where i is the index of summation, a i is the ith term of the sum, and the upper and lower bounds of summation are n and 1.

Size: px
Start display at page:

Download "where i is the index of summation, a i is the ith term of the sum, and the upper and lower bounds of summation are n and 1."

Transcription

1 Chpter Itegrtio. Are Use sigm ottio to write d evlute sum. Uderstd the cocept o re. Approimte the re o ple regio. Fid the re o ple regio usig limits. Sigm Nottio I the precedig sectio, ou studied tidieretitio. I this sectio, ou will look urther ito prolem itroduced i Sectio. tht o idig the re o regio i the ple. At irst glce, these two ides m seem urelted, ut ou will discover i Sectio. tht the re closel relted etremel importt theorem clled the Fudmetl Theorem o Clculus. This sectio egis itroducig cocise ottio or sums. This ottio is clled sigm ottio ecuse it uses the uppercse Greek letter sigm, writte s. Sigm Nottio The sum o terms,,,..., is writte s i... where i is the ide o summtio, i is the ith term o the sum, d the upper d lower ouds o summtio re d. REMARK The upper d lower ouds must e costt with respect to the ide o summtio. However, the lower oud does t hve to e. A iteger less th or equl to the upper oud is legitimte. Emples o Sigm Nottio FOR FURTHER INFORMATION For geometric iterprettio o summtio ormuls, see the rticle Lookig t k k d k k Geometricll Eric Heglom i Mthemtics Techer. To view this rticle, go to MthArticles.com... c. d. e.. i i i0 7 j 7 j j k... j k i... From prts () d (), otice tht the sme sum c e represeted i dieret ws usig sigm ottio. Although vrile c e used s the ide o summtio, i, j, d k re ote used. Notice i Emple tht the ide o summtio does ot pper i the terms o the epded sum. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

2 . Are THE SUM OF THE FIRST 00 INTEGERS A techer o Crl Friedrich Guss (777 ) sked him to dd ll the itegers rom to 00.Whe Guss retured with the correct swer ter ol ew momets, the techer could ol look t him i stouded silece.this is wht Guss did: This is geerlized Theorem., Propert, where 00 i t The properties o summtio show elow c e derived usig the Associtive d Commuttive Properties o Additio d the Distriutive Propert o Additio over Multiplictio. (I the irst propert, k is costt.).. k i k i The et theorem lists some useul ormuls or sums o powers. THEOREM. Summtio Formuls. c c, c is costt.. i. Evlutig Sum i ± i i ± i i i A proo o this theorem is give i Appedi A. See LrsoClculus.com or Bruce Edwrds s video o this proo. i Evlute or 0, 00, 000, d 0,000. Solutio i i i Fctor the costt out o sum. Write s two sums. Appl Theorem.. Simpli. Simpli. Now ou c evlute the sum sustitutig the pproprite vlues o, s show i the tle elow ,000 i I the tle, ote tht the sum ppers to pproch limit s icreses. Although the discussio o limits t iiit i Sectio. pplies to vrile, where c e rel umer, m o the sme results hold true or limits ivolvig the vrile, where is restricted to positive iteger vlues. So, to id the limit o s pproches iiit, ou c write lim lim lim 0. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

