Protein Crystallography Part II

Size: px
Start display at page:

Download "Protein Crystallography Part II"

Transcription

1 Molecular Biology Course 2007 Protein Crystallography Part II Tim Grüne University of Göttingen Dept. of Structural Chemistry November

2 Overview Overview 1/48

3 Reminder: Reflections vs. Map A crystallographic experiment provides rather uninterpretable data, namely a list of reflections with their intensities. After some extra effort, the (initial, approximate) phases φ(hkl) of the structure factors F (hkl). By a Fourier Transformation, this result in something more imaginable, the electron density map ρ(x, y, z): ρ(x, y, z) = 1 V unit cell h,k,l F (hkl) e iφ(hkl) e 2πi(hx+ky+lz) From Map to Model 2/48

4 From Map to Model An initial electron density (and also the final one) looks quite messy and is difficult to interpret. The final coordinate model contains more useful information, e.g. where is the position of what type of atom. The molecule model is the final target of crystallography. From Map to Model 3/48

5 Storing Structural Data the PDB file Protein models are stored e.g. in the Protein Data Bank, PDB, They do not represent the mere experimental data. From the experiment we get diffraction intensities and after some work the electron density ρ within the unit cell. The model is the best match (from the author s point of view) that explains the experimental data. A typical PDB-file contains a header with supplemental information (authors, compound, publication, etc.), the crystallographic space group and unit cell dimensions. The main part of the file are ATOM entries, one per line. An atom entry contains atom type, atom name, residue type it belongs to, and coordinates, occupancy, and B-factor. HEADER LIGASE 28-APR-99 1CLI TITLE X-RAY CRYSTAL STRUCTURE OF AMINOIMIDAZOLE RIBONUCLEOTIDE AUTHOR C.LI,T.J.KAPPOCK,J.STUBBE,T.M.WEAVER,S.E.EALICK REMARK 2 RESOLUTION ANGSTROMS.... CRYST P ATOM 1 N THR A N ATOM 2 CA THR A C ATOM 3 C THR A C... 4/48

6 Occupancy and B factor of an Atom Occupancy A typical crystal consist of a large number of unit cells (>> ), and the resulting model is therefore only an average of all these cells. Some atoms, especially those of large side chains (Arginine, Phenylalanine,... ) can be partially disordered, others can have several but fixed orientations. An occupancy lower than 1 indicates that an atom occupies this position in only a fraction of all unit cells. This affects mostly residues at the surface, pointing into the surrounding solvent region. Most atoms, however, have an occupancy of 1. B factor Even though data are usually collected at 100 K, atoms are not immobile but vibrate thermal motion. The temperature or B factor describes the vibration as a sphere within which the atom oscillates. For high resolution, when enough data are available, the vibrations in each of the three directions can be described separately. The B-factor splits up into a (symmetric) 3x3 matrix that describes anisotropic thermal motion in three dimensions. 5/48

7 Illustration of the B factor Isotropic B factors Anisotropic B factors Spherical movement of atoms Ellipsoidal movement of atoms more exact 6/48

8 Occupancy: An Example of Multiple conformation Initially the model contained only one position for the Tyrosine. But the electron density map suggests that in about half the molecules in the crystal, the side chain of the Tyrosine points in a different direction this can be modelled by setting the occupancies for both orientations of the side chain to 0.5 7/48

9 Visualising a Model ball and stick CPK (space filling) C α trace(smooth) C α trace (coloured by B-factor) ball-and-stick (coloured by B-factor) ribbons 8/48

10 Data Reliability: The Data to Parameter Ratio Data to Parameter Ratio 9/48

11 Reliability of Data: The Data to Parameter Ratio No measurement can be exact and is only an approximation to the true value. It is therefore important to have enough data to support the deduced model. In protein crystallography we want to determine at least the coordinates for every atom of the structure, i.e., we require 3 data points for every position. If more data are available, we add the isotropic B-value, and at best we can even determine an anisotropic B-value. Our data are the unique reflections the number of which is determined by the resolution, the space group, and the unit cell dimensions. Res.[Å] parameters data/parameters 3.0 x,y,z 0.9:1 2.3 x,y,z; B 1.5:1 1.8 x,y,z; B 3.1:1 1.5 x,y,z; B 5.4:1 1.5 x,y,z; U 11 U 12 U 13 U 23 U 22 U :1 1.1 x,y,z; U 11 U 12 U 13 U 23 U 22 U :1 0.8 x,y,z; U 11 U 12 U 13 U 23 U 22 U 33 16:1 G. Sheldrick These ratios, up to about 1.8Å, would be much too low to allow building of a proper model. The effective number of data points is increased by the incorporation of additional (bio ) chemical etc. information. Data to Parameter Ratio 10/48

12 An Example: Data to Parameter Ratio Scenario Experiment 1: Experiment 2: High resolution, 21 data points with errors Low Resolution, 3 data points with errors data points 3 data points f(x)=x Data to Parameter Ratio 11/48

13 An Example: Data to Parameter Ratio Two Models Model 1: g(x) = g 2 x 2 + g 1 x + g 0 Model 2: h(x) = h 3 x 3 + h 1 x + h 0 Both Models contain three parameters, i.e., at least three data points are required for their unambiguous determination. Data to Parameter Ratio 12/48

