STAT 525 Fall Final exam. Tuesday December 14, 2010

Size: px
Start display at page:

Download "STAT 525 Fall Final exam. Tuesday December 14, 2010"

Transcription

1 STAT 525 Fall 2010 Final exam Tuesday December 14, 2010 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will be deducted for false statements, even if the final answer is correct. Please circle your final answer where appropriate. This exam is closed-book. You may consult three pages with your hand-written notes. Calculators are permitted. Honor code: I promise not to cheat on this exam. I will neither give nor receive any unauthorized assistance. I will not to share information about the exam with anyone who may be taking it at a different time. I have not been told anything about the exam by someone who has taken it earlier. Signature: Date: 1

2 Question Possible Points Actual Points

3 1. A company developed a new drug that they hope helps prevent the flu. To investigate the effectiveness of the drug, it recruited 1000 unvaccinated adults and, during a community outbreak of the flu, randomly assigned each adult to one of two groups (grp). Group 1 took 75 mg of the anti-viral drug once daily for 60 days. Group 0 received the equivalent of placebo (inactive drug) for 60 days. The company also scored the health behavior (health) of each adult on a 100-point scale, where a lower score refers to healthier behaviors. At the end of the 60 days, each subject reported whether he/she caught the flu (flu: no=0, yes=1). The company hired a statistician to do the analysis of the data, but the statistical caught the flu before completing the analysis. Using the available output, help the company understand the results. (a) (6 pts) The CEO wanted to use a standard t-test, comparing the number of subjects who caught the flu between the treatment and the placebo group. However the statistician suggested using logistic regression, using grp and health as explanatory variables. Explain to the CEO the benefits of using logistic regression as compared to the t-test in this case (your argument should not depend on the results of any analyses). The t-test is a simplistic approach, which compares the distribution of the number of subjects. It does not answer the research question directly, because it views the variable of interst flu as fixed. It also does not allow us to adjust for other covariates, such as health. The logistic regression answers the research question more directly. It views the flu status as the random variable of interest, conditional on the values of all the covariates. 3

4 (b) (5 pts) Based on the partial logistic output below, state the probability model that is being fit and the assumptions, and interpret the parameters. Ordered Total Value FLU Frequency Probability modeled is FLU=1. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC SC Log L Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Intercept grp health Estimated Covariance Matrix Parameter Intercept grp1 health Intercept grp E-6 health E Model description: Assumptions: where Y i X ind Bernoilli(π i ) π i = E(Y )= exp(x β) 1 + exp(x β) Interpretation: β j : is the log odds ratio associated with a unit increase of X j, while the values of the other predictors are kept fixed 4

5 (c) (6 pts) Obtain the 95% confidence interval for the odds ratio of grp. Interpret this quantity, and state the conclusion. 95% CI for β 1 : b 1 ± z 1 α/2 s{b 1 } = ± (1.96)(0.3562) = (0.4146, ) The CI does not contain 1. Therefore, the odds of getting a flu do not change significantly when switching from placebo to the drug, for a fixed status of health. 95% CI for the odd ratio of grp : (e ,e ) = (1.514, 6.115) The CI contains 1. Therefore, the odds of getting a flu increase significantly with the increased score of health, for a fixed status of grp. (d) (6 pts) Calculate the 95% confidence interval for the estimated probability that someone with health=10 will catch the flu in the placebo group. ˆπ h = X h b = [ ] s 2 {ˆπ h } = [ ] s 2 {b} = [ ] s{ˆπ h } = = = % CI for ˆπ h = ± (1.96)( ) = ( , ) = (L, U) ( ) 1 95 % CI for ˆπ h = 1+e L, 1 1+e U = ( , ) =

