Chapter 3 Optical Systems with Annular Pupils

Size: px
Start display at page:

Download "Chapter 3 Optical Systems with Annular Pupils"

Transcription

1 Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The two-mio astonomical telescopes discussed in Chapte 6 of Pat I ae a typical example of an imaging system with an annula pupil The linea obscuation atios of some of the wellknown telescopes ae 36 fo the -inch telescope at Mount Paloma, 37 fo the 84- inch telescope at the Kitt-Peak obsevatoy, 5 fo the telescope at the McDonald Obsevatoy, and 33 fo the Hubble Space Telescope Expessions fo the PSF, OTF, and encicled, ensquaed, and excluded powes ae given The Stehl atio of an abeated system is consideed and toleances fo pimay abeations ae discussed Symmety popeties of abeated PSFs ae discussed, and pictues of the PSFs fo pimay abeations ae given as examples The line of sight of an abeated system is discussed in tems of the centoid of its PSF Numeical esults ae given and compaed with the coesponding esults fo systems with cicula pupils wheeve possible and appopiate 3 ABERRATION-FREE SYSTEM We stat this chapte with a discussion of the PSF, encicled, ensquaed, and excluded powes, and the OTF of an abeation-fee system Equations ae developed in a way that the esults fo a cicula pupil can be obtained as a limiting case of the annula pupil It is shown that the obscuation in an annula pupil not only blocks the light incident on it, but it also educes the size of the cental disc and inceases the value of the seconday maxima of the PSF It also inceases the OTF value at high spatial fequencies while educing it at the low fequencies 3 Point-Spead Function Conside, as illustated in Figue 3-, an abeation-fee optical system imaging a point object with a unifomly illuminated annula exit pupil having oute and inne adii of a and a, espectively, whee is the linea obscuation atio of the pupil The iadiance at a point i in the image plane with espect to the Gaussian image point is given by Eq (-65), that is whee [ ] Û ı Ù - p i Ii( i; ) = Ii ( ; ) Sex ( ) exp Ê R p ˆ Á i d p, Ë l S ex p ( ) a = - (3-) (3-) 67

2 68 OPTICAL SYSTEMS WITH ANNULAR PUPILS ExP Defocused image plane a a Gaussian image plane z R Figue 3- Imaging by a system with an annula exit pupil of inne and oute adii a and a, espectively is the clea aea of the obscued exit pupil The quantity in Eq (3-) is sometimes efeed to as the aea obscuation atio The optical wavefont at the exit pupil is spheical with a adius of cuvatue R and cente of cuvatue at the Gaussian image point The cental iadiance is given by i = ex ex l (3-3a) I ; P S R = ppex - 4 l F (3-3b) whee P ex is the total powe in the exit pupil, and, theefoe, in the image Fo an object of intensity B o adiating at a wavelength l at a distance z fom the entance pupil of aea S en, the total powe is given by [ ] P h S z B, (3-4) = ex en o whee h is the tansmission facto of the system fo light popagation fom its entance to its exit pupil The quantity F in Eq (3-3b) is given by F = R D, (3-5) whee D = a is the oute diamete of the exit pupil It epesents the focal atio (f-numbe) of the image-foming light cone exiting fom the exit pupil The integation in Eq (3-) is caied ove the clea aea of the exit pupil such that the position vecto p of a point in its plane satisfies a a p As in Section, we expess the position vectos of points in the pupil and image planes in pola coodinates accoding to = ( cos q, sin q ), a a, q < p, (3-6) p p p p p p