14 An Example: Data to Parameter Ratio Fitting High Resolution Data data 1.19x x x x x x 0.51 χ 2 = x x χ 2 = Remarks: χ 2 is a common error estimator in statistics. χ 2 should be close to 1 for a good model. χ 2 makes a clear distinction between the two models. The reliability of χ 2 depends on a good estimate of the errors of the data points. Data to Parameter Ratio 13/48

15 An Example: Data to Parameter Ratio Fitting Low Resolution Data data 0.72x x x x x x x x Remarks: Both Models fit the data perfectly. No error estimates because #data = #parameters. Additional knowledge is required to decide about the correct model. Data to Parameter Ratio 14/48

16 An Example: Data to Parameter Ratio Fitting Low Resolution Data Constraints Assuming Constraint: data passes through (0, 0) Model 1: g(x) = g 2 x 2 + g 1 x +g 0 Model 2: h(x) = h 3 x 3 + h 1 x +h data Model 1: g 2 x 2 +g 1 x Model 2: h 3 x 3 +h 1 x 0.94x x χ 2 = x x 2 χ 2 = χ 2 favours model 1 One constraint makes the difference between Model 1 and Model 2 a lot more striking than in the previous, non-restrained example. Data to Parameter Ratio 15/48

17 16/48

18 : Getting Started The first steps in building the model consist of finding larger groups of residues with special features. In proteins this is the (C α ) main chain, in nucleic acids the position of the bases. α helices are particularly easy to locate, even at medium to low resolution (2.5 4Å). 17/48

19 Directionality of α Helices From the main chain (C α chain) one cannot determine the direction, nor which part of the sequence it covers. One gets help from the so-called Christmas tree: the side chains of an α helix point towards the N terminal end of the protein chain. Selenomethionine substituted proteins have become very popular for MAD experiments. The heavy selenium atoms are easy to find in the electron density map and help docking the sequence to the map. Disulphide bridges or metals bound to an active centre can also be helpful. 18/48

20 β Strands The other secondary structure element of proteins, β strands are also striking but more difficult to build. Especially the direction of the peptide chain can be difficult to find. 19/48

21 Automated At resolution better than, say, 2.5Å building is extremely facilitated by programs like Arp/Warp (A. Perrakis, V. Lamzin), Buccaneer (K. Cowtan), or Resolve (T. Terwilliger), which automatically build large parts of the structure. These programs can even overcome local minima. Refinement programs (i.e. the programs that calculate the electron density map) cannot cross this barrier they would get stuck in the local minimum and could not move the Phenylalanine into the right position. 20/48

22 Manual Computer programs do not know about biology, certainly not of a specific molecule/structure. Human interaction is therefore required to pay attention to: presence and identification of ligands and/or metal ions (from crystallisation or protein preparation) special interaction for complexes exceptions from standard values used in refinement correct placement of solvent (water) molecules Biochemical knowledge about the features adds valuable information to the model building process. This becomes especially important at medium or low resolution (2.5Å and worse). Additional information acts like additional data points and therefore improves the reliability of our model 21/48

23 Hydrogen Atoms? X-rays interact with the electron shell of atoms. The strength of interaction is proportional to the total number of electrons. Hydrogen atoms only have one electron. They cannot be detected by X-ray diffraction (unless with very high resolution data < 1Å). During refinement, hydrogens are treated as riding atoms, that is, in a fixed position relative to the groups they belong to (like the carbons of a phenylalanine ring). Instead of completely ignoring hydrogens, this method improves the quality of the model and also aids to keep the correct distances to neighbouring groups. Because of the fixed position, riding atoms do not increase the number of parameters. 22/48

24 Empty Space? The Solvent Region Arrangement of molecules in the unit cell Electron density map The holes in both pictures are not vacuum. They are filled with solvent, i.e., mostly water molecules. They are disordered, therefore one does not see explicit density in these parts of the crystal. Yet, they still contribute (a little) to the diffraction pattern at low resolution. How to treat the solvent region? 23/48

25 The Solvent Model Protein crystals are not very tightly packed. The space between the molecules is filled with solvent, 50 70% of the total volume on average. Because it is disordered, it contributes mostly to reflections below 6Å resolution (d>6å). Possible ways to treat the solvent are: 1. ignore the solvent results in high R-value: Not liked by crystallographers and journal editors. 2. ignore data with d>6å, i.e. only use high-resolution data better R-value but worse maps: difficult to interpret. 3. consider the solvent region as a flat lake of electron density, i.e. with a low but constant average contribution to the scattering. 24/48

26 Refinement 25/48

27 The X ray experiment can also be inverted : From an atomic model, a space group, and a unit cell, one can calculate the data that are produced from the corresponding crystal. exploits this fact to modify the structure so that it better matches the data. It does so by small changes of the coordinates and modifcation of the temperature factors to minimize the difference between calculated and measured amplitudes. Refinement 26/48

