed Brown (MSU) George Pavlov (PSU) Slava Zavlin (MSFC)

More information

X-ray Observations of Transient Neutron Stars in Quiescence

X-ray Observations of Transient Neutron Stars in Quiescence X-ray Observations of Transient Neutron Stars in Quiescence Bob Rutledge McGill University Graduate Students: Sebastien Guillot (MSc 09; PhD) Christian Haakonsen (MSc 09) Collaborators: Lars Bildsten (ITP/UCSB)

More information

Measuring MNS, RNS, MNS/RNS or R

Measuring MNS, RNS, MNS/RNS or R Measuring MNS, RNS, MNS/RNS or R Sebastien Guillot Advisor: Robert Rutledge Galileo Galilei Institute, Firenze March 2014 Some Reviews Lattimer and Prakash, 2007 Miller C., 2013 Heinke et al., 2013 Reminder

More information

Neutron stars in globular clusters as tests of nuclear physics

Neutron stars in globular clusters as tests of nuclear physics Mem. S.A.It. Vol. 87, 521 c SAIt 2016 Memorie della Neutron stars in globular clusters as tests of nuclear physics S. Guillot Instituto de Astrofisica Pontificia Universidad Catolica de Chile Macul, Santiago,

More information

Natalie Webb & Mathieu Servillat, Sean Farrell, Didier Barret. Centre d Etude Spatiale des Rayonnements Toulouse, France

Natalie Webb & Mathieu Servillat, Sean Farrell, Didier Barret. Centre d Etude Spatiale des Rayonnements Toulouse, France Natalie Webb & Mathieu Servillat, Sean Farrell, Didier Barret Centre d Etude Spatiale des Rayonnements Toulouse, France XMM-Newton observations of Galactic globular clusters Natalie Webb & Mathieu Servillat,

More information

A direct confrontation between neutron star X-ray spectra and nuclear physics models

A direct confrontation between neutron star X-ray spectra and nuclear physics models A direct confrontation between neutron star X-ray spectra and nuclear physics models Sebastien Guillot Post-doc CNES collaboration with N. Baillot d Etivaux J. Margueron N. Webb Neutron stars are amazing

More information

Crustal cooling in accretion heated neutron stars

Crustal cooling in accretion heated neutron stars Crustal cooling in accretion heated neutron stars Ed Cackett ecackett@umich.edu University of Michigan Collaborators: Rudy Wijnands, Jon Miller, Jeroen Homan, Walter Lewin, Manuel Linares Outline X-ray

More information

Thermal Emission from Isolated Neutron Stars

Thermal Emission from Isolated Neutron Stars Thermal Emission from Isolated Neutron Stars R. Turolla Dept. of Physics, University of Padova, Italy IWARA09 - Maresias, October 4-8 2009 1 Outline Are INSs thermal emitters? Observations of INSs Importance

More information

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae J. M. Lattimer Department of Physics & Astronomy Stony Brook University September 13, 2016 Collaborators:

More information

Spectral Lines from Rotating Neutron Stars

Spectral Lines from Rotating Neutron Stars Submitted to The Astrophysical Journal Letters Spectral Lines from Rotating Neutron Stars Feryal Özel1 and Dimitrios Psaltis Institute for Advanced Study, School of Natural Sciences, Einstein Dr., Princeton,

More information

Neutron Star Observations and Their Implications for the Nuclear Equation of State

Neutron Star Observations and Their Implications for the Nuclear Equation of State Neutron Star Observations and Their Implications for the Nuclear Equation of State J. M. Lattimer Department of Physics & Astronomy Stony Brook University May 24, 2016 24 May, 2016, JINA-CEE International

More information

Measuring the Specific Heat and the Neutrino Emissivity of Dense Matter

Measuring the Specific Heat and the Neutrino Emissivity of Dense Matter Measuring the Specific Heat and the Neutrino Emissivity of Dense Matter Edward Brown Michigan State University Joint Institute for Nuclear Astrophysics A. Piro, Carnegie Obs. Cumming, Brown, Fattoyev,

More information

Thermal Radiation from Isolated Neutron Stars

Thermal Radiation from Isolated Neutron Stars Thermal Radiation from Isolated Neutron Stars George Pavlov Penn State Slava Zavlin MSFC (Huntsville) Divas Sanwal Penn State Oleg Kargaltsev Penn State Roger Romani Stanford Thermal emission: Why important?

