Model building and validation for cryo-em maps at low resolution

Size: px
Start display at page:

Download "Model building and validation for cryo-em maps at low resolution"

Transcription

1 International Workshop of Advanced Image Processing of Cryo-Electron Microscopy 2015 Tsinghua University, Beijing, China June 3-7, 2015 Model building and validation for cryo-em maps at low resolution Leifu Chang MRC Laboratory of Molecular Biology, Cambridge, UK 5 June 2015

2 Introduction Modelling tools for cryo-em at low resolution Model validation An example

3 Macromolecules are the executors of most cellular processes Ribosome: protein synthesis Spliceosome: RNA splicing Chromatin-remodeling complex Kinetochore: spindlechromatin attachment E2 Substrate Ub Nucleosome Nuclear pore complex DNA polymerase RNA polymerase Chaperones (e.g. GroEL/GroES) Respiratory complexes APC/C: protein ubiquitination Peoteasome: protein degradation

4 Challenges in Structure Determination of Macromolecules X-ray crystallography. - Problem1: low yields of sample; - Problem2: difficult to crystalize due to heterogeneity and flexibility. - Phases/quality of crystals (no clear spots; smear; Anisotropy) Cryo-EM - High resolution normally not achieved in ONE step; - Even if we achieved near-atomic resolution, some regions (quite often in important functional regions) are at low resolution due to flexibility or its location at the periphery of the complex. - preferred orientation; disassociation during freezing procedure - limited microscope time Model building at low resolution is still a general problem in cryo-em field.

5 Resolution: X-ray vs cryo-em PDB Resolution reported in PDB and EMDB EMDB Resolution high low X-ray high Cryo-EM intermediate atomic (near-atomic) helical domain low Å Definition Highest resolvable peak in the diffraction pattern Gold-standard Fourier shell correlation (FSC)

6 Resolution landmarks in EM reconstructions Negative stain (~20 Å) Domain resolution Cryo-EM (~15 Å) Domain resolution Cryo-EM (< 9 Å, here 7.4 Å) Alpha-helices as rods Beta-sheets as planar density Cryo-EM (5-6 Å) Pitches come out from helix Cryo-EM (<4.8 Å) Beta-strands separate Cryo-EM (<4.0 Å) Side-chains become clear

7

8 Procedure: cryo-em Sample Preparation (Cloning/Expression/Purification) EM grid (Cryo or negative stain) 2D images in micrographs Particles 2D averages Validation EM map Initial model Refine Converged ~3-40Å Interpretation and Model Validation Publish

9 Modelling/Interpretation of cryo-em maps at low resolution Fitting high resolution structures of components into low resolution maps of large complexes. - Stoichiometry/Interactions - Subunit/Domain localization - Rigid-body fitting - Flexible fitting - ab initio modeling

10 Stoichiometry/Interactions

11 Stoichiometry/Interactions

12 Subunit/Domain localization

13 Antibody Labelling -Select a high specificity antibody. (often antibodies against tags, e.g. antimyc, anti-ha or anti-his) - Do negative stain and locate the antibody by visualizing the images. Relatively easy to perform, very useful when starting a new project; Ohi, M.D. et al. Molecular cell 28, (2007)

14 Subunit/Domain localization

15 Tagging Tags on the proteins sometimes can be used as a marker in EM. EGFP at C-terminus of Apc13 Schreiber, A. et al. Nature 470, (2011)

16 Subunit/Domain localization

17 Rigid-body fitting Fitting (or Docking) : fit high-resolution structures of each part (e.g. determined by crystallography) into the EM reconstruction of a large complex. Domain fitting Apc6A Apc6B

18 Rigid-body fitting Visual (manual) fitting using Molecular Graphic software - Chimera - Coot - Pymol - CCP4 - VMD

19 Rigid-body fitting Computational fitting algorithms - UCSF Chimera: fit in map - Situs/Colores (Global 6D search) performs a global translational and rotational search to the best-fit (measured by cross-correlation coefficient). - EMfit - COOT - MultiFit

20 Rigid-body fitting Scoring - Cross-correlation coefficient Accuracy of fitting depends on the resolution of map.

21 Flexible fitting Flexible fitting follows rigid-body fitting. - (Interactive) MDFF: using molecular dynamics simulations The method incorporates the EM density map as a potential so that high density areas in the map correspond to energy minima, so that the atoms in the structure are subject to forces proportional to the gradient of the EM map. (Set secondary structure restraints) - cryo-em map is converted into a potential energy function - maintains the integrity of secondary structure elements.

