Atomic Physics in Traps

Size: px
Start display at page:

Download "Atomic Physics in Traps"

Transcription

1 Atomic Physics in Traps QED Fundamental Constants CPT Invariance Wolfgang Quint GSI Darmstadt and Univ. Heidelberg

2 Quantum mechanics, Relativity, and P.A.M. Dirac Quantum mechanics Special Relativity Dirac theory electron magnetic moment energy levels of H-like ions negative energy states existence of antimatter g-factor Lamb shift few-el. ions CPT tests

3 Quantum Electrodynamics (QED) QED = Dirac theory + quantized radiation field basic processes in QED: self energy vacuum polarization vertex correction QED coupling parameter: finestructure constant α =e 2 /2ε 0 hc 1/ Ref.: T. Beier, Physics Reports 339, 79 (2000)

4 QED and highly charged ions bound-state QED: quantum physics in strong fields basic processes in bound-state QED: self energy vacuum polarization vertex correction bound-state QED coupling parameter for U 91+ : Zα 0.67 Ref.: T. Beier, Physics Reports 339, 79 (2000)

5 Magnetic moment (g-factor) of the electron B µ = g e 2 m J m: magnetic moment g: g-factor e: charge m: mass J: angular momentum

6 g = 2 + α / π

7 QED contributions to the g-factor of the free electron g free = 2 (1 + C 1 α/π + C 2 (α/π) 2 + C 3 (α/π) 3 + C 4 (α/π) 4 + C 5 (α/π) magnetic field 1 st order in α: Schwinger term C 1 = ½ Ref.: J. Schwinger, Phys. Rev. 73, 416 (1948); Hanneke et al., PRL 100, (2008) The The theory theory of of quantum electrodynamics is, is, I I would would say, say, the the jewel jewel of of physics --our our proudest possession. R. R. Feynman

8 Free electron: QED contributions of 2 nd and 3 rd order g free = 2 (1 + C 1 α/π + C 2 (α /π) 2 + C 3 (α /π) 3 + C 4 (α /π) 4 + C 5 (α /π) nd order in α: C 2 = graphs 3 rd order in α: C 3 = graphs not shown: 4 th order in α: C 4 = graphs Ref.: B. Lautrup et al., Phys. Rep. 3, 193 (1972)

9 Free electron: QED contributions of 5 th order g free = 2 (1 + C 1 α/π + C 2 (α/π) 2 + C 3 (α/π) 3 + C 4 (α/π) 4 + C 5 (α/π) Harvard g-2 measurement 2008: g free = 2 ( (28)) determination of α 5 th order in α: C 5 = graphs I am digging at the roots of physics to see whether there is some treasure there. Toichiro Kinoshita Ref.: Kinoshita et al., arxiv: v1 [hep-ph] 24 May 2012

10 Determinations of the finestructure constant α Ref.: M. Vogel ACCURACY IN ALPHA [-LOG( α -1 )(α -1 )]

11 Bound-electron g-factor: Feynman graphs 1 st order in α/π g bound /g free 1 - (Zα) 2 /3 + α(zα) 2 /4π +... Dirac theory SELF ENERGY bound-state QED VACUUM POLARIZATION Ref.: T. Beier, Physics Reports 339, 79 (2000)

12 Bound-electron g-factor

13 g-factor of the electron bound in a hydrogen-like ion ω Larmor precession frequency of of the the bound bound electron: e L = g J 2 g J e m = e 'experimental g-factor' comparison with with theory B 2 e L ion c ω ω m M e ion B Ion Ion cyclotron frequency: ion ω c = Q ion e our our external input measurement parameter Q M ion B

14 A single highly charged ion stored in a Penning trap z U 0 radial confinement endcap axial confinement ring ion B AXIAL MOTION z endcap MAGNETRON DRIFT - B 0 potential (MODIFIED) CYCLOTRON MOTION + magnetic physical electric combined ion motion

15 Highly charged ion g-factor apparatus SUPERCONDUCTING MAGNET WITH ROOM TEMPERATUR BORE MICROWAVE INLET CRYOSTAT CRYO 4 K SINGLE ION IN TRAP PRECISION TRAP `DOUBLE TRAP MAGNETIC BOTTLE SUPERCONDUCTING SOLENOIDS PENNING 4K MINI EBIS TARGET FEP