3 Chpter Itegrtio Are I Euclide geometr, the simplest tpe o ple regio is rectgle. Although people ote s tht the ormul or the re o rectgle is A h it is ctull more proper to s tht this is the deiitio o the re o rectgle. From this deiitio, ou c develop ormuls or the res o m other ple regios. For emple, to determie the re o trigle, ou c orm rectgle whose re is twice tht o the trigle, s show i Figure.. Oce ou kow how to id the re o trigle, ou c determie the re o polgo sudividig the polgo ito trigulr regios, s show i Figure.. h Trigle: A h Figure. Prllelogrm Hego Polgo Figure. ARCHIMEDES (7 B.C.) Archimedes used the method o ehustio to derive ormuls or the res o ellipses, prolic segmets, d sectors o spirl. He is cosidered to hve ee the gretest pplied mthemtici o tiquit. See LrsoClculus.com to red more o this iogrph. Fidig the res o regios other th polgos is more diicult. The ciet Greeks were le to determie ormuls or the res o some geerl regios (pricipll those ouded coics) the ehustio method. The clerest descriptio o this method ws give Archimedes. Essetill, the method is limitig process i which the re is squeezed etwee two polgos oe iscried i the regio d oe circumscried out the regio. For istce, i Figure.7, the re o circulr regio is pproimted -sided iscried polgo d -sided circumscried polgo. For ech vlue o, the re o the iscried polgo is less th the re o the circle, d the re o the circumscried polgo is greter th the re o the circle. Moreover, s icreses, the res o oth polgos ecome etter d etter pproimtios o the re o the circle. FOR FURTHER INFORMATION For ltertive developmet o the ormul or the re o circle, see the rticle Proo Without Words: Are o Disk is R Russell J Hedel i Mthemtics Mgzie. To view this rticle, go to MthArticles.com. = The ehustio method or idig the re o circulr regio Figure.7 = A process tht is similr to tht used Archimedes to determie the re o ple regio is used i the remiig emples i this sectio. Mr Evs Picture Lirr Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

4 The Are o Ple Regio. Are 7 Recll rom Sectio. tht the origis o clculus re coected to two clssic prolems: the tget lie prolem d the re prolem. Emple egis the ivestigtio o the re prolem. Approimtig the Are o Ple Regio () = + 0 () The re o the prolic regio is greter th the re o the rectgles. Use the ive rectgles i Figure.() d () to id two pproimtios o the re o the regio lig etwee the grph o d the -is etwee 0 d. Solutio. The right edpoits o the ive itervls re i Right edpoits where i,,,,. The width o ech rectgle is, d the height o ech rectgle c e otied evlutig t the right edpoit o ech itervl. 0,,,,,,,,, 0 () = + Evlute t the right edpoits o these itervls. The sum o the res o the ive rectgles is 0 () The re o the prolic regio is less th the re o the rectgles. Figure. Height Width i i.. Becuse ech o the ive rectgles lies iside the prolic regio, ou c coclude tht the re o the prolic regio is greter th... The let edpoits o the ive itervls re i Let edpoits where i,,,,. The width o ech rectgle is, d the height o ech rectgle c e otied evlutig t the let edpoit o ech itervl. So, the sum is Height Width i i 0.0. Becuse the prolic regio lies withi the uio o the ive rectgulr regios, ou c coclude tht the re o the prolic regio is less th.0. B comiig the results i prts () d (), ou c coclude tht. < Are o regio <.0. B icresig the umer o rectgles used i Emple, ou c oti closer d closer pproimtios o the re o the regio. For istce, usig rectgles o width ech, ou c coclude tht 7.7 < Are o regio < 7.9. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

5 Chpter Itegrtio The regio uder curve Figure.9 (m i ) Δ The itervl, is divided ito suitervls o width. Figure.0 (M i ) Upper d Lower Sums The procedure used i Emple c e geerlized s ollows. Cosider ple regio ouded ove the grph o oegtive, cotiuous uctio s show i Figure.9. The regio is ouded elow the -is, d the let d right oudries o the regio re the verticl lies d. To pproimte the re o the regio, egi sudividig the itervl, ito suitervls, ech o width s show i Figure.0. The edpoits o the itervls re Becuse is cotiuous, the Etreme Vlue Theorem gurtees the eistece o miimum d mimum vlue o i ech suitervl. m i Miimum vlue o i ith suitervl M i Mimum vlue o i ith suitervl Net, deie iscried rectgle lig iside the ith suregio d circumscried rectgle etedig outside the ith suregio. The height o the ith iscried rectgle is m i d the height o the ith circumscried rectgle is M i. For ech i, the re o the iscried rectgle is less th or equl to the re o the circumscried rectgle. 0 0 < < <... <. Are o iscried rectgle The sum o the res o the iscried rectgles is clled lower sum, d the sum o the res o the circumscried rectgles is clled upper sum. Lower sum s Upper sum S m i M i Are o iscried rectgles Are o circumscried rectgles From Figure., ou c see tht the lower sum s is less th or equl to the upper sum S. Moreover, the ctul re o the regio lies etwee these two sums. s Are o regio S m i M i Are o circumscried rectgle = () = () s() = () S() Are o iscried rectgles Are o regio Are o circumscried is less th re o regio. rectgles is greter th re o regio. Figure. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