22 Flexible fitting b Apc6A Fit Apc6A MDFF Apc6B Before and after MDFF MDFF

23 Flexible fitting - Normal mode analysis (imodfit) - Direx (DEN: deformable elastic networks) - Flex-EM References: Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, (2008). Lopez-Blanco, J.R. & Chacon, P. imodfit: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. Journal of structural biology 184, (2013). Wang, Z. & Schroder, G.F. Real-space refinement with DireX: from global fitting to side-chain improvements. Biopolymers 97, (2012). Topf, M. et al. Protein structure fitting and refinement guided by cryo-em density. Structure 16, (2008).

24 De novo fitting ab initio (secondary) structure prediction - Phyre2 - Tasser - Psipred (Psi-blast based secondary structure prediction) - HHPRED Manual fit in COOT - build alpha-helix as poly-alanine - build beta-sheet

25 Psipred server

26 De novo fitting Computation tools - COOT (find helix) - SSEhunter in EMAN2 - SSEbuilder - Helixhunter - Foldhunter

27 Validation of models Evaluating the reliability of model. At high resolution: all atoms, good rotamers, geometry At low resolution: 1) Is subunits assignment correct? 2) Is crystal structure fitting correct? Biochemical tests. Any other independent data.

28 At low resolution, you will make mistakes. -- CCP4 meeting abstract book Be very careful when publishing cryo-em maps at low resolution.

29

30

31

32 Model building of spliceosome from a 5-6 Å resolution map - Antibody labelling - Compare surface features - Manual fit in coot - Rigid-body fitting by Kelly Nguyen

33 An example: model building for the anaphase-promoting complex

34 Architecture of APC/C 1) Biochemistry S. cerevisiae Thornton, B.R. et al. Genes Dev 20, (2006). 2) EM and antibody labelling Herzog, F. et al. Science 323, (2009).

35 Stoichiometry by Mass Spec

36 Subunit/Domain Deletion Nature 2011, 470

37 Subunit/Domain Deletion 100 Å Native APC/C 1,160 kda Recombinant APC/C 1,160 kda APC/C ΔApc3-Apc9 996 kda TPR6 (Apc6,Apc3,Apc8,Ap c9,apc13, Apc12) 823 kda SC8 (Apc1,Apc2,Apc4,Ap c5,apc10,apc11,apc 15,Apc8) 700 kda Endogenous APC/C Cdh1 TPR6 APC/C vs APC/C DApc3 Difference density = Apc3 Apc3 TPR 6 Apc6 Recombinant APC/C SC8 APC/C DApc3 vs SC8 Difference density = Apc6+Apc12+Apc13 SC8 Apc8 Common density = Apc8 Schreiber, A. et al. Nature 470, (2011)

38 Subunit/Domain Deletion

39 300 Å Human APC/C at 7.4 Å resolution 200 Å Human APC complex at ~20 Å resolution (by negative stain) Human APC complex at 7.4 Å resolution (by cryoem) 15 proteins (20 subunits)