3 3 Abeation-Fee System 69 and = ( cos q, sin q ), q < p (3-7) i i i i i Substituting Eqs (3-6) and (3-7) into Eq (3-), we obtain a È i Ii i i Ii Sex R p (, q ; ) = ( ; ) ( ) exp Í i cos qp qi p d p d qp Î l a p [ ] Û ı Ù Û ı Ù - p ( - ) (3-8) Compaing Eqs (-7) and (3-8), we note that the significant diffeence between the two lies in the lowe limit of the integation ove p ; in Eq (-7), the lowe limit is, indicating an unobscued pupil; in Eq (3-8) it is, indicating an obscued pupil The values of S ex ae diffeent in the two equations by a facto of - The values of P ex would also be diffeent by this facto if the pupil iadiance wee the same in both cases Fo simplicity of equations as well as numeical analysis, we use nomalized quantities = a p = ( q q ) (3-9a) cos p, sin p, (3-9b) = l F (3-a) i = i i cos q, sin q, (3-b) and = [ ] I; I ; PS l R (3-) i i ex ex Note that in Eq (3-), we have nomalized the iadiance by the cental iadiance fo a system with a cicula pupil Using nomalized quantities, Eq (3-8) may be witten = p - - Û [ ] p I, qi; Ù Û exp i cos qp qi ddqp ı ı Ù -p - (3-) Integating ove q p by using Eq (-), we obtain [ ] È I ( ; ) = [ ( - )] Û Í J d ı Ù 4 Í ( p ) (3-3) ÎÍ Caying out the adial integation by using Eq (-4), we finally obtain

4 7 OPTICAL SYSTEMS WITH ANNULAR PUPILS ÈJ p J p I ( ; ) = - Í - Î p p (3-4) We note that the iadiance distibution is adially symmetic about the Gaussian image point =, as may be expected fo a adially symmetic (annula) pupil function It is not nomalized to unity at the cente Its cental value is given by - Except fo a nomalization facto, Eq (3-4) also gives the PSF of the system It follows fom Eq (- 6) that = (3-5) PSF ; I ; P i i i ex We note that as Æ, Eq (3-4) fo the annula pupil educes to Eq (-5) fo the cicula pupil In ode that the total powe be the same fo the two pupils, the iadiance acoss the annula pupil must be highe than that fo a cicula pupil by a facto of ( - ) - Fo a given total powe P ex in the exit pupil, the cental iadiance I( ;) is smalle by a facto of - compaed to that fo a cicula pupil Howeve, if the pupil iadiance is the same in both cases, as in astonomical obsevations, then P ex ( ) is also smalle than P ex ( ) by a facto of - Hence, I( ;) will be smalle than I( ; ) by a facto of - The pincipal maximum of the image iadiance distibution lies at the Gaussian image point =, since all the Huygens spheical wavelets oiginating at the spheical wavefont in the exit pupil aive in phase at this point and, accodingly, intefee constuctively Fom Eq (3-4), we note that the image iadiance is zeo at those values of fo which = ( p ) π J p J, (3-6) These values of locate the minima of the iadiance distibution Noting Eq (-9), we find that the seconday maxima lie at those values of that satisfy J p J, (3-7) = ( p ) π The iadiance distibution fo a system with a vey thin annulus pupil Æ may be obtained fom Eq (3-3) by noting that ~, and the vaiation of J ( p ) is negligibly small ove the vaiation of that it can be eplaced by J ( p ) Hence, Eq (3-3) educes to = I;Æ J p (3-8) when nomalized by the cental iadiance P S ex l R ex

5 3 Abeation-Fee System 7 3 Encicled Powe The amount of powe in the image plane contained in a cicle of adius c centeed at the Gaussian image point is given by c Û P i( c; ) = p Ù Ii( i; ) d i i (3-9) ı Substituting Eqs (3-a) and (3-) into Eq (3-9) and defining a nomalized o factional encicled powe = (3-) P; P ; P, we obtain c i c ex = p P ; I ; d c c l F Û ı Ù (3-) If we let c be in units of lf and substitute Eq (3-4) into Eq (3-), we obtain whee È P P P J u J u du ( c; ) = Í Û ( c ) + ( c ) - Ù ( p c ) ( p c ) 4, - Í (3-) ı u ÎÍ = - ( p ) - ( p ) P J J (3-3) c c c is the encicled powe fo a system with a cicula exit pupil 33 Ensquaed Powe The ensquaed powe in a squae egion of half-width s centeed on the Gaussian image point in the image plane is given by P ; I ; dd, i = Û ı ÙÛ ı Ù q (3-4) s s i i i i i whee the integation is caied ove the squae egion Following the same pocedue as in the case of cicula pupils (see Section 3), Eq (3-4) educes to Û ı Ù [ p ] 8 - P P J u J u u du s( s; ) = c( s; ) - ( s ) - ( p s ) cos, p - u (3-5) whee