More information

Emission from Isolated Neutron Stars. Observations and model applications

Emission from Isolated Neutron Stars. Observations and model applications Thermal Emission from Isolated Neutron Stars Theoretical aspects Observations and model applications Slava Zavlin (MPE, Garching) A Short History Chi & Salpeter (1964) and Tsuruta (1964): thermal radiation

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

Tests of nuclear properties with astronomical observations of neutron stars

Tests of nuclear properties with astronomical observations of neutron stars Institute for Nuclear Theory 17 July 2014 Tests of nuclear properties with astronomical observations of neutron stars Wynn Ho University of Southampton, UK Nils Andersson University of Southampton, UK

More information

Thermal States of Transiently Accreting Neutron Stars in Quiescence

Thermal States of Transiently Accreting Neutron Stars in Quiescence arxiv:1702.08452 Thermal States of Transiently Accreting Neutron Stars in Quiescence Sophia Han University of Tennessee, Knoxville collaboration with Andrew Steiner, UTK/ORNL ICNT Program at FRIB Wednesday

More information

An Introduction to Neutron Stars

An Introduction to Neutron Stars An Introduction to Neutron Stars A nuclear theory perspective Sanjay Reddy Theoretical Division Los Alamos National Lab Compressing matter: Liberating degrees of freedom 12,700 km 1km Density Energy Phenomena

More information

Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters

Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters Juri Poutanen (University of Turku, Finland) Collaborators:! Valery Suleimanov (Univ. Tübingen, Germany), Joonas

More information

arxiv: v1 [astro-ph.he] 30 May 2016

arxiv: v1 [astro-ph.he] 30 May 2016 DRAFT VERSION JANUARY 29, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS K. G. ELSHAMOUTY 1,

More information

Neutron star atmosphere composition: the quiescent, low-mass X-ray binary in the globular cluster M28

Neutron star atmosphere composition: the quiescent, low-mass X-ray binary in the globular cluster M28 Mon. Not. R. Astron. Soc. 423, 1556 1561 (2012) doi:10.1111/j.1365-2966.2012.20976.x Neutron star atmosphere composition: the quiescent, low-mass X-ray binary in the globular cluster M28 M. Servillat,

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

X-ray bursts and the equation of state

X-ray bursts and the equation of state X-ray bursts and the equation of state Juri Poutanen (Univ. of Oulu, Finland) with Valery Suleimanov, Klaus Werner (Tuebingen University), Jari Kajava, Joonas Nättilä, Outi-Marja Latvala (U. Oulu), Mikhail

More information

Symmetry Energy Constraints From Neutron Stars and Experiment

Symmetry Energy Constraints From Neutron Stars and Experiment Symmetry Energy Constraints From Neutron Stars and Experiment Department of Physics & Astronomy Stony Brook University 17 January 2012 Collaborators: E. Brown (MSU), K. Hebeler (OSU), C.J. Pethick (NORDITA),

More information

Measuring the distances, masses and radii of neutron stars

Measuring the distances, masses and radii of neutron stars Measuring the distances, masses and radii of neutron stars Tolga Güver, Feryal Özel, Antonio Cabrera-Lavers, Patricia Wroblewski, Larry Camarota, Dimitrios Psaltis University of Arizona 1 Distances, Masses,

More information

Measurements of Neutron Star Masses and Radii from Thermonuclear X-ray Bursts. Tolga GÜVER İstanbul University

Measurements of Neutron Star Masses and Radii from Thermonuclear X-ray Bursts. Tolga GÜVER İstanbul University Measurements of Neutron Star Masses and Radii from Thermonuclear X-ray Bursts Tolga GÜVER İstanbul University Use of X-ray Bursts as Probes of Neutron Star Mass / Radius Swank et al. (1977) and Hoffman