40 Localizing the coactivator and Apc10

41 Flexible fitting for a TPR subunit: Apc6 a b Apc6A Fit Apc6A MDFF Apc6B Before and after MDFF MDFF

42 Fitting for all TPR subunits

43 Localizing TPR stabilizing subunits

44 Mapping Apc15 (121 aa) by the deletion approach d APC/C, apo (WT), 8.7 Å APC/C, apo ( Apc11-RING), 8.0 Å APC/C, apo ( Apc15), 9.6 Å APC/C, apo (WT), 8.7 Å APC/C, apo ( Apc11-RING), 8.0 Å APC/C, apo ( Ap APC/C, apo (WT) e g d APC/C-Cdh1-Hsl1 complex Apo (WT) APC/C-Cdh1-Hsl1 complex Apo ( RING) e g Apc5 Apc8 NTD Apo ( RING) 10B 10A 9B Apc15 Apc5 NTD Apc5 etpr Apo (WT) Apo ( Apc15) ii 9B iii 9B v 9B vi 9B vii ii 9B iii 9B v 9B 9B vi 9B vii 9A Apc8 10B 10A APC/C, apo ( Apc15) 9B Apc15 9A Apc5 etpr Apo ( Apc15) Apc8 9A 9A 9A Chang L*, Zhang 9A Z*, et 9Aal. (Manuscript under review) 9A f Apc6 Apc8 Apc3 A A A Apc7 A vi iv v vii ii f Apc6 i iii Apc3 B B A A A Apc7 B BA Apc12 vi Apc13 9A iv v vii ii Apc16 i

45 Visualize a small subunit by negative stain Å Wu, S. et al. Fabs enable single particle cryoem studies of small proteins. Structure 20, (2012).

46 Localize Apc5-TPR by recognizing TPR folds

47 Fitting Apc4 and Apc5

48 Apc15 Four-helix bundle 202aa (without loops) Apc4 Apc5-N 9 helices: 135aa (without loops) Apc4 WD40 domain N-terminal domain Bottom view TPR domain Apc5

49 Apc4 (843aa): secondary structure prediction Helices: 300aa Four-helix bundle domain

50 Apc5 N-terminal domain (208aa): secondary structure prediction TPR domain

51

52 Catalytic Subunits: Apc2, Apc11

53 Catalytic Subunits: Apc2, Apc11

54 Identifying Apc1 At subnanometer resolution, some protein folds (e.g. PC and WD40 domains) can be identified.

55 Identifying Cdh1-NTD by comparing with the map of APC/C in apo state. Apc1 PC 6 Cdh1 WD Apc1 PC α3 Cdh1 NTD α4 α2 α5 α1 L1 Flexible by itself. Apc8B C Apc1 WD40 HsAPC in apo state C Apc8B Apc1 WD40 HsAPC-Cdh1-Hsl1 complex

56 Localization of 20 subunits of human APC/C Apc7 Apc16 Apc3 Apc10 Cdh1 D box Apc1 Apc6 Apc2 NTD Apc12 Apc13 Apc4 Apc8 Apc15 Apc5 Subunit organization of human APC/C

57 Model test Apc3 IR tail B IR tail A C Apc10 C L4 R1 L7 N10 S8 N9 S88 N147 Cdh1 Apc10 Cdh1 Apc1 PC D box Mutation Analysis

58 UbcH10 interaction with APC/C: position of target lysines relative to the D box degron By Ziguo Zhang

59 Accuracy of subunits assignment Apc7 Apc16 Apc3 Apc10 Cdh1 D box Apc1 Apc6 Apc2 NTD Apc12 Apc13 Apc4 Apc8 Apc15 Apc5 Subunit organization of human APC/C

60 Summary Challenges in Structure Determination of Macromolecules Integrative modeling Modeling tools for low-resolution cryo-em maps - Stoichiometry/Interactions - Subunit/Domain localization - Rigid-body fitting - Flexible fitting - ab initio modeling Examples - A lot manual work! Be very careful and avoid making mistakes.

61 Acknowledgements David Barford Ziguo Zhang Jing Yang Stephen H. McLaughlin David Barford Ziguo Zhang Andreas Boland Xiaochen Bai Alan Brown Jing Yang Stephen H. McLaughlin

fitting of atomic structures Interpretation of 3D EM maps, opf Maya T ! & ' +*. +*2 +*+, +*+0 *$+ + / /* +** % % % % - &- '

fitting of atomic structures Interpretation of 3D EM maps, opf Maya T ! & ' +*. +*2 +*+, +*+0 *$+ + / /* +** % % % % - &- ' Interpretation of 3D EM maps, fitting of atomic s Image processing for cryo-electron microscopy Lecture 14 Maya Topf 1-11 September 2015 Aims of this lecture To understand when 3D EM density fitting is