6 (e) (5 pts) The statistician also considered adding the health x grp interaction in the model and this resulted in 2 log L = Test at the confidence level of 95% whether this interaction term should be included in the final model. Likelihood ratio test: ( ) p{y Reduced model - H 0 : log i =1} = β 0 + β 1 grp i + β 2 health i ( Full model - H a : log p{y i =1} p{y i =0} p{y i =0} ) = β 0 + β 1 grp i + β 2 health i + β 12 grp i health i G 2 = 2[logL(R) logl(f )] = = G 2 H 0 χ 2 1, critical value at α =0.05 is 3.84 Therefore, we can reject H 0 and select the model with the interaction. (f) (5 pts) The last part of the output of the additive logistic regression is the Hosmer and Lemeshow test. Explain to the CEO what this test is assessing: state the null and the alternative hypotheses, define the test statistic, state and interpret your conclusions at the confidence level of 95%. Partition for the Hosmer and Lemeshow Test FLU = 1 FLU = 0 Group Total Observed Expected Observed Expected Chi-Square DF Pr > ChiSq H-L test is a goodness of fit test for Logistic regression used when some levels of covariates have no or few replicates. ( ) E(Yi ) H 0 : log = β 0 + β 1 grp 1 E(Y i ) i + β 1 health i ( ) E(Yi ) H a : log = π i β 0 + β 1 grp 1 E(Y i ) i + β 1 health i Group cases based on values of estimated probabilities ˆπ i into c groups. Here we have 10 groups. Apply Pearson χ 2 test to the groups, i.e. evaluate χ 2 = c 1 ( ) Ojk E 2 jk E jk j=1 k=0 Reject H 0 if χ 2 >χ 2 (1 α, c 2) χ 2 = <χ 2 (0.95, 10 2) = 15.51,Therefore, do not reject H 0 interpretation: additive logistic regression is appropriate. 6

7 2. An experimenter is interested in the effects of two stimulants (A and B) on rats. She randomly assigned a total of 20 rats into 5 groups (placebo, Drug A low, Drug A high, Drug B low, and Drug B high), and recorded each rats activity level (higher score is more active). The table below summarizes the results of the experiment. Treatment mean activity level variance 1- Placebo Low A High A Low B High B (a) (6 pts) Is this a two-factor factorial experiment? Explain. It is not.the investigator changes one factor at a time (A or B). It is impossible to estimate the joint effect of the two stimulants (i.e. the statistical interaction between A and B) from this design. The appropriate model here is a 1-way ANOVA with 5 levels of the factor. (b) (5 pts) State the ANOVA model that is appropriate for the analysis of these data. Y ij = µ i + ɛ ij Y ij = activity level for rat j in group i, i =1,..., 5, j =1,..., 4 µ i : the expected value in group i iid ɛ ij N(0,σ 2 ) or, equivalently, µ : grand mean Y ij = µ + τ i + ɛ ij τ i : treatment effect for group i, i =1,..., 5, ɛ ij iid N(0,σ 2 ) 5 τ i =0 i=1 7

8 (c) (6 pts) Using the data above, test where the treatments have an effect on the activity. State the null and the alternative hypotheses, and interpret the results using α = Hypothesis: H 0 : µ 1 = µ 2 = µ 3 = µ 4 = µ 5 = µ H a : at least one µ i is different F = MS(Model) MSE 5 i=1 = 4 (Ȳi Ȳ )/(5 1) 5 4 i=1 j=1 (Y ij Ȳi ) 2 /(5 4 5) = 4[( )2 + ( , 35) ( ) 2 ]/4 3[ ]/15 = = H 0 F (0.95; 4, 15) = Therefore, we can reject H 0 and conclude that there is a treatment effect. (d) (6 pts) For each of the following comparisons, specify the null and the alternative hypotheses, and the corresponding coefficients that you d use in the SAS contrast statement: i. Compare low versus high dosage for Drug A H 0 : µ 2 = µ 3 vs. H a : µ 2 µ ii. Compare low versus high dosage for Drug B H 0 : µ 4 = µ 5 vs. H a : µ 4 µ iii. Compare difference of high and low dosages for Drug A to the difference of high and low dosages for Drug B H 0 : µ 3 µ 2 = µ 5 µ 4 vs. H a : µ 3 µ 2 µ 5 µ iv. Compare high dosage of B versus high dosage of A H 0 : µ 5 = µ 3 vs. H a : µ 5 µ v. Compare the placebo to the average activity in all the combined treatment groups (i.e. groups 2-5) H 0 : µ 1 = µ 2+µ 3 +µ 4 +µ 5 4 vs. H a : µ 1 µ 2+µ 3 +µ 4 +µ /4-1/4-1/4-1/4 8