More information

Nuclear burning on! accreting neutron stars. Andrew Cumming! McGill University

Nuclear burning on! accreting neutron stars. Andrew Cumming! McGill University Nuclear burning on accreting neutron stars Andrew Cumming McGill University An exciting time to study accreting neutron stars Type I X-ray bursts H/He layer heavy element ocean 1 105 1cm outer crust 109

More information

Mass loss and winds in Type I X-ray bursts

Mass loss and winds in Type I X-ray bursts Mass loss and winds in Type I X-ray bursts Andrew Cumming McGill University Image: CfA Why think about mass loss? It may not be obvious why we would worry about mass loss in Type I X-ray bursts since E

More information

CURRENT STATUS OF NEUTRON STAR THERMAL EVOLUTION AND RELATED PROBLEMS

CURRENT STATUS OF NEUTRON STAR THERMAL EVOLUTION AND RELATED PROBLEMS CURRENT STATUS OF NEUTRON STAR THERMAL EVOLUTION AND RELATED PROBLEMS Sachiko Tsuruta Physics Department, Montana State University Kiken Conference, Kyoto, Japan, September 1 2012 1 I. INTRODUCTION BRIEF

More information

A RADIO SEARCH FOR BLACK HOLES IN THE MILKY WAY GLOBULAR CLUSTER M10

A RADIO SEARCH FOR BLACK HOLES IN THE MILKY WAY GLOBULAR CLUSTER M10 (nrao/aui) LAURA SHISHKOVSKY, J. STRADER, L. CHOMIUK, L. TREMOU (MSU), J. MILLER-JONES, V. TUDOR (CURTIN), T. MACCARONE (TEXAS TECH), G. SIVAKOFF, C. HEINKE (U. ALBERTA) A RADIO SEARCH FOR BLACK HOLES

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

Collisions and Close Encounters within Globular Clusters

Collisions and Close Encounters within Globular Clusters Collisions and Close Encounters within Globular Clusters Prof. Melvyn B. Davies Lund Observatory Dept Astronomy and Theoretical Physics Lund University Lecture 3 Production of stellar exotica Cataclysmic

More information

arxiv: v1 [astro-ph.he] 7 Jun 2018

arxiv: v1 [astro-ph.he] 7 Jun 2018 Springer book collection manuscript No. (will be inserted by the editor) Testing the equation of state of neutron stars with electromagnetic observations N. Degenaar V.F. Suleimanov arxiv:1806.02833v1

More information

Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence

Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence Nucleon Superfluidity vs Thermal States of INSs & SXTs in quiescence K.P.Levenfish, D.G.Yakovlev, P.Haensel I Ioffe Institute, S.Petersburg Copernicus Astronomical Center, Warsaw Brown, Bildstein, Rutledge`98

More information

Neutron star cooling in transiently accreting low mass binaries: a new tool for probing nuclear matter

Neutron star cooling in transiently accreting low mass binaries: a new tool for probing nuclear matter To appear in: Evolution of Binary and Multiple Stars ASP Conference Series (San Francisco: ASP), 2001 Ph. Podsiadlowski, S. Rappaport, A. R. King, F. D Antona and L. Burderi, eds Neutron star cooling in

More information

Isolated Neutron Stars: Calvera and Beyond

Isolated Neutron Stars: Calvera and Beyond Isolated Neutron Stars: Calvera and Beyond Bob Rutledge McGill University Collaborators: Derek Fox and Andrew Shevchuk (PSU) Monica Turner (McGill) Jason Hessels, Ben Stappers X-ray Observations of Isolated

More information

neutron star basics λ. λ

neutron star basics λ. λ neutron star basics A solar mass consists of ~ 10 57 nucleons. If they are separated by typical inter-nucleon distances, what would the radius of the volume containing them be? neutron star basics ( )