6 . Are 9 Iscried rectgles Circumscried rectgles Figure. () = () = Fidig Upper d Lower Sums or Regio Fid the upper d lower sums or the regio ouded the grph o d the -is etwee 0 d. Solutio To egi, prtitio the itervl 0, ito suitervls, ech o width Figure. shows the edpoits o the suitervls d severl iscried d circumscried rectgles. Becuse is icresig o the itervl 0,, the miimum vlue o ech suitervl occurs t the let edpoit, d the mimum vlue occurs t the right edpoit. Let Edpoits m i 0 i i Usig the let edpoits, the lower sum is s i i i. Lower sum Usig the right edpoits, the upper sum is S i i i i m i M i i 0.. i Upper sum Right Edpoits M i 0 i i Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

7 0 Chpter Itegrtio Eplortio For the regio give i Emple, evlute the lower sum s d the upper sum S or 0, 00, d 000. Use our results to determie the re o the regio. Emple illustrtes some importt thigs out lower d upper sums. First, otice tht or vlue o, the lower sum is less th (or equl to) the upper sum. Secod, the dierece etwee these two sums lesses s icreses. I ct, whe ou tke the limits s, oth the lower sum d the upper sum pproch d s < S lim s lim lim S lim Lower sum limit Upper sum limit The et theorem shows tht the equivlece o the limits (s ) o the upper d lower sums is ot mere coicidece. It is true or ll uctios tht re cotiuous d oegtive o the closed itervl,. The proo o this theorem is est let to course i dvced clculus.. THEOREM. Limits o the Lower d Upper Sums Let e cotiuous d oegtive o the itervl,. The limits s o oth the lower d upper sums eist d re equl to ech other. Tht is, lim s lim m i lim M i lim S where d m i d M i re the miimum d mimum vlues o o the suitervl. I Theorem., the sme limit is ttied or oth the miimum vlue m i d the mimum vlue M i. So, it ollows rom the Squeeze Theorem (Theorem.) tht the choice o i the ith suitervl does ot ect the limit. This mes tht ou re ree to choose ritrr -vlue i the ith suitervl, s show i the deiitio o the re o regio i the ple. Deiitio o the Are o Regio i the Ple Let e cotiuous d oegtive o the itervl,. (See Figure..) The re o the regio ouded the grph o, the -is, d the verticl lies d is Are lim c i where c i i d. i c i i (c i ) The width o the ith suitervl is i. Figure. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

8 . Are Fidig Are the Limit Deiitio (, ) () = (0, 0) The re o the regio ouded the grph o, the -is, 0, d is. Figure. Fid the re o the regio ouded the grph, the -is, d the verticl lies 0 d, s show i Figure.. Solutio Begi otig tht is cotiuous d oegtive o the itervl 0,. Net, prtitio the itervl 0, ito suitervls, ech o width. Accordig to the deiitio o re, ou c choose -vlue i the ith suitervl. For this emple, the right edpoits c i i re coveiet. Are lim c i lim i lim i lim lim Right edpoits: c i i The re o the regio is. () = Fidig Are the Limit Deiitio See LrsoClculus.com or iterctive versio o this tpe o emple. Fid the re o the regio ouded the grph o, the -is, d the verticl lies d, s show i Figure.. Solutio Note tht the uctio is cotiuous d oegtive o the itervl,. So, egi prtitioig the itervl ito suitervls, ech o width. Choosig the right edpoit c i i i Right edpoits The re o the regio ouded the grph o, the -is,, d is. Figure. o ech suitervl, ou oti Are lim c i lim i lim i i lim i i lim. The re o the regio is. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