9 (e) (6 pts) Perform the comparison (iii) above, while controlling the family-wise error rate of all the comparisons (i)-(v) at the significance level 0.05, as follows: i. Compute the test statistic ˆL = 5 c i Ȳ i = = 2.75 i=1 s 2 {ˆL} = MSE c 2 i = n i 4 =9.95 ˆL t = s{ˆl} = 2.75 = ii. Determine the optimal critical value of the test statistic that controls for the familywise error rate among the five comparisons above. The family of comparisons includes linear combinations of groups, beyond pairwise comparisons. Therefore the Tukey approach is not applicable, and we have a choice between Bonferroni and Scheffé. B = t(1 α/(2 5),n T r) =t(0.995, 15) = Scheffe: (r 1)F (1 α; r 1,n T r) = 4 F (0.95; 4, 15) = Therefore, use Bonferroni, B = iii. State and interpret your conclusion We fail to reject H 0. There is no significant difference in changes in activity between high and low dosages for Drug A, and high and low dosages for Drug B. iv. Why is it necessary to adjust for multiple comparisons in this case? Since we have 5 comparisons, we want to control the multivariate error rate of all the comparisons simultaneously. Both approaches by Bonferroni and Scheffé control family-wize error rate, i.e. the probability of Type I error in at least one comparison. (f) (5 pts) Provide recommendations for a better design of this experiment. If it is possible to administer multiple treatments to a same animal, a 2x2 factorial experiment will perform best. A further improvement is to conduct repeated measurements on a same animal. 9

10 3. The western bean cutworm has migrated into Indiana from Illinois and states further west, and a researcher decided to investigate weather different varieties of corn can control the pest. He conducted an experiment where he grew 8 varieties of corn grown at each of 5 locations along the western border of Indiana. 2 replicate fields were used for each variety and each location. The response variable was the number of moths caught in traps located in each eld. (a) (5 pts) State the Analysis of Variance model that can be used to analyze these data. We can use Two-way ANOVA. Y ijk = µ + α i + β j +(αβ) ij + ɛ ijk Y ijk = the number of moths caught in traps for corn variety i, location j, and replicate field k. µ : grand mean α i : i th level effect of corn variety, i =1,, 8, 8 i=1 α =0 β j : j th level effect of location, j =1,, 5, 5 j=1 β =0 (αβ) ij : interaction effect, i (αβ) ij =0and j (αβ) ij =0 ɛ ijk iid N(0,σ 2 ) (b) (5 pts) For each of the assumptions of the ANOVA model above, state one diagnostic (test or graphic) that can be used to assess the assumption. Can some of these assumptions be potentially violated in this experiment? ɛ : assumption - diagnostics non-systematic and constant variance : residual plots (residual vs fitted values) normally distributed : normal QQ plot independent : plot residuals vs the order in which the observations were collected, or their geographic location Since the response is measured in counts, the assumption of Normality may not verify. Also, spacial correlation between the locations can violate the assumption of independence. 10

11 (c) (6 pts) The researcher proceeds with fitting an additive ANOVA model with SAS, and the SAS estimates of regression parameters are shown below. Calculate the model-based estimated of the expected number of moths for the first and the last sites. Intercept B trt B trt B trt B trt B trt B trt B trt B trt B site B site B site B site B site B ˆµ j =ˆµ i=1 ˆα i + ˆβ j i=1 ˆα i = 1 8 ( ) = first site : ˆµ 1 = = last site : ˆµ 5 = =

12 4. Consider a two-factor ANOVA, where factors A and B have two levels. (a) (6 pts) For each of the following situations, sketch an appropriate interaction plot. Make sure to label the plots so that they are easy to understand. i. no main effects and no interactions for each group ii. no main effect for factor A, a main effect for factor B, no interaction iii. a main effect for factor A, a main effect for factor B, no interaction iv. a main effect for factor A, a main effect for factor B, and interaction v. no main effects, but the interaction is present (i) (ii) (iii) (iv) (v) 12