16 Electronic detection of a single trapped ion: Resistive cooling and active feedback cooling B end cap ν z = 680 khz feedback cooling G φ compensation electrode ring electrode compensation electrode C R L U = I R end cap de k /dt = P cool = -I 2 R resistive cooling

17 Resistive Cooling of C 5+ -ions in a Penning Trap Resistive cooling of trapped 12 C 5+ ions - final temperature: T = 4 Kelvin axial energy [arb. units] Τ = 4 Κ τ cool = 132 ms cooling time [s]

18 High-resolution cyclotron frequency measurement of a single highly charged silicon ion 28 Si 13+

19 Bound electron magnetic moment measurement on hydrogen-like silicon 28 Si 13+ Spinflip probability (%)

20 Comparison of theory and experiment: g-factor of the bound electron in H-like carbon 12 C 5+, oxygen 16 O 7+ and silicon 28 Si 13+ g J ( J ( C )) = (3) (3) theoretical value g J ( J ( C )) = (10)(44) our ourmeasurement g J ( J ( O )) = (11) (11) theoretical value g J ( J ( O )) = (15)(44) our ourmeasurement g J ( J ( Si Si )) = (17) (17) theoretical value g J ( J ( Si Si )) = (5)(3)(8) our ourmeasurement Lit.: T. Beier et al., PRL 88, (2002) V. Shabaev et al., PRL 88, (2002) V. Yerokhin et al., PRL 89, (2002) K. Pachucki, V. Yerokhin et al., PRA 72, (2005) S. Sturm et al., PRL 107, (2011)

21 Bound-electron g-factor CONTRIBUTION TO G-FACTOR Häffner 2000 Verdu 2004 Dirac Sturm 2011 Sturm 2013 Köhler 2013, preliminary 1-loop QED-BS nuclear size 2-loop QED-BS 1-loop QED free electron 2-loop QED free electron Ref.: D. Glazov NUCLEAR CHARGE Z

22 Determination of electron mass ω Larmor precession frequency of of the the bound bound electron: e L = g J 2 e m e B B Ion Ion cyclotron frequency: ion ω c = Q M ion B m M e ion determination of of electron mass = g J 2 ω theory as as input parameter ω ion c e L e Q our our measurement

23 Determination of the electron mass from g-factor measurements on H-like carbon 12 C 5+ and oxygen 16 O C 5+ g-factor measurement m e e (( C )) = (29) u 16 O 7+ g-factor measurement m e e (( O )) = (41) u Van Dyck et al., comparison of cycl. frequencies ν e /ν(c 6+ ) m e e (UW) = (120) u Outlook: 1) Improved measeurement on carbon C 5+, work in progress by F. Köhler and S. Sturm 2) measurements on lighter ions, e.g. 4 He 1+

24 Bound electron magnetic moment measurement on lithium-like silicon 28 Si 11+ g exp ( 28 Si 11+ ) = (21) g theo ( 28 Si 11+ ) = (51) theoretical calculations by D.A. Glazov, A.V. Volotka, V.M. Shabaev Larmor resonance Precision test of electron-electron interaction screened QED contributions Ref.: A. Wagner et al. PRL 110, (2013)

25 Dirac sea: contribution of negative energy states to bound electron magnetic moment in Li-like HCI integration over negative energy states for internal electron lines Ref.: D. Glazov

26 HITRAP at the ESR storage ring / GSI UNILAC experiments with particles at rest or at low energies cooler Penning trap postdecelerator EXPERIMENTS EXPERIMENTS WITH WITH HIGHLY HIGHLY CHARGED CHARGED IONS IONS AND AND ANTIPROTONS ANTIPROTONS AT AT EXTREMELY EXTREMELY LOW LOW ENERGIES: ENERGIES: g-factor g-factor measurements measurements of of the the bound bound electron electron laser laser spectroscopy spectroscopy mass mass measurements measurements reaction reaction microscope, microscope, atomic atomic collisions collisions surface surface studies studies x-ray x-ray spectroscopy spectroscopy U 91+ SIS stripper target ESR electron cooling and deceleration down to 4 MeV/u 400 MeV/u U 73+ U 91+

27 Determination of the proton g-factor ωc = e B mp ωl = g ωl g=2 ωc Cyclotron frequency r B e B 2mp Larmor frequency hωl e m ω ' z ( ) ω ' z ( ) = ω z ωc = ω+ 2 + ω 2 + ωz 2 ω+ 2π 29 MHz ω z 2π 690 khz ω 2π 8.5 khz analysis trap precision trap