More information

ParM filament images were extracted and from the electron micrographs and

ParM filament images were extracted and from the electron micrographs and Supplemental methods Outline of the EM reconstruction: ParM filament images were extracted and from the electron micrographs and straightened. The digitized images were corrected for the phase of the Contrast

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Supplemental Figure and Movie Legends Figure S1. Time course experiments on the thermal stability of apo AT cpn-α by native PAGE (related to Figure 2B). The samples were heated, respectively, to (A) 45

More information

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology Tools for Cryo-EM Map Fitting Paul Emsley MRC Laboratory of Molecular Biology April 2017 Cryo-EM model-building typically need to move more atoms that one does for crystallography the maps are lower resolution

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Spliceosome and Localization of Its Catalytic Core

Spliceosome and Localization of Its Catalytic Core Molecular Cell, Volume 40 Supplemental Information 3D Cryo-EM Structure of an Active Step I Spliceosome and Localization of Its Catalytic Core Monika M. Golas, Bjoern Sander, Sergey Bessonov, Michael Grote,

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Cryo-EM structure and model of the C. thermophilum 90S preribosome. a, Gold standard FSC curve showing the average resolution of the 90S preribosome masked and unmasked (left). FSC

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

Protein Structures: Experiments and Modeling. Patrice Koehl

Protein Structures: Experiments and Modeling. Patrice Koehl Protein Structures: Experiments and Modeling Patrice Koehl Structural Bioinformatics: Proteins Proteins: Sources of Structure Information Proteins: Homology Modeling Proteins: Ab initio prediction Proteins:

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11991 Supplementary Figure 1 - Refinement strategy for PIC intermediate assemblies by negative stain EM. The cryo-negative stain structure of free Pol II 1 (a) was used as initial reference

More information

Molecular Dynamics Flexible Fitting

Molecular Dynamics Flexible Fitting Molecular Dynamics Flexible Fitting Ryan McGreevy Research Programmer University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics Molecular Dynamics Flexible

More information

Structural Studies of the Flexible Filamentous Plant Viruses

Structural Studies of the Flexible Filamentous Plant Viruses Structural Studies of the Flexible Filamentous Plant Viruses Caitlin Azzo Dr. Gerald Stubbs BSCI 296 [4] Honors Thesis April 23, 2014 The Plant Viruses of Interest In the Potyviridae family: Wheat streak

More information

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI )

1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI ) Uses of NMR: 1) NMR is a method of chemical analysis. (Who uses NMR in this way?) 2) NMR is used as a method for medical imaging. (called MRI ) 3) NMR is used as a method for determining of protein, DNA,

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Copyright Mark Brandt, Ph.D A third method, cryogenic electron microscopy has seen increasing use over the past few years.

Copyright Mark Brandt, Ph.D A third method, cryogenic electron microscopy has seen increasing use over the past few years. Structure Determination and Sequence Analysis The vast majority of the experimentally determined three-dimensional protein structures have been solved by one of two methods: X-ray diffraction and Nuclear

More information

MCB 110. "Molecular Biology: Macromolecular Synthesis and Cellular Function" Spring, 2018

MCB 110. Molecular Biology: Macromolecular Synthesis and Cellular Function Spring, 2018 MCB 110 "Molecular Biology: Macromolecular Synthesis and Cellular Function" Spring, 2018 Faculty Instructors: Prof. Jeremy Thorner Prof. Qiang Zhou Prof. Eva Nogales GSIs:!!!! Ms. Samantha Fernandez Mr.