13 (b) (5 pts) Describe the difference between analysis and interpretation of factor effects in presence or absence of interaction. In absence of interaction, we can test main effects. We can also pull the interaction into the error term. This may increase power because we increase the df, but may decrease power because error term increases. In practice, the trade-off may be advantageous when the sample size is small. When the interaction is present, the main effects do not make sense (or should be interpreted carefully as averages over the observed level of the other factor). Individual contrasts are typically tested instead. (c) (6 pts) We continue working with a two-factor ANOVA model with an interaction, where factors A and B each have two levels. Suppose that each combination of levels has two replicate observations. Write the regression representation of the ANOVA with (i) zero-sum constraint (i.e. conceptual) model, and (ii) in SAS (in other words, provide the Y = Xβ + ɛ representation of the model). Please provide the exact values in each design matrix X, and clearly indicate the parameters that correspond to each column. (i) zero-sum constraint model Y 111 Y 112 Y 121 Y 122 Y 211 Y 212 Y 221 Y 222 = µ α 1 β 1 (αβ) 11 + ɛ 111 ɛ 112 ɛ 121 ɛ 122 ɛ 211 ɛ 212 ɛ 221 ɛ 222 (ii) in SAS Y 111 Y 112 Y 121 Y 122 Y 211 Y 212 Y 221 Y 222 = µ α 1 β 1 (αβ) 11 + ɛ 111 ɛ 112 ɛ 121 ɛ 122 ɛ 211 ɛ 212 ɛ 221 ɛ

STAT 526 Spring Midterm 1. Wednesday February 2, 2011

STAT 526 Spring Midterm 1. Wednesday February 2, 2011 STAT 526 Spring 2011 Midterm 1 Wednesday February 2, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points

More information

STAT 526 Spring Final Exam. Thursday May 5, 2011

STAT 526 Spring Final Exam. Thursday May 5, 2011 STAT 526 Spring 2011 Final Exam Thursday May 5, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

This exam contains 5 questions. Each question is worth 10 points. Therefore, this exam is worth 50 points.

This exam contains 5 questions. Each question is worth 10 points. Therefore, this exam is worth 50 points. GROUND RULES: This exam contains 5 questions. Each question is worth 10 points. Therefore, this exam is worth 50 points. Print your name at the top of this page in the upper right hand corner. This is

More information

Chapter 12. Analysis of variance

Chapter 12. Analysis of variance Serik Sagitov, Chalmers and GU, January 9, 016 Chapter 1. Analysis of variance Chapter 11: I = samples independent samples paired samples Chapter 1: I 3 samples of equal size J one-way layout two-way layout

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

More about Single Factor Experiments

More about Single Factor Experiments More about Single Factor Experiments 1 2 3 0 / 23 1 2 3 1 / 23 Parameter estimation Effect Model (1): Y ij = µ + A i + ɛ ij, Ji A i = 0 Estimation: µ + A i = y i. ˆµ = y..  i = y i. y.. Effect Modell

More information

Homework 3 - Solution

Homework 3 - Solution STAT 526 - Spring 2011 Homework 3 - Solution Olga Vitek Each part of the problems 5 points 1. KNNL 25.17 (Note: you can choose either the restricted or the unrestricted version of the model. Please state

More information

STAT 512 MidTerm I (2/21/2013) Spring 2013 INSTRUCTIONS

STAT 512 MidTerm I (2/21/2013) Spring 2013 INSTRUCTIONS STAT 512 MidTerm I (2/21/2013) Spring 2013 Name: Key INSTRUCTIONS 1. This exam is open book/open notes. All papers (but no electronic devices except for calculators) are allowed. 2. There are 5 pages in

More information

STAT 705 Chapter 19: Two-way ANOVA

STAT 705 Chapter 19: Two-way ANOVA STAT 705 Chapter 19: Two-way ANOVA Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 41 Two-way ANOVA This material is covered in Sections

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as ST 51, Summer, Dr. Jason A. Osborne Homework assignment # - Solutions 1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek Two-factor studies STAT 525 Chapter 19 and 20 Professor Olga Vitek December 2, 2010 19 Overview Now have two factors (A and B) Suppose each factor has two levels Could analyze as one factor with 4 levels

More information

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable,

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable, Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/2 01 Examination Date Time Pages Final December 2002 3 hours 6 Instructors Course Examiner Marks Y.P.