28 Excursion: Crystallographic Theory Given the structure factors F (hkl) F (hkl) exp iφ(hkl), the electron density at position (x, y, z) is given by the Fourier transformation ρ(x, y, z) = 1 V unit cell h,k,l F (hkl) e iφ(hkl) e 2πi(hx+ky+lz) Once a model is known, the structure factors can be calculated from the spherical atomic scattering factors f j by F (h, k, l) = j f j e 2πi(hx j+ky j +lz j ) (1) Finally, the spherical atomic scattering factors f j can be calculated from per atom properties, but they are also tabulated (e.g. in the International Tables for Crystallography, Volume C). They include the effect of the temperature factor. We can compare F (hkl) 2, which are measured from the X-ray experiment with F (hkl) 2 calculated from a model. Refinement Excursus 27/48

29 Initial Map Generation Amplitudes F (hkl) initial Map initial Model Phases φ(hkl) For the first map, phases were determined with MAD, or SIR, or Molecular Replacement, etc. These phases are generally of low quality, i.e., they have large errors compared to the real values. Refinement 28/48

30 The Vicious Circle of Refinement model refinement by program (checks chemical correctness) φ calculate map new model better w.r.t. map! F build model data The new model was made using the map. The map was made using the previous model. Therefore, the new model is biased against the old model: errors may persist. Refinement 29/48

31 and Refinement Creating a model from X-ray data is an iterative process consisting of model building and refinement. Refinement means global improvement of the model with respect to the experimental data. Coordinates of all atoms together with their temperature factors (and sometimes, at very high resolution, even the occupancy), are moved in order to minimise the difference between the measured intensities and the ones calculated from the model. means local improvement of the model with respect to the experimental data. Atoms are added, removed, or moved in order to ensure that 1. the model makes sense bio chemically (proximity of atoms, H-bonding, position of solvent molecules, etc.) 2. the model fits the calculated electron density (e.g. check for multiple conformations) Refinement 30/48

32 Local Minima and Traps Refinement can only find the next minimum of its target function. refinement model building model quality bad model best model good model different models Depending on the starting point (red crosses), this might result in a good or a bad model. One of the reasons one has to validate a model is to tell whether a model is good or bad (usually it is never the best ). Refinement 31/48

33 Quality Figures: the R value One measure to distinguish a good model from a bad one is the R value. It describes the agreement between measured amplitudes ( F obs (hkl) ) and those calculated from the model ( F calc (hkl), see equation 1) R = hkl ( F obs k F calc ) hkl ( F obs ) F obs are represented by the reflection data (observations), F calc are calculated from (x,y,z) and B-values of the atoms of the model. k is an overall scale factor because the values of F calc are not absolute. For small molecules, R values between 2% and 5% are normal, for macromolecules, the range is approximately 15% 25%. As a rule of thumb one can expect an R value about 1/10 of the resolution: a 2.5Å structure should have an R value of 25%. Refinement 32/48

34 Refinement and Overfitting For macromolecular molecules, the data to parameter ratio is not very high at a normal resolution range. Therefore, the R value can be nearly arbitrarily reduced by adding more and more atoms that were not really present in the crystal structure or allowing positions that chemically do not make much sense (stereochemical clashes). This is called overfitting the data. One measure to reduce overfitting is the R free value. About 5% 10% of the reflections are excluded from minimisation of the R value. They remain unconsidered and are like an independent judge : after refinement, the R free value is calculated like the R value, but with the excluded reflections. The two values must not differ too much. The R free value is common in statistics, but was only introduced to crystallography in the mid 90 s by A. Brünger. More importantly, refinement has to take restraints and constraints into account. Refinement 33/48

35 Restraints and Constraints The reflection data alone would not be sufficient to create a trustworthy model at worse than, say, 1.5Å. There are too many parameters. Therefore it is necessary to incorporate additional information. This is done by using restraints and constraints. Small molecules at high resolution can be refined unrestrained. Macromolecules are almost always refined by restrained refinement, i.e. additional information like ideal bond lengths and angles are taken into account. Constraints reduce the number of parameters. They are expression like Property X must have value Y e.g.: temperature factor is isotropic instead of anisotropic : 4 parameters per atom instead of 9 parameters per atom Restraints increase the number of data. Should be or should be approximately expressions, e.g. distance (N, C α ) = 1.458ű0.019Å. Refinement 34/48

36 Structure 35/48

37 Why? Scientific (experimental) results are always afflicted with prejudice and bias be it deliberately or by accident and ignorance. Even though articles are proof read by referees, the experiment itself will hardly ever be repeated by an independent person before publications. Protein crystallography is no exception. However, crystallographic results are most often presented by colourful pictures that can easily make the reader over interpret their meaning. Since such models are used by non crystallographers, it is important for them to be able to check their quality. 36/48

38 Caveat: The Two Faces of Photoactive Yellow Protein This model was published in 1989 (PDB entry 1phy) The correct version: published six years later (PDB entry 2phy) Kleywegt, Acta D(2000), D56 NB: The first structure was published before usage of the R free reflections and other means of validation. It is nowadays very unlikely that such coarse misinterpretations happen. 37/48