9 Chpter Itegrtio The et emple looks t regio tht is ouded the -is (rther th the -is). A Regio Bouded the -is (, ) () = (0, 0) The re o the regio ouded the grph o d the -is or 0 is. Figure. Fid the re o the regio ouded the grph o d the -is or 0, s show i Figure.. Solutio Whe is cotiuous, oegtive uctio o, ou c still use the sme sic procedure show i Emples d. Begi prtitioig the itervl 0, ito suitervls, ech o width. The, usig the upper edpoits c i i, ou oti Are lim c i lim i lim i lim lim Upper edpoits: c i i. The re o the regio is. REMARK You will ler out other pproimtio methods i Sectio.. Oe o the methods, the Trpezoidl Rule, is similr to the Midpoit Rule. I Emples,, d 7, c i is chose to e vlue tht is coveiet or clcultig the limit. Becuse ech limit gives the ect re or c i, there is o eed to id vlues tht give good pproimtios whe is smll. For pproimtio, however, ou should tr to id vlue o c i tht gives good pproimtio o the re o the ith suregio. I geerl, good vlue to choose is the midpoit o the itervl, c i i, d ppl the Midpoit Rule. Are i. Midpoit Rule Approimtig Are with the Midpoit Rule () = si c π c π c π c π The re o the regio ouded the grph o si d the -is or 0 is out.0. Figure.7 Use the Midpoit Rule with to pproimte the re o the regio ouded the grph o si d the -is or 0, s show i Figure.7. Solutio For,. The midpoits o the suregios re show elow. c c So, the re is pproimted Are 0 which is out.0. c i si c i c c 7 si si 7 si si Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

10 . Are. Eercises See ClcCht.com or tutoril help d worked-out solutios to odd-umered eercises. Fidig Sum I Eercises, id the sum. Use the summtio cpilities o grphig utilit to veri our result.. i... k. c. Usig Sigm Nottio ottio to write the sum k0 k... I Eercises 7, use sigm Evlutig Sum I Eercises 0, use the properties o summtio d Theorem. to evlute the sum. Use the summtio cpilities o grphig utilit to veri our result i i. 9. ii 0. 9 k k j j i i i 0 i i i Evlutig Sum I Eercises, use the summtio ormuls to rewrite the epressio without the summtio ottio. Use the result to id the sums or 0, 00, 000, d 0,000. Approimtig the Are o Ple Regio I Eercises 0, use let d right edpoits d the give umer o rectgles to id two pproimtios o the re o the regio etwee the grph o the uctio d the -is over the give itervl.., 0,, rectgles. 9,,, rectgles 7. g,,, rectgles. g,,, rectgles 9. cos, 0, rectgles 0. g si, 0,, rectgles Usig Upper d Lower Sums I Eercises d, oud the re o the shded regio pproimtig the upper d lower sums. Use rectgles o width... Fidig Upper d Lower Sums or Regio I Eercises, use upper d lower sums to pproimte the re o the regio usig the give umer o suitervls (o equl width)....., i.. kk.. k 7j j i i Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

11 Chpter Itegrtio Fidig Limit I Eercises 7, id ormul or the sum o terms. Use the ormul to id the limit s. i 7. lim. 9. lim 0. i. lim. i. Numericl Resoig Cosider trigle o re ouded the grphs o, 0, d. () Sketch the regio. () Divide the itervl 0, ito suitervls o equl width d show tht the edpoits re (c) Show tht s (d) Show tht S (e) Complete the tle. () Show tht lim s lim S.. Numericl Resoig Cosider trpezoid o re ouded the grphs o, 0,, d. () Sketch the regio. () Divide the itervl, ito suitervls o equl width d show tht the edpoits re (c) Show tht s (d) Show tht S (e) Complete the tle. () Show tht lim i. lim i 0 < <... < <. i s S < <... < <. i. i s S s lim S. lim i lim i Fidig Are the Limit Deiitio I Eercises, use the limit process to id the re o the regio ouded the grph o the uctio d the -is over the give itervl. Sketch the regio.., 0,., 7., 0,., 9.,, 0.,. 7, [,.,.,,., Fidig Are the Limit Deiitio I Eercises 0, use the limit process to id the re o the regio ouded the grph o the uctio d the -is over the give -itervl. Sketch the regio Approimtig Are with the Midpoit Rule I Eercises, use the Midpoit Rule with to pproimte the re o the regio ouded the grph o the uctio d the -is over the give itervl...., g,,, g, h,,, t, 0 0 0,. cos, 0, 0, 0, WRITING ABOUT CONCEPTS, 0,, 0,, Approimtio I Eercises d, determie which vlue est pproimtes the re o the regio etwee the -is d the grph o the uctio over the give itervl. (Mke our selectio o the sis o sketch o the regio, ot perormig clcultios.).., () () (c) 0 (d) (e) si, 0, 0, () () (c) (d) (e) 7. Upper d Lower Sums I our ow words d usig pproprite igures, descrie the methods o upper sums d lower sums i pproimtig the re o regio.. Are o Regio i the Ple Give the deiitio o the re o regio i the ple. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