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Introduction to Analysis of Variance. Chapter 11

Introduction to Analysis of Variance. Chapter 11 Introduction to Analysis of Variance Chapter 11 Review t-tests Single-sample t-test Independent samples t-test Related or paired-samples t-test s m M t ) ( 1 1 ) ( m m s M M t M D D D s M t n s s M 1 )

More information

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Applied Statistics Friday, January 15, 2016

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Applied Statistics Friday, January 15, 2016 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Applied Statistics Friday, January 15, 2016 Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Stat 135 Fall 2013 FINAL EXAM December 18, 2013

Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Name: Person on right SID: Person on left There will be one, double sided, handwritten, 8.5in x 11in page of notes allowed during the exam. The exam is closed

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

Ch. 5 Two-way ANOVA: Fixed effect model Equal sample sizes

Ch. 5 Two-way ANOVA: Fixed effect model Equal sample sizes Ch. 5 Two-way ANOVA: Fixed effect model Equal sample sizes 1 Assumptions and models There are two factors, factors A and B, that are of interest. Factor A is studied at a levels, and factor B at b levels;

More information

Math 3330: Solution to midterm Exam

Math 3330: Solution to midterm Exam Math 3330: Solution to midterm Exam Question 1: (14 marks) Suppose the regression model is y i = β 0 + β 1 x i + ε i, i = 1,, n, where ε i are iid Normal distribution N(0, σ 2 ). a. (2 marks) Compute the

More information

STAT 705 Chapter 19: Two-way ANOVA

STAT 705 Chapter 19: Two-way ANOVA STAT 705 Chapter 19: Two-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 38 Two-way ANOVA Material covered in Sections 19.2 19.4, but a bit

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

TA: Sheng Zhgang (Th 1:20) / 342 (W 1:20) / 343 (W 2:25) / 344 (W 12:05) Haoyang Fan (W 1:20) / 346 (Th 12:05) FINAL EXAM

TA: Sheng Zhgang (Th 1:20) / 342 (W 1:20) / 343 (W 2:25) / 344 (W 12:05) Haoyang Fan (W 1:20) / 346 (Th 12:05) FINAL EXAM STAT 301, Fall 2011 Name Lec 4: Ismor Fischer Discussion Section: Please circle one! TA: Sheng Zhgang... 341 (Th 1:20) / 342 (W 1:20) / 343 (W 2:25) / 344 (W 12:05) Haoyang Fan... 345 (W 1:20) / 346 (Th

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

STA 4211 Exam 1 Spring 2015 PRINT Name

STA 4211 Exam 1 Spring 2015 PRINT Name STA 4211 Exam 1 Spring 2015 PRINT Name For all significance tests, use = 0.05 significance level. Show work for any partial credit! Q.1. In the broiler chicken study, with factor A (base diet: Sorghum,

More information

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments.

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments. Analysis of Covariance In some experiments, the experimental units (subjects) are nonhomogeneous or there is variation in the experimental conditions that are not due to the treatments. For example, a

More information

Review of One-way Tables and SAS

Review of One-way Tables and SAS Stat 504, Lecture 7 1 Review of One-way Tables and SAS In-class exercises: Ex1, Ex2, and Ex3 from http://v8doc.sas.com/sashtml/proc/z0146708.htm To calculate p-value for a X 2 or G 2 in SAS: http://v8doc.sas.com/sashtml/lgref/z0245929.htmz0845409

More information

Comparisons among means (or, the analysis of factor effects)

Comparisons among means (or, the analysis of factor effects) Comparisons among means (or, the analysis of factor effects) In carrying out our usual test that μ 1 = = μ r, we might be content to just reject this omnibus hypothesis but typically more is required:

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018 Math 403 - P. & S. III - Dr. McLoughlin - 1 2018 2 Hand-out 2 Dr. M. P. M. M. M c Loughlin Revised 2018 3. Fundamentals 3.1. Preliminaries. Suppose we can produce a random sample of weights of 10 year-olds

More information

Homework 5: Answer Key. Plausible Model: E(y) = µt. The expected number of arrests arrests equals a constant times the number who attend the game.