39 Caveat: Modelling Models The structure of TBP, the TATA-box binding protein (TBP or TFIIDτ) was published in 1992 (Nikolov et al., Nature 360, pp.40 46). The shape of the molecule suggested that the TATA box sits straight in the groove of the protein. The structure of the complex, published a year later by Kim et al. (Nature 365, pp ) revealed that the DNA was actually heavily bent. 38/48

40 Caveat: What You See Is What You Get? Another issue with PDB files is that they contain more information than a graphical viewer might be able to display. Many crystallographers include atoms/residues into their structures without experimental support and set their occupancy to zero. This could be justified because they know the residues were present in the molecule (at least for recombinant proteins). Personally, though, I believe that this procedure is too error prone for later users of the structure and ought to be avoided. 39/48

41 Means for Structure means estimation of the model in comparison with the data. However, since the model was created by refinement against the data, the model is biased. Therefore, there is need for an independent judge. All information can be used 1. that did not participate in the creation of the model/ minimisation of the model data difference 2. of which ideal values are known. This means that these information must be the same or similar for all proteins. 40/48

42 : Model vs. Data Data collected from the crystal are of course the first source one would think of when it comes to validation. Unfortunately, in calculating the electron density, amplitudes from the data were mixed with phases from the model. This means that our model is already heavily biased against the data. This is why the 5 10% of all reflections never used for refinement in order to be able to calculate the R free value: hkl F R free = obs F calc hkl ( F obs ) 95% of all reflections (h,k,l) are used in order to calculate the R value, which is used for model refinement and optimisation. The remaining 5% of reflections are NOT used for refinement/optimisation, and the R free is calculated from them with the same formula above. Therefore, these 5% of reflections are independent from the model. 41/48

43 : The Real Space R factor R and R free are calculated from reflection data. They are calculated in reciprocal space. These two numbers are global figures of merit: one number tries to describe the quality of the total structure. A rather local figure of merit is the real space R factor or real space correlation coefficient. It expresses the fit between the electron density calculated from the data (reflections) and model (phases) and model only (reflections and phases). The electron density around a residue does not depend much much on residues. The resulting figures are local quality indicators. 42/48

44 The Real Space R Factor: an Example 43/48

45 : Dihedral Angles and the Ramachandran Plot A quantity that was not used in refinement, and therefore is mostly unbiased, are angles. The most famous ones are the dihedral angles ψ and ϕ, defined by the peptide main chain. Φ is the angle between the two planes defined by C i 1 N i C α and N i C α i C i, whereas Ψ is the angle between the two planes of N i C α i C i and C α i C i N i+1. Because of energetic (stereochemical) reasons, these two angles are not independent. Their dependency is drawn in the Ramachandran plot. 44/48

46 : The Ramachandran Plot The Ramachandran plot shows the φ vs. ψ angles for a structure and the most probable regions derived from the 500 best determined protein structures. β strand Interactive Ramachandran window of the model building program Coot left handed α helix α helix 45/48

47 : The Kleywegt Plot Even more information can be read from the Ramachandran plot, if more than one copy of a molecule live in the asymmetric unit: the two (or more) copies should be rather similar to each other. If one plots the Ramachandran plot for all molecules into the same diagram and connects corresponding residues, one should NOT obtain a picture like this. Kleywegt, Acta D(2000), D56 46/48

48 Tools Various programs are available to check the quality of a PDB-file, e.g. WhatIF SFcheck ProCheck MolProbity The MolProbity program is available online One can upload a PDF-file or enter a PDB ID-code and various plots. It even checks the flip states of Asn, Gln, His-residue based on possible hydrogen bondings. 47/48

49 : Summary Most of the pretty pictures about proteins represent structures determined by X ray diffraction. But do not be deceived by colours and artistic compositions. Everyone who make use of PDB files / structural data should be aware of possible pitfalls. 1. Read the header information. 2. Consider the resolution and data quality 3. Does the quality and resolution match allow for the details you want to extract? 4. Make use of programs that examine structure and (if available/possible) data Interpretation of data is important for science, but one must not exaggerate and stay close to the facts. 48/48

Molecular Biology Course 2006 Protein Crystallography Part II

Molecular Biology Course 2006 Protein Crystallography Part II Molecular Biology Course 2006 Protein Crystallography Part II Tim Grüne University of Göttingen Dept. of Structural Chemistry December 2006 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview

More information

Macromolecular Crystallography Part II

Macromolecular Crystallography Part II Molecular Biology Course 2009 Macromolecular Crystallography Part II Tim Grüne University of Göttingen Dept. of Structural Chemistry November 2009 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de From

More information

Macromolecular Crystallography Part II

Macromolecular Crystallography Part II Molecular Biology Course 2010 Macromolecular Crystallography Part II University of Göttingen Dept. of Structural Chemistry November 2010 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Crystallography

More information

Protein Crystallography

Protein Crystallography Protein Crystallography Part II Tim Grüne Dept. of Structural Chemistry Prof. G. Sheldrick University of Göttingen http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview The Reciprocal Lattice The

More information

Direct Method. Very few protein diffraction data meet the 2nd condition

Direct Method. Very few protein diffraction data meet the 2nd condition Direct Method Two conditions: -atoms in the structure are equal-weighted -resolution of data are higher than the distance between the atoms in the structure Very few protein diffraction data meet the 2nd

More information

Protein crystallography. Garry Taylor

Protein crystallography. Garry Taylor Protein crystallography Garry Taylor X-ray Crystallography - the Basics Grow crystals Collect X-ray data Determine phases Calculate ρ-map Interpret map Refine coordinates Do the biology. Nitrogen at -180

More information

X-ray Crystallography

X-ray Crystallography 2009/11/25 [ 1 ] X-ray Crystallography Andrew Torda, wintersemester 2009 / 2010 X-ray numerically most important more than 4/5 structures Goal a set of x, y, z coordinates different properties to NMR History

More information

Electron Density at various resolutions, and fitting a model as accurately as possible.