More information

Three-Dimensional Electron Microscopy of Macromolecular Assemblies

Three-Dimensional Electron Microscopy of Macromolecular Assemblies Three-Dimensional Electron Microscopy of Macromolecular Assemblies Joachim Frank Wadsworth Center for Laboratories and Research State of New York Department of Health The Governor Nelson A. Rockefeller

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Supplementary Information: Long range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs

Supplementary Information: Long range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Supplementary Information: Long range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Purification of yeast CKM. (a) Silver-stained SDS-PAGE analysis of CKM purified through a TAP-tag engineered into the Cdk8 C-terminus. (b) Kinase activity

More information

Opportunity and Challenge: the new era of cryo-em. Ning Gao School of Life Sciences Tsinghua University

Opportunity and Challenge: the new era of cryo-em. Ning Gao School of Life Sciences Tsinghua University Opportunity and Challenge: the new era of cryo-em Ning Gao School of Life Sciences Tsinghua University 2015-10-20 Education and Research Experience Principal Investigator 2008.11-present Postdoc, Department

More information

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1 Zhou Pei-Yuan Centre for Applied Mathematics, Tsinghua University November 2013 F. Piazza Center for Molecular Biophysics and University of Orléans, France Selected topic in Physical Biology Lecture 1

More information

From DNA to protein, i.e. the central dogma

From DNA to protein, i.e. the central dogma From DNA to protein, i.e. the central dogma DNA RNA Protein Biochemistry, chapters1 5 and Chapters 29 31. Chapters 2 5 and 29 31 will be covered more in detail in other lectures. ph, chapter 1, will be

More information

History of 3D Electron Microscopy and Helical Reconstruction

History of 3D Electron Microscopy and Helical Reconstruction T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N History of 3D Electron Microscopy and Helical Reconstruction For students of HI

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

BA, BSc, and MSc Degree Examinations

BA, BSc, and MSc Degree Examinations Examination Candidate Number: Desk Number: BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes

More information

Bi 8 Midterm Review. TAs: Sarah Cohen, Doo Young Lee, Erin Isaza, and Courtney Chen

Bi 8 Midterm Review. TAs: Sarah Cohen, Doo Young Lee, Erin Isaza, and Courtney Chen Bi 8 Midterm Review TAs: Sarah Cohen, Doo Young Lee, Erin Isaza, and Courtney Chen The Central Dogma Biology Fundamental! Prokaryotes and Eukaryotes Nucleic Acid Components Nucleic Acid Structure DNA Base

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Introduction to Three Dimensional Structure Determination of Macromolecules by Cryo-Electron Microscopy

Introduction to Three Dimensional Structure Determination of Macromolecules by Cryo-Electron Microscopy Introduction to Three Dimensional Structure Determination of Macromolecules by Cryo-Electron Microscopy Amit Singer Princeton University, Department of Mathematics and PACM July 23, 2014 Amit Singer (Princeton

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Lecture CIMST Winter School. 1. What can you see by TEM?

Lecture CIMST Winter School. 1. What can you see by TEM? Lecture CIMST Winter School Cryo-electron microscopy and tomography of biological macromolecules 20.1.2011 9:00-9:45 in Y03G91 Dr. Takashi Ishikawa OFLB/005 Tel: 056 310 4217 e-mail: takashi.ishikawa@psi.ch

More information

EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps

EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps Article EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps Steffen Lindert, 1 Nathan Alexander, 1 Nils Wötzel, 1 Mert Karakasx, 1 Phoebe L. Stewart, 2 and

More information

Biophysics Lectures Three and Four

Biophysics Lectures Three and Four Biophysics Lectures Three and Four Kevin Cahill cahill@unm.edu http://dna.phys.unm.edu/ 1 The Atoms and Molecules of Life Cells are mostly made from the most abundant chemical elements, H, C, O, N, Ca,

More information

Prediction and refinement of NMR structures from sparse experimental data

Prediction and refinement of NMR structures from sparse experimental data Prediction and refinement of NMR structures from sparse experimental data Jeff Skolnick Director Center for the Study of Systems Biology School of Biology Georgia Institute of Technology Overview of talk

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Processing Heterogeneity

Processing Heterogeneity New Challenges for Processing Heterogeneity Nikolaus Grigorieff Larson, The Far Side Heterogeneity and Biology Translocation, Brilot et al 2013 Glutamate receptor, Dürr et al 2014 Spliceosome, Wahl et

More information

Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes

Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes 9 The Nucleus Student Learning Outcomes: Nucleus distinguishes Eukaryotes from Prokaryotes Explain general structures of Nuclear Envelope, Nuclear Lamina, Nuclear Pore Complex Explain movement of proteins

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ].