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

arxiv: v1 [astro-ph] 9 Oct 2008

arxiv: v1 [astro-ph] 9 Oct 2008 The Mass and Radius of the Neutron Star in EXO 1745 248 Feryal Özel1, Tolga Güver and Dimitrios Psaltis 1 University of Arizona, Department of Astronomy, 933 N. Cherry Ave., Tucson, AZ 85721 arxiv:0810.1521v1

More information

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

Probing Neutron Star Physics using Thermonuclear X-ray Bursts Probing Neutron Star Physics using Thermonuclear X-ray Bursts Sudip Bhattacharyya University of Maryland (CRESST) NASA s Goddard Space Flight Center Outline Neutron Stars: why do we care? Thermonuclear

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

BLACK HOLES (AND NEUTRON STARS) IN X-RAY BINARIES: Evolution and Accretion states TEO MUÑOZ DARIAS MARIE CURIE FELLOW. Oxford Astrophysics

BLACK HOLES (AND NEUTRON STARS) IN X-RAY BINARIES: Evolution and Accretion states TEO MUÑOZ DARIAS MARIE CURIE FELLOW. Oxford Astrophysics BLACK HOLES (AND NEUTRON STARS) IN X-RAY BINARIES: Evolution and Accretion states TEO MUÑOZ DARIAS MARIE CURIE FELLOW Oxford Astrophysics ESAC 2014 Low Mass X-ray Binaries (LMXBs) Normal (

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

Surface emission of neutron stars

Surface emission of neutron stars Surface emission of neutron stars NS Radii A NS with homogeneous surface temperature and local blackbody emission L 4 R 2 T 4 From dispersion measure F 4 L D 2 2 R / D T 4 From X-ray spectroscopy NS Radii

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Study of Accretion Effects of Transients in LMXB System

Study of Accretion Effects of Transients in LMXB System Study of Accretion Effects of Transients in LMXB System By Quentin Lamicq A Senior Project presented to the Physics Department at California Polytechnic State University, San Luis Obispo June 2010 2010

More information

Abundance of Elements. Relative abundance of elements in the Solar System

Abundance of Elements. Relative abundance of elements in the Solar System Abundance of Elements Relative abundance of elements in the Solar System What is the origin of elements in the universe? Three elements formed in the first minutes after the big bang (hydrogen, helium

More information

Millisecond Pulsar Populations in Globular Clusters

Millisecond Pulsar Populations in Globular Clusters Millisecond Pulsar Populations in Globular Clusters David C. Y. Hui Department of Astronomy & Space Science Chungnam National University 1. Introduction 2. Dynamical formation of millisecond pulsars (MSPs)

More information

EOS Constraints From Neutron Stars

EOS Constraints From Neutron Stars EOS Constraints From Neutron Stars J. M. Lattimer Department of Physics & Astronomy Stony Brook University January 17, 2016 Bridging Nuclear and Gravitational Physics: the Dense Matter Equation of State

More information

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Powering Anomalous X-ray Pulsars by Neutron Star Cooling Powering Anomalous X-ray Pulsars by Neutron Star Cooling Jeremy S. Heyl Lars Hernquist 1 Lick Observatory, University of California, Santa Cruz, California 95064, USA ABSTRACT Using recently calculated

More information

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14 The Sun Chapter 14 The Role of the Sun in the Solar System > 99.9% of the mass Its mass is responsible for the orderly orbits of the planets Its heat is responsible for warming the planets It is the source

More information

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL Celia Sánchez-Fernández ISOC ESAC, Madrid, Spain In collaboration with: E. Kuulkers, D. Galloway, J. Chenevez C. Sanchez-Fernandez

More information

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History. Ages from main-sequence turn-off stars Lecture 11: Main sequence lifetime: Ages and Metalicities from Observations R diagram lifetime = fuel / burning rate MV *1 M ' L ' MS = 7 10 9 ) ) M. ( L. ( A Quick

More information

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter Laura Tolós Outline Outline Neutron Star (I) first observations by the Chinese in 1054 A.D. and prediction by Landau

More information

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/ Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/0608311 Introduction 11 Rotating RAdio Transients (RRATs) (Mclaughlin et al 2006) Repeated, irregular radio bursts

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Recent progress (or lack thereof) from neutron star radius determination from X-ray bursts