12 . Are 9. Grphicl Resoig Cosider the regio ouded the grphs o ), 0,, d 0, s show i the igure. To prit elrged cop o the grph, go to MthGrphs.com. () Redrw the igure, d complete d shde the rectgles represetig the lower sum whe. Fid this lower sum. () Redrw the igure, d complete d shde the rectgles represetig the upper sum whe. Fid this upper sum. (c) Redrw the igure, d complete d shde the rectgles whose heights re determied the uctiol vlues t the midpoit o ech suitervl whe. Fid this sum usig the Midpoit Rule. (d) Veri the ollowig ormuls or pproimtig the re o the regio usig suitervls o equl width. Lower sum: Upper sum: Midpoit Rule: s S M i i i (e) Use grphig utilit to crete tle o vlues o s, S, d M or,, 0, 00, d 00. () Epli wh s icreses d S decreses or icresig vlues o, s show i the tle i prt (e). 70. HOW DO YOU SEE IT? The uctio show i the grph elow is icresig o the itervl,. The itervl will e divided ito suitervls. True or Flse? I Eercises 7 d 7, determie whether the sttemet is true or lse. I it is lse, epli wh or give emple tht shows it is lse. 7. The sum o the irst positive itegers is. 7. I is cotiuous d oegtive o,, the the limits s o its lower sum s d upper sum S oth eist d re equl. 7. Writig Use the igure to write short prgrph epliig wh the ormul... is vlid or ll positive itegers. Figure or 7 Figure or 7 7. Grphicl Resoig Cosider -sided regulr polgo iscried i circle o rdius r. Joi the vertices o the polgo to the ceter o the circle, ormig cogruet trigles (see igure). () Determie the cetrl gle i terms o. () Show tht the re o ech trigle is r si. (c) Let A e the sum o the res o the trigles. Fid lim A. 7. Buildig Blocks A child plces cuic uildig locks i row to orm the se o trigulr desig (see igure). Ech successive row cotis two ewer locks th the precedig row. Fid ormul or the umer o locks used i the desig. (Hit: The umer o uildig locks i the desig depeds o whether is odd or eve.) θ is eve. 7. Proo Prove ech ormul mthemticl iductio. (You m eed to review the method o proo iductio rom preclculus tet.) () i () i () Wht re the let edpoits o the irst d lst suitervls? () Wht re the right edpoits o the irst two suitervls? (c) Whe usig the right edpoits, do the rectgles lie ove or elow the grph o the uctio? (d) Wht c ou coclude out the heights o the rectgles whe the uctio is costt o the give itervl? PUTNAM EXAM CHALLENGE 77. A drt, throw t rdom, hits squre trget. Assumig tht two prts o the trget o equl re re equll likel to e hit, id the proilit tht the poit hit is erer to the ceter th to edge. Write our swer i the orm cd, where,, c, d d re itegers. This prolem ws composed the Committee o the Putm Prize Competitio. The Mthemticl Associtio o Americ. All rights reserved. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

13 A Aswers to Odd-Numered Eercises Sectio. (pge ) c i 9.. i j j ,00.. 0: S. 0: S.9 00: S.0 00: S : S : S ,000: S.000 0,000: S < Are o regio < < Are o regio < < Are o regio <.. The re o the shded regio lls etwee. squre uits d. squre uits.. A S 0.7. A S 0.7 A s 0. A s lim 9. lim. lim. () () 0 9. A. A 0 0. A. A 7. A 9. A (c) s i (d) S i i (e) You c use the lie ouded d. The sum o the res o the iscried rectgles i the igure elow is the lower sum. The sum o the res o the circumscried rectgles i the igure elow is the upper sum. s S () lim i ; lim i. A 7. A 7 The rectgles i the irst grph do ot coti ll o the re o the regio, d the rectgles i the secod grph cover more th the re o the regio. The ect vlue o the re lies etwee these two sums. Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