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ]. Lecture 26: Polymers: DA Packing and Protein folding 26.1 Problem Set 4 due today. eading for Lectures 22 24: PKT hapter 8 DA Packing for Eukaryotes: The packing problem for the larger eukaryotic genomes

More information

Flow of Genetic Information

Flow of Genetic Information presents Flow of Genetic Information A Montagud E Navarro P Fernández de Córdoba JF Urchueguía Elements Nucleic acid DNA RNA building block structure & organization genome building block types Amino acid

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available

From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available Scripps EM course, November 14, 2007 What aspects of contemporary

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2009 Summer Workshop From Sequence to Structure SEALGDTIVKNA Folding with All-Atom Models AAQAAAAQAAAAQAA All-atom MD in general not succesful for real

More information

The living cell is a society of molecules: molecules assembling and cooperating bring about life!

The living cell is a society of molecules: molecules assembling and cooperating bring about life! The Computational Microscope Computational microscope views the cell 100-1,000,000 processors http://micro.magnet.fsu.edu/cells/animals/images/animalcellsfigure1.jpg The living cell is a society of molecules:

More information

Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome

Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome Ahmad Jomaa 1, Yu-Hsien Hwang Fu 2, Daniel Boehringer 1, Marc Leibundgut 1, Shu-ou Shan 2, and Nenad

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Tutorial 1 Geometry, Topology, and Biology Patrice Koehl and Joel Hass

Tutorial 1 Geometry, Topology, and Biology Patrice Koehl and Joel Hass Tutorial 1 Geometry, Topology, and Biology Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ Biology = Multiscale. 10 6 m 10 3 m m mm µm nm Å ps

More information

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved Cks1 d CKS1 Supplementary Figure 1 The -Cks1 crystal lattice. (a) Schematic of the - Cks1 crystal lattice. -Cks1 crystallizes in a lattice that contains c 4 copies of the t - Cks1 dimer in the crystallographic

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

BIOCHEMISTRY Course Outline (Fall, 2011)

BIOCHEMISTRY Course Outline (Fall, 2011) BIOCHEMISTRY 402 - Course Outline (Fall, 2011) Number OVERVIEW OF LECTURE TOPICS: of Lectures INSTRUCTOR 1. Structural Components of Proteins G. Brayer (a) Amino Acids and the Polypeptide Chain Backbone...2

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

7.06 Problem Set #4, Spring 2005

7.06 Problem Set #4, Spring 2005 7.06 Problem Set #4, Spring 2005 1. You re doing a mutant hunt in S. cerevisiae (budding yeast), looking for temperaturesensitive mutants that are defective in the cell cycle. You discover a mutant strain

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

SUPPLEMENTARY FIGURES. Structure of the cholera toxin secretion channel in its. closed state

SUPPLEMENTARY FIGURES. Structure of the cholera toxin secretion channel in its. closed state SUPPLEMENTARY FIGURES Structure of the cholera toxin secretion channel in its closed state Steve L. Reichow 1,3, Konstantin V. Korotkov 1,3, Wim G. J. Hol 1$ and Tamir Gonen 1,2$ 1, Department of Biochemistry

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

Biophysics 490M Project

Biophysics 490M Project Biophysics 490M Project Dan Han Department of Biochemistry Structure Exploration of aa 3 -type Cytochrome c Oxidase from Rhodobacter sphaeroides I. Introduction: All organisms need energy to live. They

More information

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like SCOP all-β class 4-helical cytokines T4 endonuclease V all-α class, 3 different folds Globin-like TIM-barrel fold α/β class Profilin-like fold α+β class http://scop.mrc-lmb.cam.ac.uk/scop CATH Class, Architecture,

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Conformationally Variable Single Particles Heterogeneity in the real world

Conformationally Variable Single Particles Heterogeneity in the real world Conformationally Variable Single Particles Heterogeneity in the real world Stan Burgess University of Leeds, UK Workshop on Advanced Topics in EM Structure Determination: Challenging Molecules November