Electron Density at various resolutions, and fitting a model as accurately as possible. Section 9, Electron Density Maps 900 Electron Density at various resolutions, and fitting a model as accurately as possible. ρ xyz = (Vol) -1 h k l m hkl F hkl e iφ hkl e-i2π( hx + ky + lz ) Amplitude

More information

Experimental Phasing with SHELX C/D/E

Experimental Phasing with SHELX C/D/E WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch Experimental Phasing with SHELX C/D/E CCP4 / APS School Chicago 2017 22 nd June 2017 1 - The Phase Problem

More information

Molecular Biology Course 2006 Protein Crystallography Part I

Molecular Biology Course 2006 Protein Crystallography Part I Molecular Biology Course 2006 Protein Crystallography Part I Tim Grüne University of Göttingen Dept. of Structural Chemistry November 2006 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview Overview

More information

Summary of Experimental Protein Structure Determination. Key Elements

Summary of Experimental Protein Structure Determination. Key Elements Programme 8.00-8.20 Summary of last week s lecture and quiz 8.20-9.00 Structure validation 9.00-9.15 Break 9.15-11.00 Exercise: Structure validation tutorial 11.00-11.10 Break 11.10-11.40 Summary & discussion

More information

TLS and all that. Ethan A Merritt. CCP4 Summer School 2011 (Argonne, IL) Abstract

TLS and all that. Ethan A Merritt. CCP4 Summer School 2011 (Argonne, IL) Abstract TLS and all that Ethan A Merritt CCP4 Summer School 2011 (Argonne, IL) Abstract We can never know the position of every atom in a crystal structure perfectly. Each atom has an associated positional uncertainty.

More information

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model. I. Solving Phases II. Model Building for CHEM 645 Purified Protein Solve Phase Build model and refine Crystal lattice Real Space Reflections Reciprocal Space ρ (x, y, z) pronounced rho F hkl 2 I F (h,

More information

X-ray Crystallography I. James Fraser Macromolecluar Interactions BP204

X-ray Crystallography I. James Fraser Macromolecluar Interactions BP204 X-ray Crystallography I James Fraser Macromolecluar Interactions BP204 Key take-aways 1. X-ray crystallography results from an ensemble of Billions and Billions of molecules in the crystal 2. Models in

More information

Why do We Trust X-ray Crystallography?

Why do We Trust X-ray Crystallography? Why do We Trust X-ray Crystallography? Andrew D Bond All chemists know that X-ray crystallography is the gold standard characterisation technique: an X-ray crystal structure provides definitive proof of

More information

shelxl: Refinement of Macromolecular Structures from Neutron Data

shelxl: Refinement of Macromolecular Structures from Neutron Data ESS Neutron Protein Crystallography 2013 Aarhus, Denmark shelxl: Refinement of Macromolecular Structures from Neutron Data Tim Grüne University of Göttingen Dept. of Structural Chemistry http://shelx.uni-ac.gwdg.de

More information

Structure factors again

Structure factors again Structure factors again Remember 1D, structure factor for order h F h = F h exp[iα h ] = I 01 ρ(x)exp[2πihx]dx Where x is fractional position along unit cell distance (repeating distance, origin arbitrary)

More information

SHELXC/D/E. Andrea Thorn

SHELXC/D/E. Andrea Thorn SHELXC/D/E Andrea Thorn What is experimental phasing? Experimental phasing is what you do if MR doesn t work. What is experimental phasing? Experimental phasing methods depend on intensity differences.

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Jun Yi* and George B. Richter- Addo* Department of Chemistry

More information

Determination of the Substructure

Determination of the Substructure Monday, June 15 th, 2009 Determination of the Substructure EMBO / MAX-INF2 Practical Course http://shelx.uni-ac.gwdg.de Overview Substructure Definition and Motivation Extracting Substructure Data from

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

Anisotropy in macromolecular crystal structures. Andrea Thorn July 19 th, 2012

Anisotropy in macromolecular crystal structures. Andrea Thorn July 19 th, 2012 Anisotropy in macromolecular crystal structures Andrea Thorn July 19 th, 2012 Motivation Courtesy of M. Sawaya Motivation Crystal structures are inherently anisotropic. X-ray diffraction reflects this

More information

NMR, X-ray Diffraction, Protein Structure, and RasMol

NMR, X-ray Diffraction, Protein Structure, and RasMol NMR, X-ray Diffraction, Protein Structure, and RasMol Introduction So far we have been mostly concerned with the proteins themselves. The techniques (NMR or X-ray diffraction) used to determine a structure