14 Aswers to Odd-Numered Eercises A9 9. () () (c) s S (d) Proo (e) M s S M () Becuse is icresig uctio, s is lws icresig d S is lws decresig. 7. True 7. Suppose there re rows d colums. The strs o the let totl..., s do the strs o the right. There re strs i totl. So, d For odd, locks; For eve, locks 77. Putm Prolem B, 99 π Copright 0 Cegge Lerig. All Rights Reserved. M ot e copied, sced, or duplicted, i whole or i prt. Due to electroic rights, some third prt cotet m e suppressed rom the ebook d/or echpter(s). Editoril review hs deemed tht suppressed cotet does ot mterill ect the overll lerig eperiece. Cegge Lerig reserves the right to remove dditiol cotet t time i susequet rights restrictios require it.

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Sigma Notation. Sigma Notation. a i a 1 a 2 a 3... a n. i 1

Sigma Notation. Sigma Notation. a i a 1 a 2 a 3... a n. i 1 60_00.qd //0 : PM Page 9 SECTION. Area 9 Sectio. Area Use sigma otatio to write ad evaluate a sum. Uderstad the cocept o area. Approimate the area o a plae regio. Fid the area o a plae regio usig limits.

More information

Sigma Notation. Sigma Notation. a i a 1 a 2 a 3... a n

Sigma Notation. Sigma Notation. a i a 1 a 2 a 3... a n SECTION Area 9 Sectio Area Use sigma otatio to write ad evaluate a sum Uderstad the cocept o area Approimate the area o a plae regio Fid the area o a plae regio usig limits Sigma Notatio I the precedig

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b, 3 6 6 CHAPTER 5 INTEGRALS CAS 5. Fid the ect re uder the cosie curve cos from to, where. (Use computer lger sstem oth to evlute the sum d compute the it.) I prticulr, wht is the re if? 6. () Let A e the

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS REVIEW OF CHAPTER 5 MATH 4 (SECTION C): EEMENTARY CACUUS.. Are.. Are d Estimtig with Fiite Sums Emple. Approimte the re of the shded regio R tht is lies ove the -is, elow the grph of =, d etwee the verticl

More information

the midpoint of the ith subinterval, and n is even for

the midpoint of the ith subinterval, and n is even for Mth4 Project I (TI 89) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

Math1242 Project I (TI 84) Name:

Math1242 Project I (TI 84) Name: Mth4 Project I (TI 84) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

4.6 Numerical Integration

4.6 Numerical Integration .6 Numericl Integrtion 5.6 Numericl Integrtion Approimte definite integrl using the Trpezoidl Rule. Approimte definite integrl using Simpson s Rule. Anlze the pproimte errors in the Trpezoidl Rule nd Simpson

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

5.3. The Definite Integral. Limits of Riemann Sums

5.3. The Definite Integral. Limits of Riemann Sums . The Defiite Itegrl 4. The Defiite Itegrl I Sectio. we ivestigted the limit of fiite sum for fuctio defied over closed itervl [, ] usig suitervls of equl width (or legth), s - d>. I this sectio we cosider

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte Fll Mth 6 Itegrls 6. Sigm Nottio Mo, /Nov c, Art Belmote Summr Sigm ottio For itegers m d rel umbers m, m+,...,, we write k = m + m+ + +. k=m The left-hd side is shorthd for the fiite sum o right. The

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

INTEGRATION 5.1. Estimating with Finite Sums. Chapter. Area EXAMPLE 1. Approximating Area

INTEGRATION 5.1. Estimating with Finite Sums. Chapter. Area EXAMPLE 1. Approximating Area Chpter 5 INTEGRATION OVERVIEW Oe of the gret chievemets of clssicl geometr ws to oti formuls for the res d volumes of trigles, spheres, d coes. I this chpter we stud method to clculte the res d volumes

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Chapter 5 The Definite Integral