Homework 5: Answer Key. Plausible Model: E(y) = µt. The expected number of arrests arrests equals a constant times the number who attend the game. EdPsych/Psych/Soc 589 C.J. Anderson Homework 5: Answer Key 1. Probelm 3.18 (page 96 of Agresti). (a) Y assume Poisson random variable. Plausible Model: E(y) = µt. The expected number of arrests arrests

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

Chapter 14. Linear least squares

Chapter 14. Linear least squares Serik Sagitov, Chalmers and GU, March 5, 2018 Chapter 14 Linear least squares 1 Simple linear regression model A linear model for the random response Y = Y (x) to an independent variable X = x For a given

More information

Two-Way Analysis of Variance - no interaction

Two-Way Analysis of Variance - no interaction 1 Two-Way Analysis of Variance - no interaction Example: Tests were conducted to assess the effects of two factors, engine type, and propellant type, on propellant burn rate in fired missiles. Three engine

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Stat 705: Completely randomized and complete block designs

Stat 705: Completely randomized and complete block designs Stat 705: Completely randomized and complete block designs Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 16 Experimental design Our department offers

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

General Linear Model: Statistical Inference

General Linear Model: Statistical Inference Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter 4), least

More information

Masters Comprehensive Examination Department of Statistics, University of Florida

Masters Comprehensive Examination Department of Statistics, University of Florida Masters Comprehensive Examination Department of Statistics, University of Florida May 10, 2002, 8:00am - 12:00 noon Instructions: 1. You have four hours to answer questions in this examination. 2. There

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: )

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: ) NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3

More information

Business 320, Fall 1999, Final

Business 320, Fall 1999, Final Business 320, Fall 1999, Final name You may use a calculator and two cheat sheets. You have 3 hours. I pledge my honor that I have not violated the Honor Code during this examination. Obvioiusly, you may

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

ST505/S697R: Fall Homework 2 Solution.

ST505/S697R: Fall Homework 2 Solution. ST505/S69R: Fall 2012. Homework 2 Solution. 1. 1a; problem 1.22 Below is the summary information (edited) from the regression (using R output); code at end of solution as is code and output for SAS. a)

More information

Factorial and Unbalanced Analysis of Variance

Factorial and Unbalanced Analysis of Variance Factorial and Unbalanced Analysis of Variance Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota)

More information

STAT 510 Final Exam Spring 2015

STAT 510 Final Exam Spring 2015 STAT 510 Final Exam Spring 2015 Instructions: The is a closed-notes, closed-book exam No calculator or electronic device of any kind may be used Use nothing but a pen or pencil Please write your name and

More information

Example - Alfalfa (11.6.1) Lecture 14 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect

Example - Alfalfa (11.6.1) Lecture 14 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect (11.6.1) Lecture 14 - ANOVA cont. Sta102 / BME102 Colin Rundel March 19, 2014 Researchers were interested in the effect that acid has on the growth rate of alfalfa plants. They created three treatment

More information

STAT 135 Lab 10 Two-Way ANOVA, Randomized Block Design and Friedman s Test

STAT 135 Lab 10 Two-Way ANOVA, Randomized Block Design and Friedman s Test STAT 135 Lab 10 Two-Way ANOVA, Randomized Block Design and Friedman s Test Rebecca Barter April 13, 2015 Let s now imagine a dataset for which our response variable, Y, may be influenced by two factors,

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Jurusan Teknik Industri Universitas Brawijaya Outline Introduction The Analysis of Variance Models for the Data Post-ANOVA Comparison of Means Sample

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College An example ANOVA situation Example (Treating Blisters) Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

Lecture 15 - ANOVA cont.

Lecture 15 - ANOVA cont. Lecture 15 - ANOVA cont. Statistics 102 Colin Rundel March 18, 2013 One-way ANOVA Example - Alfalfa Example - Alfalfa (11.6.1) Researchers were interested in the effect that acid has on the growth rate

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

McGill University. Faculty of Science MATH 204 PRINCIPLES OF STATISTICS II. Final Examination

McGill University. Faculty of Science MATH 204 PRINCIPLES OF STATISTICS II. Final Examination McGill University Faculty of Science MATH 204 PRINCIPLES OF STATISTICS II Final Examination Date: 20th April 2009 Time: 9am-2pm Examiner: Dr David A Stephens Associate Examiner: Dr Russell Steele Please

More information

Possibly useful formulas for this exam: b1 = Corr(X,Y) SDY / SDX. confidence interval: Estimate ± (Critical Value) (Standard Error of Estimate)