28 A single trapped proton and the continuous Stern-Gerlach effect axial frequency shift due to spinflip: 1 µ B ν z z 2 2 2π mν z Proton measurement is times harder compared to electron g-2 measurement. B 2 = 0.3 T/mm 2 ν z = 190 mhz

29 First Larmor resonance curve of a single proton in the Penning trap Axial temperature reduced Larmor resonance narrower νl νl = g = ν L 2 ν c Next steps: Reduce axial frequency fluctuations further 20 khz Direct observation of spinflips Apply double-trap method. Magnetic field in precision trap is more homogeneous by 4 orders of magnitude improvement to g g =10 9 expected

30 Proton g-factor measurement with and without active feedback cooling reduction of axial temperature by application of active electronic feedback g p = (50) Ref.: C. Rodegheri et al., NJP 2012

31 Baryon-Antibaryon Symmetry Experiment The BASE Collaboration at AD / CERN

32 Acknowledgements Group at the institute of physics - Mainz Group of Klaus Blaum at MPIK Heidelberg Atomic Physics Division at GSI Darmstadt VH-NG-037 Thank you for your attention!

33 Electronic detection of a single ion by resonance circuit Particle acts as a perfect short Q = 5600 ν = 680 khz R e n p = 36MΩ = 1.3 nv Hz Amplitude (dbm) Ref.: A. Mooser Frequency (Hz) 2.5 Hz Line width δν z N p Line Width (Hz) Single Proton Number of Particles

34 Continuous Stern-Gerlach effect: Determination of spin direction CLASSICAL STERN-GERLACH SEPARATION IN POSITION SPACE CONTINUOUS STERN-GERLACH SEPARATION IN FREQUENCY SPACE z B 1 B 2 L 2 z B1 2KE z B2 m z

35 Quantum jumps of a single HCI in a Penning trap FREQUENCY DIFFERENCE [Hz] ,1 12 C O Si 13+ AXIAL FREQUENCY [Hz] - OFFSET 0,6 0,4 0,2 0,0-0,2-0,4-0,6-0, TIME [min] B 2 =10mT/mm ION MASS M [u]

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016 Probing QED in strong fields via the magnetic moment of highly charged ions Sven Sturm May 25 th, 2016 Quantum ElectroDynamics (QED) Quantum Electrodynamics (QED is tested and proven in the weak field

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #5 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton W. Quint a, J. Alonso b, S. Djekić b, H.-J. Kluge a, S. Stahl b, T. Valenzuela b, J. Verdú b, M. Vogel b, and G. Werth b a Gesellschaft

More information

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+ The most stringent test of QED in strong fields: The g-factor of 28 Si 13+ Sven Sturm, Anke Wagner, Klaus Blaum March 27 th, 2012 PTB Helmholtz-Symposium Quantum ElectroDynamics (QED) QED describes the

More information

The Proton Magnetic Moment

The Proton Magnetic Moment Georg Schneider on behalf of the BASE collaboration March 9, 2016, Kanazawa 1. Theoretical basics Who we are? Measurement principle The double Penning trap method Experimental setup Milestones 2 / 25 Who

More information

Progress Towards an (Anti)Proton g - Factor Measurement

Progress Towards an (Anti)Proton g - Factor Measurement Progress Towards an (Anti)Proton g - Factor Measurement Stefan Ulmer K. Blaum, H. Kracke, A. Mooser, W. Quint, C.C. Rodegheri und J. Walz Introduction Experimental techniques Measuring process Status and

More information

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part The Magnetic Moment Anomaly of the Electron Bound in Hydrogenic Ions W. Quint Λ, T. Beier Λ, H. Häffner Λ;y1, N. Hermanspahn y2, S. Karshenboim +, H.-J. Kluge Λ, G. Marx Λ, T. Valenzuela y, J. Verdú Λ

More information

High-precision measurements of the fundamental properties of the antiproton

High-precision measurements of the fundamental properties of the antiproton High-precision measurements of the fundamental properties of the antiproton Hiroki Nagahama on behalf of the BASE collaboration PSAS 2016, Jerusalem 26/May Goal of BASE Table of contents Principle of CPT