6 7 OPTICAL SYSTEMS WITH ANNULAR PUPILS and = (3-6) P ; P P s s i s ex P ( ) = P( ) (3-7) c c c ae the factional ensquaed and encicled powes, espectively, and s and c ae in units of lf The fist tem on the ight-hand side of Eq (3-5) epesents the image powe contained in a cicle of adius s The second tem gives the image powe contained in a egion lying between a cicle of adius s and a squae of full-width s Both of these tems equie numeical integation 34 Excluded Powe The excluded image powe X i, ie, the powe contained outside a cetain aea in the image plane can be calculated quite accuately in closed fom if the included aea is lage enough so that Xi Pex Fo lage aguments we can use the asymptotic expession fo Bessel functions; namely, Eq (-33) Thus, fo lage values of, Eq (3-4) can be witten [ ] 8 I ( ; ) = sin p ( -4) - sin p ( -4) p (3-8) Noting that the aveage of a sine squae is half and the aveage of the poduct of two sines with diffeent aguments is zeo, the aveage iadiance (indicated by a ba) fo lage values of may be witten 4 I ( ; ) ~ 4 3 (3-9) p - Hence, the excluded encicled powe is given by Xc( c; ) ~ ( p ) Û ı Ù I( ; ) d c = p c -, (3-3) and the excluded ensquaed powe is given by Xss; ~ Û Û ( ) Ù dx dyi ; ı ı x > s y > s Ù 4 = p 3 s -, (3-3)

7 3 Abeation-Fee System 73 whee = x + y and the subscipts c and s on X indicate a lage cicula o a squae egion of exclusion centeed on the Gaussian image point Fom Eqs (3-3) and (3-3), we note that = X ; 9 X ; (3-3) s c c c The facto of 9 between X s and X c is independent of We also note that excluded powe fo an annula pupil is lage by a facto of ( - ) - compaed to that fo a coesponding cicula pupil The appoximate esult of Eq (3-9) and those that follow fom it, although obtained fo the abeation-fee case, ae valid even when abeations ae pesent in the system This may be seen by substituting Eq (3-4) given late into Eq (-54) and consideing the nomalizations used in Eq (3-9) It should be noted, howeve, that the value of fo which Eq (3-9) is valid inceases as abeations ae intoduced into the system 35 Numeical Results Figue 3- shows the iadiance distibution and encicled powe fo seveal values of including zeo The iadiance is nomalized to unity at the cente in Figue 3-b The values of fo the fist seveal minima ae given in Table 3- fo = 9 ( ) We note that the adius of the cental bight disc (fist dak ing) deceases monotonically as inceases As Æ, this adius appoaches a value of 76 [fist zeo of J ( p )] compaed to a value of [fist zeo of J ( p )] when = Moeove, the seconday maxima become highe as inceases Fo example, when = 5, the fist seconday maximum has a value of 963% of the pincipal maximum compaed to a value of 75% fo a cicula pupil The adius of the second dak ing fist inceases with, achieves its maximum value fo = 4, and then deceases The adius of the thid dak ing fist deceases, then inceases, achieving its maximum value fo = 5, and then deceases again The adius of the fouth dak ing fist inceases, then deceases, inceases again, and finally deceases as inceases Figue 3-3 shows the iadiance distibution given by Eq (3-4) fo =, 5, 5, and 75 nomalized to unity at the cente This figue and Table 3- also show how Pc, Ps and Ps - Pc vay with c in gaphical and tabulated foms The value of P c in a given dak ing deceases o inceases with in a manne simila to how its adius vaies, although a peak o a valley in its vaiation is not achieved fo the same value of Fo small values of, the fist maximum of Ps - Pc is the highest Howeve, fo lage values of one of the seconday maxima is the highest As inceases, the seconday maxima of iadiance become inceasingly moe significant, and theefoe, Eqs (3-3) and (3-3) give accuate esults fo inceasingly lage values of c and s, espectively Fo example, if the diffeence between actual esults (given in Table 3-) and those obtained fom Figue 3- is to be less than 6% of the total powe, c must be lage than 7, 8, and 38 when is equal to 5, 5, and 75, espectively A geneal ule of thumb is