Possibly useful formulas for this exam: b1 = Corr(X,Y) SDY / SDX. confidence interval: Estimate ± (Critical Value) (Standard Error of Estimate) Statistics 5100 Exam 2 (Practice) Directions: Be sure to answer every question, and do not spend too much time on any part of any question. Be concise with all your responses. Partial SAS output and statistical

More information

STAT 705 Chapter 16: One-way ANOVA

STAT 705 Chapter 16: One-way ANOVA STAT 705 Chapter 16: One-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 21 What is ANOVA? Analysis of variance (ANOVA) models are regression

More information

STAT 7030: Categorical Data Analysis

STAT 7030: Categorical Data Analysis STAT 7030: Categorical Data Analysis 5. Logistic Regression Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2012 Peng Zeng (Auburn University) STAT 7030 Lecture Notes Fall 2012

More information

Sleep data, two drugs Ch13.xls

Sleep data, two drugs Ch13.xls Model Based Statistics in Biology. Part IV. The General Linear Mixed Model.. Chapter 13.3 Fixed*Random Effects (Paired t-test) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch

More information

Comprehensive Examination Quantitative Methods Spring, 2018

Comprehensive Examination Quantitative Methods Spring, 2018 Comprehensive Examination Quantitative Methods Spring, 2018 Instruction: This exam consists of three parts. You are required to answer all the questions in all the parts. 1 Grading policy: 1. Each part

More information

Solutions for Examination Categorical Data Analysis, March 21, 2013

Solutions for Examination Categorical Data Analysis, March 21, 2013 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, Frank Miller MT 5006 LÖSNINGAR 21 mars 2013 Solutions for Examination Categorical Data Analysis, March 21, 2013 Problem 1 a.

More information

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. 1. A study was carried out to examine the relationship between the number

More information

Statistics GIDP Ph.D. Qualifying Exam Methodology

Statistics GIDP Ph.D. Qualifying Exam Methodology Statistics GIDP Ph.D. Qualifying Exam Methodology January 9, 2018, 9:00am 1:00pm Instructions: Put your ID (not your name) on each sheet. Complete exactly 5 of 6 problems; turn in only those sheets you

More information

Written Exam (2 hours)

Written Exam (2 hours) M. Müller Applied Analysis of Variance and Experimental Design Summer 2015 Written Exam (2 hours) General remarks: Open book exam. Switch off your mobile phone! Do not stay too long on a part where you

More information

Categorical data analysis Chapter 5

Categorical data analysis Chapter 5 Categorical data analysis Chapter 5 Interpreting parameters in logistic regression The sign of β determines whether π(x) is increasing or decreasing as x increases. The rate of climb or descent increases

More information

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition).

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition). IE 330 Seat # Open book and notes 10 minutes Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition) Cover page and eight pages of exam No calculator ( points) I have, or will, complete

More information

2. TRUE or FALSE: Converting the units of one measured variable alters the correlation of between it and a second variable.

2. TRUE or FALSE: Converting the units of one measured variable alters the correlation of between it and a second variable. 1. The diagnostic plots shown below are from a linear regression that models a patient s score from the SUG-HIGH diabetes risk model as function of their normalized LDL level. a. Based on these plots,

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information

This gives us an upper and lower bound that capture our population mean.

This gives us an upper and lower bound that capture our population mean. Confidence Intervals Critical Values Practice Problems 1 Estimation 1.1 Confidence Intervals Definition 1.1 Margin of error. The margin of error of a distribution is the amount of error we predict when

More information

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 18.1 Logistic Regression (Dose - Response)

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 18.1 Logistic Regression (Dose - Response) Model Based Statistics in Biology. Part V. The Generalized Linear Model. Logistic Regression ( - Response) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch 9, 10, 11), Part IV

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Final Exam - Solutions

Final Exam - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis March 19, 2010 Instructor: John Parman Final Exam - Solutions You have until 5:30pm to complete this exam. Please remember to put your

More information

Chapter 20 : Two factor studies one case per treatment Chapter 21: Randomized complete block designs

Chapter 20 : Two factor studies one case per treatment Chapter 21: Randomized complete block designs Chapter 20 : Two factor studies one case per treatment Chapter 21: Randomized complete block designs Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis

More information