More information

Application examples of single particle 3D reconstruction. Ning Gao Tsinghua University

Application examples of single particle 3D reconstruction. Ning Gao Tsinghua University Application examples of single particle 3D reconstruction Ning Gao Tsinghua University ninggao@tsinghua.edu.cn Electron Microscopes First electron microscope constructed by Ernst Ruska in 1930 s (1986

More information

Three-dimensional structure of a viral genome-delivery portal vertex

Three-dimensional structure of a viral genome-delivery portal vertex Three-dimensional structure of a viral genome-delivery portal vertex Adam S. Olia 1, Peter E. Prevelige Jr. 2, John E. Johnson 3 and Gino Cingolani 4 1 Department of Biological Sciences, Purdue University,

More information

BSc and MSc Degree Examinations

BSc and MSc Degree Examinations Examination Candidate Number: Desk Number: BSc and MSc Degree Examinations 2018-9 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes Marking

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 1 GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 2 DNA Promoter Gene A Gene B Termination Signal Transcription

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Regulation of Transcription in Eukaryotes

Regulation of Transcription in Eukaryotes Regulation of Transcription in Eukaryotes Leucine zipper and helix-loop-helix proteins contain DNA-binding domains formed by dimerization of two polypeptide chains. Different members of each family can

More information

Computational Molecular Modeling

Computational Molecular Modeling Computational Molecular Modeling Lecture 1: Structure Models, Properties Chandrajit Bajaj Today s Outline Intro to atoms, bonds, structure, biomolecules, Geometry of Proteins, Nucleic Acids, Ribosomes,

More information

Towards De Novo Folding of Protein Structures from Cryo-EM 3D Images at Medium Resolutions

Towards De Novo Folding of Protein Structures from Cryo-EM 3D Images at Medium Resolutions Towards De Novo Folding of Protein Structures from Cryo-EM 3D Images at Medium Resolutions Jing He * and Dong Si Department of Computer Science Old Dominion University Norfolk, VA * jhe@cs.odu.edu Abstract

More information

CRYO-EM GUIDED DE NOVO PROTEIN FOLDING. Steffen Lindert. Dissertation. Submitted to the Faculty of the. Graduate School of Vanderbilt University

CRYO-EM GUIDED DE NOVO PROTEIN FOLDING. Steffen Lindert. Dissertation. Submitted to the Faculty of the. Graduate School of Vanderbilt University CRYO-EM GUIDED DE NOVO PROTEIN FOLDING By Steffen Lindert Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree

More information

Analysis and Prediction of Protein Structure (I)

Analysis and Prediction of Protein Structure (I) Analysis and Prediction of Protein Structure (I) Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 2006 Free for academic use. Copyright @ Jianlin Cheng

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

THE CELL 3/15/15 HUMAN ANATOMY AND PHYSIOLOGY I THE CELLULAR BASIS OF LIFE

THE CELL 3/15/15 HUMAN ANATOMY AND PHYSIOLOGY I THE CELLULAR BASIS OF LIFE HUMAN ANATOMY AND PHYSIOLOGY I Lecture: M 6-9:30 Randall Visitor Center Lab: W 6-9:30 Swatek Anatomy Center, Centennial Complex Required Text: Marieb 9 th edition Dr. Trevor Lohman DPT (949) 246-5357 tlohman@llu.edu

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1290 Metal-directed, chemically tunable assembly of one-, two- and threedimensional crystalline protein arrays 1 2 1 1 1,3 Jeffrey D. Brodin 1, X. I. Ambroggio 2, Chunyan Tang 1, Kristin

More information

Supplementary Information. Cryo-EM Studies of Drp1 Reveal Cardiolipin Interactions that Activate

Supplementary Information. Cryo-EM Studies of Drp1 Reveal Cardiolipin Interactions that Activate Supplementary Information Cryo-EM Studies of Drp1 Reveal Cardiolipin Interactions that Activate the Helical Oligomer Christopher A. Francy 1, 2, 3, Ryan W. Clinton 1, 2, 3, Chris Fröhlich 4, 5, Colleen