Recent progress (or lack thereof) from neutron star radius determination from X-ray bursts Recent progress (or lack thereof) from neutron star radius determination from X-ray bursts Duncan Galloway Monash University HEAT, Dec 2012 Nathanael Lampe Hauke Worpel Andrew Cumming & Michael Zamfir

More information

Neutron Star Mass and Radius Constraints on the Dense Matter Equation o

Neutron Star Mass and Radius Constraints on the Dense Matter Equation o Neutron Star Mass and Radius Constraints on the Dense Matter Equation of State Department of Physics & Astronomy Stony Brook University 20 June 2011 Collaborators: E. Brown (MSU), K. Hebeler (OSU), D.

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Accretion Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk April 01 Accretion - Accretion efficiency - Eddington

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department Physics 8.282J EAPS 12.402J May 20, 2005 Final Exam Name Last First (please print) 1. Do any

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Globular Cluster X-ray Sources

Globular Cluster X-ray Sources Globular Cluster X-ray Sources David Pooley University of Wisconsin Chandra s First Decade of Discovery 2009 Sep 24 September 24, 1759 with thanks to friends, colleagues, and collaborators: Walter Lewin

More information

Improved mass and radius constraints for quiescent neutron stars in ω Cen and NGC 6397

Improved mass and radius constraints for quiescent neutron stars in ω Cen and NGC 6397 doi:10.1093/mnras/stu1449 Improved mass and radius constraints for quiescent neutron stars in ω Cen and NGC 6397 C. O. Heinke, 1 H. N. Cohn, 2 P. M. Lugger, 2 N. A. Webb, 3 W. C. G. Ho, 4 J. Anderson,

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

Masses and Radii of Neutron Stars from Observation and Theory

Masses and Radii of Neutron Stars from Observation and Theory Masses and Radii of Neutron Stars from Observation and Theory J. M. Lattimer Department of Physics & Astronomy Stony Brook University and Yukawa Institute of Theoretical Physics University of Kyoto February

More information

Constraining neutron star masses and radii using thermonuclear X-ray bursts

Constraining neutron star masses and radii using thermonuclear X-ray bursts Feeding Compact Objects: Accretion on All Scales Proceedings IAU Symposium No. 290, 2012 C. M. Zhang, T. Belloni, M. Méndez & S. N. Zhang, eds. c International Astronomical Union 2013 doi:10.1017/s1743921312019308

More information

Modeling Atmospheres of Neutron Stars

Modeling Atmospheres of Neutron Stars Moeling Atmospheres of Neutron Stars Isolate NSs: solitary NSs or those in binaries without accretion Slava Zavlin (NASA/MSFC) The 363- Heraeus Seminar, Ba Honnef, May 5-9, 2006 Short history Chiu & Salpeter

More information

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L.

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L. X-Ray Eclipse Time Delays in 4U2129+47 E. Bozzo M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L. Burderi Università di Roma Tor Vergata, Italy

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

The Behavior of Matter Under Extreme Conditions

The Behavior of Matter Under Extreme Conditions The Behavior of Matter Under Extreme Conditions A White Paper Submitted to the Astro2010 Decadal Survey of Astronomy and Astrophysics F. Paerels 1, M. Méndez 2, M. Agueros 1, M. Baring 3, D. Barret 4,

More information

Measurements of the Mass and Radius of a Neutron Star: consequences for the Equation of State of dense nuclear matter

Measurements of the Mass and Radius of a Neutron Star: consequences for the Equation of State of dense nuclear matter University of Groningen Bachelor s thesis Measurements of the Mass and Radius of a Neutron Star: consequences for the Equation of State of dense nuclear matter Author: Tobias Vos Supervisor: Prof. dr.

