Annual cycle of surface meteorological and solar energy parameters over Orissa

Size: px
Start display at page:

Download "Annual cycle of surface meteorological and solar energy parameters over Orissa"

Transcription

1 Indian Journal of Radio & Space Physics Vol. 36, April 2007, pp Annual cycle of surface meteorological and solar energy parameters over Orissa G N Mohapatra, U S Panda & P K Mohanty Department of Marine Sciences, Berhampur University, Berhampur , Orissa, India pratap_mohanty@yahoo.com Received 21 November 2005; revised 17 April 2006; accepted 16 January 2007 Surface meteorological and solar energy parameters over Orissa are studied using observed data from India Meteorological Department (IMD) and National Aeronautics and Space Administration Surface meteorology and Solar Energy (NASA SSE) data set. The observed data are mostly on surface meteorological parameters over 17 meteorological stations over Orissa. SSE data set, Release 3, is a satellite and reanalysis derived 10 year climatology (July 1983-June 1993) available on global grid mesh of 1 and consisting of both surface meteorological and solar energy parameters. The usefulness of NASA data set for the Orissa regions are examined by comparing it with IMD data. Comparative views of the annual cycle of both the data sets reveal the intensities and periods of extremes and their relative agreements /disagreements in the course of the annual cycle. Closeness of fit and coherence between the two data sets are examined through scatter plots and cross-spectral analysis, respectively. The results show a better goodness of fit between IMD and NASA data set in air temperature and lowest standard error of estimate in wind speed. Cross-spectrum analysis shows very good coherence between IMD and NASA data in the annual and semi-annual bands but lesser coherence in the intra-seasonal band. The results suggest that NASA data, when used in conjunction with good quality observed data, can make it possible to assess the renewable energy potential of different districts in Orissa, besides its use for weather and climate study. Key words: Annual cycle, Insolation, Coherence, Albedo, Solar energy PACS No: e; j 1 Introduction The State of Orissa lies in the north-eastern part of the Indian peninsula and is bounded between latitude (22 36 N N) and longitude (81 27 E E). The state has an area of 1, 55,707 km 2 and consists of 30 districts (Fig. 1). It is considered as one of the meteorological subdivisions (No.7) of India and is covered with 17 meteorological stations. The state is broadly divided into four geographical regions, viz. the northern plateau, central river basin, eastern hills and coastal plains 1. The district included in each of the geographical regions and the elevations of the areas above sea level have been documented 1. The state experiences mostly three seasons in a year, viz. hot weather season (March-May), south-west monsoon season (June-September) and winter season (December-February). A study on climatic types of Orissa 2 based on climatologies of 17 meteorological stations using water balance method 3 indicates that 12 stations experience dry sub-humid climate (C 1 ), two stations experience moist sub-humid climate (C 2 ), two stations semi-arid type (D) and one station humid type (B 1 ) of climate in the moisture regime. While the climate variability is very much apparent in the moisture regime, it is very less and limited within sub-types only in the thermal regime, as all the 17 stations experience megathermal type of climate. The annual rainfall of Orissa is 1477 mm, of which 1167 mm, which is nearly 80% of the annual rainfall, is accounted for by the four months during south-west monsoon season. The variability of the south-west monsoon rainfall is about 14% of the normal rain and hence there have been seasons in the records which has witnessed excess monsoon rainfall or drought in a monsoon season. The monsoon sets in over the state by the first week of June, covers the entire state by the second week of June and completely withdraws from the state by about 15 October. Besides the rainfall during south-west monsoon season, the state experiences 10% rainfall in the post-monsoon season (October-November), 3% in the winter season (December-February) and 8% in the pre-monsoon season (March-May). The spatial distribution of coefficient of variation of annual rainfall is very large and in the range 19-29%. Coefficient of seasonal rainfall is still larger and varies from a minimum of 15.9 in the coastal station to a maximum of in the western part of the state 2. A study 4 on the incidence of floods and droughts over Orissa using the weekly and seasonal rainfall data for the period

2 MOHAPATRA et al.: METEOROLOGY OF ORISSA 129 Fig. 1 Map of Orissa representing 13 grid divisions at grid spacing of 1 latitude and 1 longitude and districts with their boundaries revealed that Orissa rainfall behaves independent of the All-India rainfall for the same type of extreme events and thus gave emphasis on studying weather and climate of Orissa by analyzing good quality long-term data at the district or taluk levels. Due to increasing frequencies of the extreme weather events such as tropical cyclones, floods, droughts and heatwave during the last two decades, the life system in the state of Orissa has been seriously affected 1,5,6. Regional climate changes as depicted above have adversely affected crop production and human life in the monsoon region besides affecting various sectors such as agriculture, aviation, energy, industry, etc. Studies undertaken in India in pre-indian Ocean Experiment (INDOEX) and INDOEX phases reveal that aerosol concentrations are increasing, which could have marked implications in the regional climate systems 7. Since climatological information is very vital and is a pre-requisite for planning and executing various projects, considerable research efforts are underway to improve our understanding of climate variability and its influence on the seasonal weather 8. However, the major handicap has been the unavailability of good quality meteorological data at finer resolution. Since Orissa has only 17 meteorological centers covered by India Meteorological Department (IMD), meteorological information/ data representing the whole state is scanty and fragmentary in nature. This necessitates an alternate data source in order to fill the above data gap. Therefore, a modest attempt has been made in the present study to assess the potential of Surface meteorology and Solar Energy (SSE) data from National Aeronautical and Space Administration (NASA) available on 1 latitude by 1 longitude grid systems. It may be mentioned that the SSE data set makes it possible to quickly evaluate the potential of the renewable projects for any region of the world and is considered to be accurate for preliminary feasibility studies of renewable energy projects 9. Thus, the present study aims at examining the annual cycle of surface meteorological and solar energy parameters