Chapter 5 The Definite Integral Sectio. Chpter The Defiite Itegrl Sectio. Estimtig with Fiite Sums (pp. -) Eplortio Which RAM is the Biggest?.. LRAM > MRAM > RRAM, ecuse the heights of the rectgles decrese s ou move towrd the right uder

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Homework 3 solutions

Homework 3 solutions Homework 3 solutios Sectio 2.2: Ex 3,4,5,9,12,14 Sectio 2.3: Ex 1,4; AP 1,2 20 poits. Grded 2.2, Ex 4,5, d 2.3, AP 1,2 Sectio 2.2 3. For ech uctio, id itervl [,] so tht d hve dieret sigs. x = e x 2 x -3

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

4 The Integral. 4.0 Area. (base) (height). If the units for each side of the rectangle are meters,

4 The Integral. 4.0 Area. (base) (height). If the units for each side of the rectangle are meters, 4 The Itegrl Previous chpters delt with differetil clculus. They strted with the simple geometricl ide of the slope of tget lie to curve, developed it ito combitio of theory bout derivtives d their properties,

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

Homework 2 solutions

Homework 2 solutions Sectio 2.1: Ex 1,3,6,11; AP 1 Sectio 2.2: Ex 3,4,9,12,14 Homework 2 solutios 1. Determie i ech uctio hs uique ixed poit o the speciied itervl. gx = 1 x 2 /4 o [0,1]. g x = -x/2, so g is cotiuous d decresig

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

( x y ) x y. a b. a b. Chapter 2Properties of Exponents and Scientific Notation. x x. x y, Example: (x 2 )(x 4 ) = x 6.

( x y ) x y. a b. a b. Chapter 2Properties of Exponents and Scientific Notation. x x. x y, Example: (x 2 )(x 4 ) = x 6. Chpter Properties of Epoets d Scietific Nottio Epoet - A umer or symol, s i ( + y), plced to the right of d ove other umer, vrile, or epressio (clled the se), deotig the power to which the se is to e rised.

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there Itegrtio, Prt 5: The Me Vlue Theorem for Itegrls d the Fudmetl Theorem of Clculus, Prt The me vlue theorem for derivtives tells us tht if fuctio f() is sufficietly ice over the itervl [,] the t some poit

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days Clculus AP U5 Itegrtio (AP) Nme: Big ide Clculus is etire rch of mthemtics. Clculus is uilt o two mjor complemetry ides. The first is differetil clculus, which is cocered with the istteous rte of chge.

More information

The Trapezoidal Rule

The Trapezoidal Rule _.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Mathematics for Engineers Part II (ISE) Version 1.1/

Mathematics for Engineers Part II (ISE) Version 1.1/ Mthemtics or Egieers Prt II (ISE Versio /4-6- Curves i Prmetric descriptio o curves We exted the theory o derivtives d itegrls to uctios whose rge re vectors i isted o rel umers Deiitio : A curve C i is

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigl Represettio d Bsed Processig Versio ECE IIT, Khrgpur Lesso 5 Orthogolity Versio ECE IIT, Khrgpur Ater redig this lesso, you will ler out Bsic cocept o orthogolity d orthoormlity; Strum -

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

Next we encountered the exponent equaled 1, so we take a leap of faith and generalize that for any x (that s not zero),

Next we encountered the exponent equaled 1, so we take a leap of faith and generalize that for any x (that s not zero), 79 CH 0 MORE EXPONENTS Itroductio T his chpter is cotiutio of the epoet ides we ve used m times efore. Our gol is to comie epressios with epoets i them. First, quick review of epoets: 0 0 () () 0 ( ) 0

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

Topic 9 - Taylor and MacLaurin Series

Topic 9 - Taylor and MacLaurin Series Topic 9 - Taylor ad MacLauri Series A. Taylors Theorem. The use o power series is very commo i uctioal aalysis i act may useul ad commoly used uctios ca be writte as a power series ad this remarkable result

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

What Is Calculus? 42 CHAPTER 1 Limits and Their Properties

What Is Calculus? 42 CHAPTER 1 Limits and Their Properties 60_00.qd //0 : PM Pge CHAPTER Limits nd Their Properties The Mistress Fellows, Girton College, Cmridge Section. STUDY TIP As ou progress through this course, rememer tht lerning clculus is just one of

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information