More information

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration The Magnetic Moment of the Proton A. Mooser for the BASE collaboration Motivation CPT-Symmetry fundamental cornerstone of Standard Model Strategy: Compare properties of matter and antimatter conjugates

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Fully Quantum Measurement of the Electron Magnetic Moment

Fully Quantum Measurement of the Electron Magnetic Moment Fully Quantum Measurement of the Electron Magnetic Moment prepared by Maren Padeffke (presented by N. Herrmann) Outline Motivation and History Experimental Methods Results Conclusion Sources Motivation

More information

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions Klaus.blaum@mpi-hd.mpg.de Table-Top Experiments, Workshop at MIT 2017 Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions Precision atomic/nuclear masses

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de Hirschegg 2012 Precision Penning Trap Experiments with Exotic Ions Klaus Blaum January 16, 2012 Outline Introduction and motivation Principle of Penning traps Setup and measurement

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

Observing a single hydrogen-like ion in a Penning trap at T = 4K

Observing a single hydrogen-like ion in a Penning trap at T = 4K Hyperfine Interactions 115 (1998) 185 192 185 Observing a single hydrogen-like ion in a Penning trap at T = 4K M. Diederich a,h.häffner a, N. Hermanspahn a,m.immel a,h.j.kluge b,r.ley a, R. Mann b,w.quint

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

A 680-fold improved comparison of the antiproton and proton magnetic moments

A 680-fold improved comparison of the antiproton and proton magnetic moments A 680-fold improved comparison of the antiproton and proton magnetic moments Eric Tardiff Gerald Gabrielse, Jack DiSciacca, Kathryn Marable, Mason Marshall Harvard University July 21, 2014 Testing CPT

More information

Cavity Control in a Single-Electron Quantum Cyclotron

Cavity Control in a Single-Electron Quantum Cyclotron Cavity Control in a Single-Electron Quantum Cyclotron An Improved Measurement of the Electron Magnetic Moment David Hanneke Michelson Postdoctoral Prize Lectures 13 May 2010 The Quantum Cyclotron Single

More information

Direct Measurement of the Proton Magnetic Moment

Direct Measurement of the Proton Magnetic Moment Direct Measurement of the Proton Magnetic Moment J. DiSciacca 1 and G. Gabrielse 1, 1 Dept. of Physics, Harvard University, Cambridge, MA 02138 (Dated: 14 Jan. 2012 (submitted to PRL); 31 Jan. 2012 (accepted

More information

by g-factor Measurements

by g-factor Measurements Intrnational Bound-Stat Acclrator Quantum Facility Elctrodynamics for Bams in Strong of Ions and Filds Antiprotons Byond at Darmstadt th Furry Pictur by g-factor Masurmnts Wolfgang Quint GSI Darmstadt

More information

Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments

Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments Nicholas Guise Harvard University Cambridge, Massachusetts, USA LEPTON MOMENTS 19 July 2010 Prospects

More information

"SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR"

SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR H.-Jürgen Kluge GSI/Darmstadt and Universität Heidelberg TRIUMF, Vancouver, Canada TITAN Workshop, June 10-11, 2005 "SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR" 1.

More information

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places The 64 th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places http://kicp.uchicago.edu/~odom/compton.htm Lecture 5: Using the Fine Structure Constant to Push

More information

Bound Electron g Factor

Bound Electron g Factor Bound Electron g Factor Lepton Moments ' 06 Cape Cod, 20 JUN 2006 Ulrich D. Jentschura Max Planck Institute for Nuclear Physics, Heidelberg, Germany Contents Theory of hydrogen and deuterium spectra and

More information

arxiv: v1 [physics.atom-ph] 15 Jul 2015

arxiv: v1 [physics.atom-ph] 15 Jul 2015 A reservoir trap for antiprotons C. Smorra a,b,, A. Mooser a, K. Franke a,c, H. Nagahama a,d, G. Schneider a,e, T. Higuchi a,d, S.V. Gorp f, K. Blaum c, Y. Matsuda d, W. Quint g, J. Walz e,h, Y. Yamazaki

More information

New Physics Searches with Muons. Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015

New Physics Searches with Muons. Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015 New Physics Searches with Muons Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus November 4, 2015 Andrzej Czarnecki University of Alberta Outline Three promising directions in low-energy