More information

X-ray Crystallography. Kalyan Das

X-ray Crystallography. Kalyan Das X-ray Crystallography Kalyan Das Electromagnetic Spectrum NMR 10 um - 10 mm 700 to 10 4 nm 400 to 700 nm 10 to 400 nm 10-1 to 10 nm 10-4 to 10-1 nm X-ray radiation was discovered by Roentgen in 1895. X-rays

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

CCP4 Diamond 2014 SHELXC/D/E. Andrea Thorn

CCP4 Diamond 2014 SHELXC/D/E. Andrea Thorn CCP4 Diamond 2014 SHELXC/D/E Andrea Thorn SHELXC/D/E workflow SHELXC: α calculation, file preparation SHELXD: Marker atom search = substructure search SHELXE: density modification Maps and coordinate files

More information

Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS

Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS Jon Wright ESRF, Grenoble, France Plan This is a users perspective Cover the protein specific aspects (assuming knowledge of

More information

Scattering by two Electrons

Scattering by two Electrons Scattering by two Electrons p = -r k in k in p r e 2 q k in /λ θ θ k out /λ S q = r k out p + q = r (k out - k in ) e 1 Phase difference of wave 2 with respect to wave 1: 2π λ (k out - k in ) r= 2π S r

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information

Anomalous dispersion

Anomalous dispersion Selenomethionine MAD Selenomethionine is the amino acid methionine with the Sulfur replaced by a Selenium. Selenium is a heavy atom that also has the propery of "anomalous scatter" at some wavelengths,

More information

Get familiar with PDBsum and the PDB Extract atomic coordinates from protein data files Compute bond angles and dihedral angles

Get familiar with PDBsum and the PDB Extract atomic coordinates from protein data files Compute bond angles and dihedral angles CS483 Assignment #2 Due date: Mar. 1 at the start of class. Protein Geometry Bedbug spit? Just say NO! Purpose of this assignment Get familiar with PDBsum and the PDB Extract atomic coordinates from protein

More information

Likelihood and SAD phasing in Phaser. R J Read, Department of Haematology Cambridge Institute for Medical Research

Likelihood and SAD phasing in Phaser. R J Read, Department of Haematology Cambridge Institute for Medical Research Likelihood and SAD phasing in Phaser R J Read, Department of Haematology Cambridge Institute for Medical Research Concept of likelihood Likelihood with dice 4 6 8 10 Roll a seven. Which die?? p(4)=p(6)=0

More information

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Supporting Information Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Gabriel Birrane, Balaji Bhyravbhatla, and Manuel A. Navia METHODS Crystallization. Thermolysin (TLN) from Calbiochem

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 01:44 am GMT PDB ID : 1MWP Title : N-TERMINAL DOMAIN OF THE AMYLOID PRECURSOR PROTEIN Authors : Rossjohn, J.; Cappai, R.; Feil, S.C.; Henry,

More information

Experimental phasing in Crank2

Experimental phasing in Crank2 Experimental phasing in Crank2 Pavol Skubak and Navraj Pannu Biophysical Structural Chemistry, Leiden University, The Netherlands http://www.bfsc.leidenuniv.nl/software/crank/ X-ray structure solution

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

Supplementary Information

Supplementary Information 1 Supplementary Information Figure S1 The V=0.5 Harker section of an anomalous difference Patterson map calculated using diffraction data from the NNQQNY crystal at 1.3 Å resolution. The position of the

More information

Dictionary of ligands

Dictionary of ligands Dictionary of ligands Some of the web and other resources Small molecules DrugBank: http://www.drugbank.ca/ ZINC: http://zinc.docking.org/index.shtml PRODRUG: http://www.compbio.dundee.ac.uk/web_servers/prodrg_down.html

More information

4. Constraints and Hydrogen Atoms

4. Constraints and Hydrogen Atoms 4. Constraints and ydrogen Atoms 4.1 Constraints versus restraints In crystal structure refinement, there is an important distinction between a constraint and a restraint. A constraint is an exact mathematical

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Resolution and data formats. Andrea Thorn

Resolution and data formats. Andrea Thorn Resolution and data formats Andrea Thorn RESOLUTION Motivation Courtesy of M. Sawaya Map resolution http://www.bmsc.washington.edu/people/verlinde/experiment.html Data quality indicators Resolution accounts

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information

SOLVE and RESOLVE: automated structure solution, density modification and model building

SOLVE and RESOLVE: automated structure solution, density modification and model building Journal of Synchrotron Radiation ISSN 0909-0495 SOLVE and RESOLVE: automated structure solution, density modification and model building Thomas Terwilliger Copyright International Union of Crystallography

More information

Model and data. An X-ray structure solution requires a model.