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/6/e1700147/dc1 Supplementary Materials for Ribosome rearrangements at the onset of translational bypassing Xabier Agirrezabala, Ekaterina Samatova, Mariia Klimova,

More information

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) PROTEINS

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) PROTEINS BIOLOGY BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) NAME NAME PERIOD PROTEINS GENERAL CHARACTERISTICS AND IMPORTANCES: Polymers of amino acids Each has unique 3-D shape Vary in sequence of amino

More information

BIRKBECK COLLEGE (University of London)

BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) SCHOOL OF BIOLOGICAL SCIENCES M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON: Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

More information

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN HSP90 AND BOTH SCF E3 UBIQUITIN LIGASES AND KINETOCHORES Oliver Willhoft, Richard Kerr, Dipali Patel, Wenjuan Zhang, Caezar Al-Jassar, Tina

More information

Homology models of the tetramerization domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6

Homology models of the tetramerization domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6 Homology models of the tetramerization domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6 Hsuan-Liang Liu* and Chin-Wen Chen Department of Chemical Engineering and Graduate Institute

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder HMM applications Applications of HMMs Gene finding Pairwise alignment (pair HMMs) Characterizing protein families (profile HMMs) Predicting membrane proteins, and membrane protein topology Gene finding

More information

Review. Membrane proteins. Membrane transport

Review. Membrane proteins. Membrane transport Quiz 1 For problem set 11 Q1, you need the equation for the average lateral distance transversed (s) of a molecule in the membrane with respect to the diffusion constant (D) and time (t). s = (4 D t) 1/2

More information

Modeling Biological Systems Opportunities for Computer Scientists

Modeling Biological Systems Opportunities for Computer Scientists Modeling Biological Systems Opportunities for Computer Scientists Filip Jagodzinski RBO Tutorial Series 25 June 2007 Computer Science Robotics & Biology Laboratory Protein: πρώτα, "prota, of Primary Importance

More information

Visualizing the transfer-messenger RNA as the ribosome resumes translation

Visualizing the transfer-messenger RNA as the ribosome resumes translation Manuscript EMBO-2010-75355 Visualizing the transfer-messenger RNA as the ribosome resumes translation Jie Fu, Yaser Hashem, Iwona Wower, Jianlin Lei, Hstau Y. Liao, Christian Zwieb, Jacek Wower and Joachim

More information

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015 Overview & Applications T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 4 June, 215 Simulations still take time Bakan et al. Bioinformatics 211. Coarse-grained Elastic

More information

Protein Structures. 11/19/2002 Lecture 24 1

Protein Structures. 11/19/2002 Lecture 24 1 Protein Structures 11/19/2002 Lecture 24 1 All 3 figures are cartoons of an amino acid residue. 11/19/2002 Lecture 24 2 Peptide bonds in chains of residues 11/19/2002 Lecture 24 3 Angles φ and ψ in the

More information

Supplementary Figure 2. Negative stain EM reconstructions. 4

Supplementary Figure 2. Negative stain EM reconstructions. 4 Supplementary Information for: EM Structure of human APC/C Cdh1 -EMI1 reveals multimodal mechanism E3 ligase shutdown Item Page Supplementary Figure 1. Analytical Ultracentrifugation of EMI1 DLZT. 2 Supplementary

More information

Eukaryotic vs. Prokaryotic genes

Eukaryotic vs. Prokaryotic genes BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 18: Eukaryotic genes http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Eukaryotic vs. Prokaryotic genes Like in prokaryotes,

More information

CRYSTALLOGRAPHY AND STORYTELLING WITH DATA. President, Association of Women in Science, Bethesda Chapter STEM Consultant

CRYSTALLOGRAPHY AND STORYTELLING WITH DATA. President, Association of Women in Science, Bethesda Chapter STEM Consultant CRYSTALLOGRAPHY AND STORYTELLING WITH DATA President, Association of Women in Science, Bethesda Chapter STEM Consultant MY STORY Passion for Science BS Biology Major MS Biotechnology & Project in Bioinformatics

More information