More information

Experiments with hydrogen - discovery of the Lamb shift

Experiments with hydrogen - discovery of the Lamb shift Experiments with hydrogen - discovery of the Lamb shift Haris Ðapo Relativistic heavy ion seminar, October 26, 2006 Outline 1 Pre-Lamb experiment The beginning (Bohr s formula) Fine structure (Dirac s

More information

Implementation of new techniques for high precision g factor measurements

Implementation of new techniques for high precision g factor measurements Implementation of new techniques for high precision g factor measurements Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Physik der Johannes Gutenberg Universität

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature1306 Statistical measurement uncertainty The statistical uncertainty of the experimentally determined ratio of Larmor- and cyclotron frequencies, which we denote

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Systematic shift caused by trap asymmetry The major systematic correction in the reported cyclotron frequency ratio comparison of an antiproton at ν c, p and a negatively charged hydrogen ion (H ) at ν

More information

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer Progress with the MPIK / UW - PTMS in Heidelberg Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer TCP 010, Saariselkä, April 1, 010 David Pinegar, MPI-K

More information

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method Hyperfine Interaction (2018) 239: 47 https://doi.org/10.1007/s10751-018-1507-1 350-fold improved measurement of the antiproton magnetic moment using a multi-trap method Christian Smorra 1 Pascal E. Blessing

More information

free electron plus He-like ion

free electron plus He-like ion free electron plus He-like ion E e I p,n E 2 E 1 ΔE=E e +I p,n aber: ΔE=E 2 -E 1 n n n n n n=1 n=2 n=3 AAMOP 2011-2012 2011-11-16 1 dielectronic recombination E 2 E 1 n n n n n n=1 n=2 n=3 AAMOP 2011-2012

More information

Physics of and in Ion Traps

Physics of and in Ion Traps Physics of and in Ion Traps Proposed Topics: TRIUMF, Vancouver June 01 Basics of Paul- and Penning-traps (equ. of motion, trap geometries, influence of trap imperfections,) Ion detection and cooling (Buffer

More information

Precision Measurement in Atomic Physics

Precision Measurement in Atomic Physics NTHU Physics Colloquim 11/4/009 Precision Measurement in Atomic Physics Li-Bang Wang, 王立邦 National Tsing Hua University Thompson, D'Arcy Wentworth On Growth and Form, 1917 numerical precision is the very

More information

CONTINUOUS STERN GERLACH EFFECT ON ATOMIC IONS

CONTINUOUS STERN GERLACH EFFECT ON ATOMIC IONS ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL. 48 CONTINUOUS STERN GERLACH EFFECT ON ATOMIC IONS GÜNTHER WERTH 1, HARTMUT HÄFFNER 1 and WOLFGANG QUINT 2 1 Johannes Gutenberg University, Department

More information

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant New Measurement of the Electron Magnetic Moment and the Fine Structure Constant Gerald Leverett Professor of Physics Harvard University Almost finished student: David Hanneke Earlier contributions: Brian

More information

Laser Spectroscopy of Highly Charged Ions for a Test of QED ( and SRT)

Laser Spectroscopy of Highly Charged Ions for a Test of QED ( and SRT) Laser Spectroscopy of Highly Charged Ions for a Test of QED ( and SRT) Wilfried Nörtershäuser for the SPECTRAP and the E083 Collaborations Johannes Gutenberg - University of Mainz GSI Darmstadt Laser Spectroscopy

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

H.-Jürgen Kluge. HITRAP: New Opportunities for Studying Highly Charged Ions in Extreme Electromagnetic Fields

H.-Jürgen Kluge. HITRAP: New Opportunities for Studying Highly Charged Ions in Extreme Electromagnetic Fields H.-Jürgen Kluge GSI/Darmstadt and University of Heidelberg International Conference on Precision Physics of Simple Atomic Systems (PSAS 2008) July 21 26, 2008, Windsor, Ontario, Canada HITRAP: New Opportunities

More information

Wolfgang Quint GSI Darmstadt and Univ. Heidelberg. Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

Wolfgang Quint GSI Darmstadt and Univ. Heidelberg. Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint Intrnational Improvd Acclrator Dtrmination Facility for of Bams th of Ions Elctron and Antiprotons Mass in at Darmstadt Atomic Mass Units Wolfgang Quint GSI Darmstadt and Univ. Hidlbrg Intrnational Acclrator