Model and data. An X-ray structure solution requires a model. Model and data An X-ray structure solution requires a model. This model has to be consistent with: The findings of Chemistry Reflection positions and intensities Structure refinement = Model fitting by

More information

Handout 12 Structure refinement. Completing the structure and evaluating how good your data and model agree

Handout 12 Structure refinement. Completing the structure and evaluating how good your data and model agree Handout 1 Structure refinement Completing the structure and evaluating how good your data and model agree Why you should refine a structure We have considered how atoms are located by Patterson, direct

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Protein Structure and Visualisation. Introduction to PDB and PyMOL

Protein Structure and Visualisation. Introduction to PDB and PyMOL Protein Structure and Visualisation Introduction to PDB and PyMOL 1 Feedback Persons http://www.bio-evaluering.dk/ 2 Program 8.00-8.15 Quiz results 8.15-8.50 Introduction to PDB & PyMOL 8.50-9.00 Break

More information

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l Phase problem: Determining an initial phase angle α hkl for each recorded reflection 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l Methods: Heavy atom methods (isomorphous replacement Hg, Pt)

More information

7.91 Amy Keating. Solving structures using X-ray crystallography & NMR spectroscopy

7.91 Amy Keating. Solving structures using X-ray crystallography & NMR spectroscopy 7.91 Amy Keating Solving structures using X-ray crystallography & NMR spectroscopy How are X-ray crystal structures determined? 1. Grow crystals - structure determination by X-ray crystallography relies

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

wwpdb X-ray Structure Validation Summary Report

wwpdb X-ray Structure Validation Summary Report wwpdb X-ray Structure Validation Summary Report io Jan 31, 2016 06:45 PM GMT PDB ID : 1CBS Title : CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 10:24 pm GMT PDB ID : 1A30 Title : HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR Authors : Louis, J.M.; Dyda, F.; Nashed, N.T.; Kimmel,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 13, 2018 04:03 pm GMT PDB ID : 5NMJ Title : Chicken GRIFIN (crystallisation ph: 6.5) Authors : Ruiz, F.M.; Romero, A. Deposited on : 2017-04-06 Resolution

More information

Example: Identification

Example: Identification Example: Identification In this structure we will explore Atom identification Working with maps Working with projections Eliminating diffusely diffracting solvent Disorder modeling Restrain application

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Experimental phasing in Crank2

Experimental phasing in Crank2 Experimental phasing in Crank2 Pavol Skubak and Navraj Pannu Biophysical Structural Chemistry, Leiden University, The Netherlands http://www.bfsc.leidenuniv.nl/software/crank/ Crank2 for experimental phasing

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

Biology III: Crystallographic phases

Biology III: Crystallographic phases Haupt/Masterstudiengang Physik Methoden moderner Röntgenphysik II: Streuung und Abbildung SS 2013 Biology III: Crystallographic phases Thomas R. Schneider, EMBL Hamburg 25/6/2013 thomas.schneider@embl-hamburg.de

More information

Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline

Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline Auto-Rickshaw http://www.embl-hamburg.de/auto-rickshaw A platform for automated crystal structure determination

More information

Pymol Practial Guide

Pymol Practial Guide Pymol Practial Guide Pymol is a powerful visualizor very convenient to work with protein molecules. Its interface may seem complex at first, but you will see that with a little practice is simple and powerful

More information

Macromolecular Phasing with shelxc/d/e

Macromolecular Phasing with shelxc/d/e Sunday, June 13 th, 2010 CCP4 Workshop APS Chicago, June 2010 http://shelx.uni-ac.gwdg.de Overview Substructure Definition and Motivation Extracting Substructure Data from measured Data Substructure Solution

More information

Refinement of Disorder with SHELXL

Refinement of Disorder with SHELXL Refinement of Disorder with SHELXL Peter Müller MIT pmueller@mit.edu Single Crystal Structure Determination A crystal is a potentially endless, three-dimensional, periodic discontinuum built up by atoms,

More information

Direct Methods and Many Site Se-Met MAD Problems using BnP. W. Furey

Direct Methods and Many Site Se-Met MAD Problems using BnP. W. Furey Direct Methods and Many Site Se-Met MAD Problems using BnP W. Furey Classical Direct Methods Main method for small molecule structure determination Highly automated (almost totally black box ) Solves structures

More information

X- ray crystallography. CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror

X- ray crystallography. CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror X- ray crystallography CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror 1 Outline Overview of x-ray crystallography Crystals Electron density Diffraction patterns The computational problem: determining structure

More information

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology Tools for Cryo-EM Map Fitting Paul Emsley MRC Laboratory of Molecular Biology April 2017 Cryo-EM model-building typically need to move more atoms that one does for crystallography the maps are lower resolution

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved Cks1 d CKS1 Supplementary Figure 1 The -Cks1 crystal lattice. (a) Schematic of the - Cks1 crystal lattice. -Cks1 crystallizes in a lattice that contains c 4 copies of the t - Cks1 dimer in the crystallographic

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets Proteins Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order Perform nearly all cellular functions Drug Targets Fold into discrete shapes. Proteins - cont. Specific shapes

More information

Molecular Modeling lecture 2

Molecular Modeling lecture 2 Molecular Modeling 2018 -- lecture 2 Topics 1. Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction 4. Where do protein structures come from? X-ray crystallography

More information

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize.

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize. Homework 1 (not graded) X-ray Diffractometry CHE 380.45 Multiple Choice 1. One of the methods of reducing exposure to radiation is to minimize. a) distance b) humidity c) time d) speed e) shielding 2.