More information

XMM observations of three middle-aged pulsars

XMM observations of three middle-aged pulsars Mem. S.A.It. Vol. 75, 458 c SAIt 2004 Memorie della MM observations of three middle-aged pulsars V. E. Zavlin 1 and G. G. Pavlov 2 1 Max-Planck Institut für extraterrestrische Physik, 85748 Garching, Germany

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen. University of Groningen Disc reflection in low-mass X-ray binaries Wang, Yanan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

arxiv:astro-ph/ v2 15 Jan 2003

arxiv:astro-ph/ v2 15 Jan 2003 A XMM-Newton observation during the 2000 outburst of SAX J1808.4 3658 arxiv:astro-ph/0207102v2 15 Jan 2003 Rudy Wijnands 12 Center for Space Research, Massachusetts Institute of Technology, 77 Massachusetts

More information

New Insights from the Optical Study of Spiders

New Insights from the Optical Study of Spiders New Insights from the Optical Study of Spiders Rene Breton University of Manchester with many collaborators (V. Dhillon, J. Hessels, M. van Kerkwijk, M. Roberts, ) EWASS 25 June 2015 SDO/AIA/AEI Why Do

More information

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries Astronomical Institute Anton Pannekoek Low Mass X-ray Binaries Mass is stripped from the donor Forms

More information

Coronal geometry at low mass- accretion rates from XMM and NuSTAR spectra. Felix Fürst Caltech for the NuSTAR AGN physics and binaries teams

Coronal geometry at low mass- accretion rates from XMM and NuSTAR spectra. Felix Fürst Caltech for the NuSTAR AGN physics and binaries teams Coronal geometry at low mass- accretion rates from XMM and NuSTAR spectra Felix Fürst for the NuSTAR AGN physics and binaries teams Accreting black holes Supermassive black hole: Cen A Central engine of

More information

arxiv: v1 [astro-ph.he] 5 Jun 2014

arxiv: v1 [astro-ph.he] 5 Jun 2014 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 21 August 2018 (MN LATEX style file v2.2) Improved Mass and Radius Constraints for Quiescent Neutron Stars in ω Cen and NGC 6397 arxiv:1406.1497v1

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Astrophysical Explosions in Binary Stellar Systems. Dr. Maurizio Falanga

Astrophysical Explosions in Binary Stellar Systems. Dr. Maurizio Falanga Astrophysical Explosions in Binary Stellar Systems Dr. Maurizio Falanga The X-ray binary systems haracteristics Classification after the mass of the companion Kuulkers, in t Zand & Lasota 2009 Falanga

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

X-ray observations of neutron stars and black holes in nearby galaxies

X-ray observations of neutron stars and black holes in nearby galaxies X-ray observations of neutron stars and black holes in nearby galaxies Andreas Zezas Harvard-Smithsonian Center for Astrophysics The lives of stars : fighting against gravity Defining parameter : Mass

More information

Thermal states of coldest and hottest neutron stars in soft X-ray transients

Thermal states of coldest and hottest neutron stars in soft X-ray transients A&A 417, 169 179 (2004) DOI: 10.1051/0004-6361:20034191 c ESO 2004 Astronomy & Astrophysics Thermal states of coldest and hottest neutron stars in soft X-ray transients D. G. Yakovlev 1,K.P.Levenfish 1,4,

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Anomalous X-ray Pulsars

Anomalous X-ray Pulsars Anomalous X-ray Pulsars GRBs: The Brightest Explosions in the Universe Harvard University, May 23, 2002 Vicky Kaspi Montreal, Canada What are Anomalous X-ray Pulsars? exotic class of objects 1st discovered

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Unstable Mass Transfer

Unstable Mass Transfer Unstable Mass Transfer When the mass ratios are large, or when the donor star has a deep convective layer (so R M-1/3), mass loss will occur on a dynamical timescale. The result will be common envelope

More information

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star Why is the Sun hot and bright? Surface Temperature of the Sun: T =

More information

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 WHEN S THE NEXT TEST?!?!?!? If anyone is following the syllabus, you know that it says there is a test today. The test will be on April 11 th (a

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

Compact Stars. Lecture 4

Compact Stars. Lecture 4 Compact Stars Lecture 4 X-ray binaries We have talked about the basic structure of accretion disks in X-ray binaries and evolutionary scenarios of low mass and high mass XRBs I will now present the observational

More information