More information

Observation of the 1S-2S Transition in Antihydrogen

Observation of the 1S-2S Transition in Antihydrogen Observation of the 1S-2S Transition in Antihydrogen Dirk van der Werf Swansea University CEA-Saclay ALPHA What do we want to do Check CPT conservation Baryon asymmetry Standard model extension (SME): Assume

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

Gerald Gabrielse Leverett Professor of Physics, Harvard University. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant

Gerald Gabrielse Leverett Professor of Physics, Harvard University. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant Gerald Gabrielse Leverett Professor of Physics, Harvard University New Measurement of the Electron Magnetic Moment and the Fine Structure Constant Remarkably, the famous UW measurement of the electron

More information

Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies

Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies Jochen Walz Univ. Mainz antimatter spectroscopy magnetic moments antimatter gravity Why antihydrogen spectroscopy? CPT symmetry

More information

Chapter 1 Precise Matter and Antimatter Tests of the Standard Model with e, e +, p, pandh

Chapter 1 Precise Matter and Antimatter Tests of the Standard Model with e, e +, p, pandh Chapter 1 Precise Matter and Antimatter Tests of the Standard Model with e, e +, p, pandh G. Gabrielse, S. Fogwell Hoogerheide, J. Dorr and E. Novitski Abstract Extremely precise tests of the Standard

More information

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Euroschool on Physics with Exotic Beams, Mainz 005 Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Klaus Blaum Johannes Gutenberg-University Mainz

More information

The GSI Anomaly. M. Lindner. Max-Planck-Institut für Kernphysik, Heidelberg. Sildes partially adopted from F. Bosch

The GSI Anomaly. M. Lindner. Max-Planck-Institut für Kernphysik, Heidelberg. Sildes partially adopted from F. Bosch The GSI Anomaly M. Lindner Max-Planck-Institut für Kernphysik, Heidelberg Sildes partially adopted from F. Bosch What is the GSI Anomaly? Periodically modualted exponential β-decay law of highly charged,

More information

Higher-order recoil corrections in Helium and Helium-like ions

Higher-order recoil corrections in Helium and Helium-like ions Higher-order recoil corrections in Helium and Helium-like ions Vojtěch Patkóš Department of Chemical Physics and Optics Charles University in Prague 19th May 2017 Motivation Motivation Hydrogenic systems

More information

Time-modulation of electron-capture decay factor detected at GSI, Darmstadt

Time-modulation of electron-capture decay factor detected at GSI, Darmstadt Time-modulation of electron-capture decay factor detected at GSI, Darmstadt Byung Kyu Park Department of Physics University of California, Berkeley Physics 250 March 20, 2008 Byung Kyu Park (UC Berkeley)

More information

Ro-vibrational spectroscopy of the hydrogen molecular ion and antiprotonic helium

Ro-vibrational spectroscopy of the hydrogen molecular ion and antiprotonic helium of the hydrogen molecular ion and antiprotonic helium V.I. Joint Institute for Nuclear Research 141980, Dubna, Russia korobov@theor.jinr.ru Fundamental Constants 2015, February 2015 Status of Theory. 2014

More information

Op#mized Planar Penning Traps for Quantum Informa#on Studies

Op#mized Planar Penning Traps for Quantum Informa#on Studies Op#mized Planar Penning Traps for Quantum Informa#on Studies Joshua Goldman Harvard University, Dept. of Physics Gabrielse Laboratory TCP2010, Saariselkä, Finland 12 April 2010 Outline I. Introduc#on:

More information

221B Lecture Notes Quantum ElectroDynamics

221B Lecture Notes Quantum ElectroDynamics 221B Lecture Notes Quantum ElectroDynamics 1 Putting Everything Together Now we are in the position to discuss a truly relativistic, quantum formulation of electrodynamics. We have discussed all individual

More information

Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy Sensors 2010, 10, 2169-2187; doi:10.3390/s100302169 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy Manuel Vogel

More information

Fully Quantum Measurement of the Electron Magnetic Moment

Fully Quantum Measurement of the Electron Magnetic Moment Fully Quantum Measurement of the Electron Magnetic Moment A thesis presented by Brian Carl Odom to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Outline WHAT are we measuring? - Nuclear/atomic masses WHY do we need/want to measure

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy Martin Diermaier LEAP 2016 Kanazawa Japan Martin Diermaier Stefan-Meyer-Institute March th 2016 MOTIVATION Charge