Fresnel Diffraction. monchromatic light source

Fresnel Diffraction. monchromatic light source Fesnel Diffaction Equipment Helium-Neon lase (632.8 nm) on 2 axis tanslation stage, Concave lens (focal length 3.80 cm) mounted on slide holde, iis mounted on slide holde, m optical bench, micoscope slide

More information

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan Tutoial on Stel atio, wavefont powe seies expansion, Zenike polynomials expansion in small abeated optical systems By Seng Yuan. Stel Ratio Te wave abeation function, (x,y, is defined as te distance, in

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas C:\Dallas\0_Couses\0_OpSci_330\0 Lectue Notes\04 HfkPopagation.doc: Page of 9 Lectue 04: HFK Popagation Physical Optics II (Optical Sciences 330) (Updated: Fiday, Apil 9, 005, 8:05 PM) W.J. Dallas The

More information

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1)

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1) hapte Two Faby--Peot ntefeomete A Faby-Peot intefeomete consists of two plane paallel glass plates A and B, sepaated by a distance d. The inne sufaces of these plates ae optically plane and thinly silveed

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue,

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caio, Egypt, Decembe 9-3, 7 5 Magnetostatic Field calculations associated with thick Solenoids in the Pesence of Ion using a Powe Seies expansion and the Complete

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Inverse Square Law and Polarization

Inverse Square Law and Polarization Invese Squae Law and Polaization Objectives: To show that light intensity is invesely popotional to the squae of the distance fom a point light souce and to show that the intensity of the light tansmitted

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Surveillance Points in High Dimensional Spaces

Surveillance Points in High Dimensional Spaces Société de Calcul Mathématique SA Tools fo decision help since 995 Suveillance Points in High Dimensional Spaces by Benad Beauzamy Januay 06 Abstact Let us conside any compute softwae, elying upon a lage

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

COUPLED MODELS OF ROLLING, SLIDING AND WHIRLING FRICTION

COUPLED MODELS OF ROLLING, SLIDING AND WHIRLING FRICTION ENOC 008 Saint Petesbug Russia June 30-July 4 008 COUPLED MODELS OF ROLLING SLIDING AND WHIRLING FRICTION Alexey Kieenkov Ins ti tu te fo P ob le ms in Me ch an ic s Ru ss ia n Ac ad em y of Sc ie nc es

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

Solution Set #3

Solution Set #3 05-733-009 Solution Set #3. Assume that the esolution limit of the eye is acminute. At what distance can the eye see a black cicle of diamete 6" on a white backgound? One acminute is, so conside a tiangle

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

Introduction to Arrays

Introduction to Arrays Intoduction to Aays Page 1 Intoduction to Aays The antennas we have studied so fa have vey low diectivity / gain. While this is good fo boadcast applications (whee we want unifom coveage), thee ae cases

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods TEAM 2007, Sept. 10-13, 2007,Yokohama, Japan Hydoelastic Analysis of a 1900 TEU Containe Ship Using Finite Element and Bounday Element Methods Ahmet Egin 1)*, Levent Kaydıhan 2) and Bahadı Uğulu 3) 1)