More information

Assignment 2 Atomic-Level Molecular Modeling

Assignment 2 Atomic-Level Molecular Modeling Assignment 2 Atomic-Level Molecular Modeling CS/BIOE/CME/BIOPHYS/BIOMEDIN 279 Due: November 3, 2016 at 3:00 PM The goal of this assignment is to understand the biological and computational aspects of macromolecular

More information

research papers Reduction of density-modification bias by b correction 1. Introduction Pavol Skubák* and Navraj S. Pannu

research papers Reduction of density-modification bias by b correction 1. Introduction Pavol Skubák* and Navraj S. Pannu Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Reduction of density-modification bias by b correction Pavol Skubák* and Navraj S. Pannu Biophysical Structural Chemistry, Leiden

More information

Ultra-high resolution structures in validation

Ultra-high resolution structures in validation Ultra-high resolution structures in validation (and not only...) Mariusz Jaskolski Department of Crystallography,, A. Mickiewicz University Center for Biocrystallographic Research, Polish Academy of Sciences,

More information

Overview - Macromolecular Crystallography

Overview - Macromolecular Crystallography Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous

More information

PSD '17 -- Xray Lecture 5, 6. Patterson Space, Molecular Replacement and Heavy Atom Isomorphous Replacement

PSD '17 -- Xray Lecture 5, 6. Patterson Space, Molecular Replacement and Heavy Atom Isomorphous Replacement PSD '17 -- Xray Lecture 5, 6 Patterson Space, Molecular Replacement and Heavy Atom Isomorphous Replacement The Phase Problem We can t measure the phases! X-ray detectors (film, photomultiplier tubes, CCDs,

More information

Preparing a PDB File

Preparing a PDB File Figure 1: Schematic view of the ligand-binding domain from the vitamin D receptor (PDB file 1IE9). The crystallographic waters are shown as small spheres and the bound ligand is shown as a CPK model. HO

More information

Automated Protein Model Building with ARP/wARP

Automated Protein Model Building with ARP/wARP Joana Pereira Lamzin Group EMBL Hamburg, Germany Automated Protein Model Building with ARP/wARP (and nucleic acids too) Electron density map: the ultimate result of a crystallography experiment How would

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Introduction to Structure Preparation and Visualization

Introduction to Structure Preparation and Visualization Introduction to Structure Preparation and Visualization Created with: Release 2018-4 Prerequisites: Release 2018-2 or higher Access to the internet Categories: Molecular Visualization, Structure-Based

More information

11/6/2013. Refinement. Fourier Methods. Fourier Methods. Difference Map. Difference Map Find H s. Difference Map No C 1

11/6/2013. Refinement. Fourier Methods. Fourier Methods. Difference Map. Difference Map Find H s. Difference Map No C 1 Refinement Fourier Methods find heavy atom or some F s phases using direct methods locate new atoms, improve phases continue until all atoms found in more or less correct position starting point of refinement

More information

Crystals, X-rays and Proteins

Crystals, X-rays and Proteins Crystals, X-rays and Proteins Comprehensive Protein Crystallography Dennis Sherwood MA (Hons), MPhil, PhD Jon Cooper BA (Hons), PhD OXFORD UNIVERSITY PRESS Contents List of symbols xiv PART I FUNDAMENTALS

More information

Handout 13 Interpreting your results. What to make of your atomic coordinates, bond distances and angles

Handout 13 Interpreting your results. What to make of your atomic coordinates, bond distances and angles Handout 13 Interpreting your results What to make of your atomic coordinates, bond distances and angles 1 What to make of the outcome of your refinement There are several ways of judging whether the outcome

More information

Charge density refinement at ultra high resolution with MoPro software. Christian Jelsch CNRS Université de Lorraine

Charge density refinement at ultra high resolution with MoPro software. Christian Jelsch CNRS Université de Lorraine Charge density refinement at ultra high resolution with MoPro software Christian Jelsch CNRS Université de Lorraine Laboratoire de Cristallographie & Résonance Magnétique & Modélisations (CRM2) Nancy,

More information

Schematic representation of relation between disorder and scattering

Schematic representation of relation between disorder and scattering Crystal lattice Reciprocal lattice FT Schematic representation of relation between disorder and scattering ρ = Δρ + Occupational disorder Diffuse scattering Bragg scattering ρ = Δρ + Positional

More information

Physical Chemistry Analyzing a Crystal Structure and the Diffraction Pattern Virginia B. Pett The College of Wooster

Physical Chemistry Analyzing a Crystal Structure and the Diffraction Pattern Virginia B. Pett The College of Wooster Physical Chemistry Analyzing a Crystal Structure and the Diffraction Pattern Virginia B. Pett The College of Wooster L. W. Haynes and his Senior Independent Study students conducted the 2 + 2 photo addition

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Ensemble refinement of protein crystal structures in PHENIX. Tom Burnley Piet Gros

Ensemble refinement of protein crystal structures in PHENIX. Tom Burnley Piet Gros Ensemble refinement of protein crystal structures in PHENIX Tom Burnley Piet Gros Incomplete modelling of disorder contributes to R factor gap Only ~5% of residues in the PDB are modelled with more than

More information