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

LEAP, Kanazawa, Japan 2016

LEAP, Kanazawa, Japan 2016 Klaus.blaum@mpi-hd.mpg.de LEAP, Kanazawa, Japan 2016 Precision atomic and nuclear masses and their importance for nuclear structure, astrophysics and fundamental studies Motivation for precision mass data

More information

(Lifetime and) Dipole Moments

(Lifetime and) Dipole Moments Precision Measurements with the Muon: (Lifetime and) Dipole Moments B.L. Roberts Department of Physics Boston University roberts @bu.edu http://physics.bu.edu/roberts.html B. Lee Roberts, APPEAL07, CAST,

More information

The linear Decelerator Facility HITRAP A Status Report

The linear Decelerator Facility HITRAP A Status Report The linear Decelerator Facility HITRAP A Status Report W. Barth, D. Beck, T. Beier, M. Bevcic, E. Berdermann, M. Block, A. Bräuning-Demian, H. Brand, K. Brantjes, E. Bodewits, G. Clemente, L. Dahl, C.

More information

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich Muon g 2 Physics 403 Advanced Modern Physics Laboratory 4-16-2013 Matthias Grosse Perdekamp Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich 1 /53 Outline Introduction & Motivation Method Experiment

More information

arxiv: v1 [hep-ph] 5 Jan 2018

arxiv: v1 [hep-ph] 5 Jan 2018 Access to improve the muon mass and magnetic moment anomaly via the bound-muon g factor arxiv:1801.02501v1 [hep-ph] 5 Jan 2018 B. Sikora, 1, H. Cakir, 1 N. ichel, 1 V. Debierre, 1 N. S. Oreshkina, 1 N.

More information

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007 Antimatter Jan Meier Seminar: Experimental Methods in Atomic Physics May, 8th 27 Overview Antimatter and CPT theorie what is antimatter? what physics does it follow to? First observations of antimatter

More information

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Winter Meeting on Nuclear Physics, Bormio, Italy 2014 Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Klaus Blaum Jan 27, 2014 Klaus.blaum@mpi-hd.mpg.de

More information

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI Denis Anielski 28.01.2011 1 Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI Denis Anielski Westfälische Wilhelms-Universität

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics 258 501 ALPHA (CERN) CPT, CERN ishida@icepp.s.u-tokyo.ac.jp TRIUMF Canada s National Laboratory for Particle and Nuclear Physics Makoto.Fujiwara@triumf.ca 2015 2 26 ( H ) (p ) ( e + ) CPT ( ) CERN (AD;

More information

The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA

The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA Dániel Barna Wigner Research Centre for Physics, Budapest, Hungary The CERN antiproton facilities Experiments, their programmes

More information

A Next-generation Low-energy Antiproton Facility

A Next-generation Low-energy Antiproton Facility A Next-generation Low-energy Antiproton Facility E. Widmann, University of Tokyo Chairman, FLAIR steering committee Nuclear Physics @ J-PARC Workshop NP04, Tokai, August 2 4, 2004 University of Tokyo Antiproton

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Electron spin resonance

Electron spin resonance Quick reference guide Introduction This is a model experiment for electron spin resonance, for clear demonstration of interaction between the magnetic moment of the electron spin with a superimposed direct

More information

A novel four-trap mass spectrometer for high-accuracy mass measurements on highly-charged ions

A novel four-trap mass spectrometer for high-accuracy mass measurements on highly-charged ions http://www.quantum.physik.uni-mainz.de/mats/ A novel four-trap mass spetrometer for high-auray mass measurements on highly-harged ions Sz. Nagy, K. Blaum, S. George, F. Herfurt, J. Ketelaer, W. Quint,

More information

Charged Particle Electric Dipole Moment Searches in Storage Rings

Charged Particle Electric Dipole Moment Searches in Storage Rings Charged Particle Electric Dipole Moment Searches in Storage Rings RWTH Aachen University, Forschungszentrum Jülich & JARA - FAME E-mail: pretz@physik.rwth-aachen.de The Electric Dipole Moment (EDM) is

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1.