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Contact impedance of grounded and capacitive electrodes

Contact impedance of grounded and capacitive electrodes Abstact Contact impedance of gounded and capacitive electodes Andeas Hödt Institut fü Geophysik und extateestische Physik, TU Baunschweig The contact impedance of electodes detemines how much cuent can

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

APPLICATION OF MAC IN THE FREQUENCY DOMAIN

APPLICATION OF MAC IN THE FREQUENCY DOMAIN PPLICION OF MC IN HE FREQUENCY DOMIN D. Fotsch and D. J. Ewins Dynamics Section, Mechanical Engineeing Depatment Impeial College of Science, echnology and Medicine London SW7 2B, United Kingdom BSRC he

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

ELASTIC ANALYSIS OF CIRCULAR SANDWICH PLATES WITH FGM FACE-SHEETS

ELASTIC ANALYSIS OF CIRCULAR SANDWICH PLATES WITH FGM FACE-SHEETS THE 9 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ELASTIC ANALYSIS OF CIRCULAR SANDWICH PLATES WITH FGM FACE-SHEETS R. Sbulati *, S. R. Atashipou Depatment of Civil, Chemical and Envionmental Engineeing,

More information

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS Pogess In Electomagnetics Reseach, PIER 73, 93 105, 2007 COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS T.-X. Song, Y.-H. Liu, and J.-M. Xiong School of Mechanical Engineeing

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

THERMODYNAMICS OF SURFACES AND INTERFACES

THERMODYNAMICS OF SURFACES AND INTERFACES THERMODYNAMIC OF URFACE AND INTERFACE 1. Intoduction Eveything has to end somewhee. Fo solids, o liquids that "somewhee" is a suface, o an inteface between phases. Fo liquids, the inteface is between the

More information

MONTE CARLO SIMULATION OF FLUID FLOW

MONTE CARLO SIMULATION OF FLUID FLOW MONTE CARLO SIMULATION OF FLUID FLOW M. Ragheb 3/7/3 INTRODUCTION We conside the situation of Fee Molecula Collisionless and Reflective Flow. Collisionless flows occu in the field of aefied gas dynamics.

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

3.1 Random variables

3.1 Random variables 3 Chapte III Random Vaiables 3 Random vaiables A sample space S may be difficult to descibe if the elements of S ae not numbes discuss how we can use a ule by which an element s of S may be associated

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid.

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid. SIO 229 Gavity and Geomagnetism Lectue 6. J 2 fo Eath. J 2 in the sola system. A fist look at the geoid. The Thee Big Themes of the Gavity Lectues 1.) An ellipsoidal otating Eath Refeence body (mass +

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

Math Section 4.2 Radians, Arc Length, and Area of a Sector

Math Section 4.2 Radians, Arc Length, and Area of a Sector Math 1330 - Section 4. Radians, Ac Length, and Aea of a Secto The wod tigonomety comes fom two Geek oots, tigonon, meaning having thee sides, and mete, meaning measue. We have aleady defined the six basic

More information

Guided and Coupled waves : an overview of optical bers and derived components for optical communications

Guided and Coupled waves : an overview of optical bers and derived components for optical communications Guided and Coupled waves : an oveview of optical bes and deived components fo optical communications Jean-Michel Jonathan eviewed in Januay 5 by Sylvie Lebun ii Contents I Electomagnetism of dielectic

More information

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere Applied Mathematics, 06, 7, 709-70 Published Online Apil 06 in SciRes. http://www.scip.og/jounal/am http://dx.doi.og/0.46/am.06.77065 Absoption Rate into a Small Sphee fo a Diffusing Paticle Confined in

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

MENSURATION-III

MENSURATION-III MENSURATION-III CIRCLE: A cicle is a geometical figue consisting of all those points in a plane which ae at a given distance fom a fixed point in the same plane. The fixed point is called the cente and

More information