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1. Beam Cooling, GSI, Darmstadt CERN Accelerator School, September 18 30, 2011 Beam Cooling Introduction 1.Electron Cooling 2.Ionization Cooling 3.Laser Cooling 4.Stochastic Cooling Beam Cooling Beam cooling

More information

Traps for Rare Isotopes

Traps for Rare Isotopes Traps for Rare Isotopes Georg Bollen National Superconducting Cyclotron Laboratory and Department for Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA bollen@nscl.msu.edu

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

The World s Smallest Extreme Laboratories:

The World s Smallest Extreme Laboratories: The World s Smallest Extreme Laboratories: Probing QED with Highly Charged Ions. Joan Marler Clemson University Outline About HCIs About Ion trapping Precision spectroscopy with HCIs Highly Charged Ions

More information

Spin-tracking studies for EDM search in storage rings

Spin-tracking studies for EDM search in storage rings Università degli Studi di Ferrara Dottorato in Fisica - XXVI ciclo Ferrara, 13 Dicembre 2013 Spin-tracking studies for EDM search in storage rings Tutor: Prof. Paolo Lenisa External Tutor: PD Dr. Andreas

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

Lecture 4. Beyound the Dirac equation: QED and nuclear effects

Lecture 4. Beyound the Dirac equation: QED and nuclear effects Lecture 4 Beyound the Dirac equation: QED and nuclear effects Plan of the lecture Reminder from the last lecture: Bound-state solutions of Dirac equation Higher-order corrections to Dirac energies: Radiative

More information

Precision spectroscopy of antiprotonic helium

Precision spectroscopy of antiprotonic helium Hyperfine Interact (009) 194:15 0 DOI 10.1007/s10751-009-004-7 Precision spectroscopy of antiprotonic helium Vladimir I. Korobov Zhan-Xiang Zhong Published online: 1 August 009 Springer Science + Business

More information

Fine structure constant determinations

Fine structure constant determinations Fine structure constant determinations F. Nez Laboratoire Kastler Brossel, UPMC,ENS,CNRS Metrology of simple systems and fundamental tests Quantum metrology and fundamental constants S. Galtier, F. Nez,

More information

Development and application of the RFQs for FAIR and GSI Projects

Development and application of the RFQs for FAIR and GSI Projects Development and application of the RFQs for FAIR and GSI Projects Stepan Yaramyshev GSI, Darmstadt Facility for Antiproton and Ion Research at Darmstadt The FAIR Accelerator Complex GSI Today SIS 100 SIS18

More information

Control of Spin Systems

Control of Spin Systems Control of Spin Systems The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

arxiv: v3 [physics.atom-ph] 15 Mar 2010

arxiv: v3 [physics.atom-ph] 15 Mar 2010 Optimized Planar Penning Traps for Quantum Information Studies J. Goldman and G. Gabrielse Department of Physics, Harvard University, Cambridge, MA 138 (Dated: Version : March 16, 1) arxiv:1.899v3 [physics.atom-ph]

More information

Status of the ESR And Future Options

Status of the ESR And Future Options Status of the ESR And Future Options M. Steck for the Storage Ring Division (C. Dimopoulou, A. Dolinskii, S. Litvinov, F. Nolden, P. Petri, U. Popp, I. Schurig) Outline 1) New Old ESR 2) Slow (Resonant)

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant

Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant Séminaire Poincaré XI (27) 19 146 Séminaire Poincaré Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant Gerald Gabrielse Leverett Professor

More information

The cryogenic neutron EDM experiment at ILL

The cryogenic neutron EDM experiment at ILL The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex In this talk (n)edm motivation & principles Room-temperature nedm experiment

More information

X-ray spectroscopy. Crystal spectrometers. Reflection gratings. Transmission gratings. Solid state detectors

X-ray spectroscopy. Crystal spectrometers. Reflection gratings. Transmission gratings. Solid state detectors X-ray spectroscopy Crystal spectrometers Reflection gratings Transmission gratings Solid state detectors Bragg s law How are X-rays reflected from a surface? At short wavelengths, mirrors do not work well.

More information

Experiments with heavy, highly charged ions - Status of the HITRAP project

Experiments with heavy, highly charged ions - Status of the HITRAP project Experiments with heavy, highly charged ions - 1, W. Barth 1, G. Clemente 1, L. A. Dahl 1, P. Gerhard 1, M. Kaiser 1, O. K. Kester 1,2, H.-J. Kluge 1, C. Krantz 3, N. Kotovskiy 1, C. Kozhuharov 1, M. Maier

More information