3 130 INDIAN J RADIO & SPACE PHYS, APRIL 2007 over Orissa and to compare the observed surface meteorological parameters obtained from IMD with that of NASA SSE data. 2 Data sets used A brief description of the two types of data sets used for the present study is as follows: (a) NASA RELEASE 3 satellite and reanalysis derived 10 years monthly climatology (July June 1993) of (i) Surface meteorology (Air temperature, C; Daily temperature range, C; Wind speed, m/s; Relative humidity, %; Total cloud amount, %) and (ii) Solar energy (Insolation, kwh/m 2 /day; Clear sky insolation, kwh/m 2 /day; Clear sky days; Earth skin temperature, C and Surface albedo) data. (b) IMD (observed) monthly mean Surface meteorology data (Air temperature, C; Daily temperature range, C; Wind speed, m/s; Relative humidity, % and Total cloud amount, %) for the period Observed data on air temperature (maximum and minimum), wind speed, relative humidity and cloud amount over 17 meteorological centers of IMD in the state are used, which are mostly monthly mean fields for the period This period has been chosen, as the NASA Release 3 SSE data are also available for the same period. The NASA SSE data were downloaded from NASA s website (URL: sse/). The RELEASE 3 SSE data set is a satellite and reanalysis derived 10 year (July 1983-June 1993) climatology available at 1 latitude by 1 longitude global grid system. The surface meteorological parameters, viz. air temperature, daily temperature range, wind speed, relative humidity and total cloud amount are satellite and re-analysis-derived parameters, which are compared with the corresponding surface metrological parameters observed by the IMD. Similarly solar energy parameters of NASA SSE, viz. insolation, clear sky insolation, clear sky days, earth skin temperature and surface albedo used in the present study are satellite and re-analysis derived data sets. Computational procedures/measurement systems of insolation includes the Pinker and Laszlo algorithm (Version 2.1) 10, while the other parameters have been estimated and validated with 30 year average RET Screen ground monitoring stations weather data base ( Methodology for NASA surface meteorology and solar energy parameters are described in their web site ( gov/sse/). The state of Orissa is divided into 13 grids (1 latitude by 1 longitude) at which SSE data from NASA are available (Table 1 and Fig. 1). Out of 13 grids, grid 1 and 2 data could not be used for comparison, as there are no meteorological centers in those grids. Table 1 depicts the grid number, the corresponding meteorological center(s) and district(s). Grid data from 3 to 13 have been compared with the corresponding IMD data observed at the different meteorological centers of the state. However, there are data gaps (years mentioned within bracket) for Table 1 India Meteorological Observatories (Stations) and the grids (climatic types) corresponding to the stations and districts in Orissa Grid No. Meteorological stations District (s) 1 Koraput (B 1 ) Absent Koraput, Malkangiri 2 Absent Nabarangpur, Kalahandi 3 Bhawanipatna (D) Rayagada, Kalahandi, Kandhamala 4 Gopalpur (C 1 ) Ganjam, Gajapati 5 Bolangir (D), Titilagarh (C 1 ) Bolangir, Sonepur, Boudh 6 Phulbani & Angul (C 1 ) Kandhamala, Boudh, Angul, Nayagarh 7 Bhubaneswar (C 1 ) Khurda, Nayagarh, Cuttack, Dhenkanal 8 Chandabali (C 2 ),Cuttack (C 1 ), Paradeep (C 2 ) Cuttack, Kendrapara, Jajpur, Jagatsinghpur, Bhadrak 9 Sambalpur (C 1 ) Baragarh, Jharsuguda, Sambalpur 10 Sundergarh (C 1 ), Jharsuguda (C 1 ) Sambalpur, Deogarh, Sundergarh 11 Keonjhargarh (C 1 ) Keonjhar 12 Balasore (C 1 ), Baripada (C 1 ) Mayurbhanja, Balasore 13 Puri (C 1 ) Puri C 1 : Dry sub-humid; C 2 : Moist sub-humid; D: Semi-arid and B 1 : Humid

4 MOHAPATRA et al.: METEOROLOGY OF ORISSA 131 some stations such as Chandbali (1986), Paradeep (1990), Jharsuguda (1986), Sambalpur (1990), Baripada (1990), Phulbani (1990), Bolangir (1989, 1990), Bhawanipatna (1991, 1992, 1993), Titlagarh (1987, 1988, 1989, 1990), Angul (1984, 1985, 1987, 1990, 1991) and Sundergarah (1984, 1985, 1986, 1987, 1988, 1989, 1990). It is worth mentioning that in contrast to ground measurements, the SSE data set is a continuous and consistent 10-year global climatology of insolation and surface meteorology data on a 1 latitude and 1 longitude grid system. Although the SSE data within a particular grid cell are not necessarily representative of a particular microclimate, or point within the cell, the data are considered to be the average over the entire area of the cell. For this reason, the SSE data set is not intended to replace quality ground measurement data. Its purpose is to fill the gap where ground measurements are missing, and to augment areas where ground measurements do exist. 2.1 Data quality Uncertainty of the Release-3 NASA SSE data were estimated 9 by comparing it with data obtained from historical ground measurements made by National Renewable Energy Laboratory (NREL) and Canada s Energy Diversification Research Laboratory (CEDRL). The uncertainty estimated for air temperature in SSE data is 3.2% for temperature range K and the uncertainty decreased in near linear manner to 1.1% as temperature increased to 263 K and remained constant up to 313 K. Thus, for the average of temperature in Orissa, the uncertainty is about 1.1%. An estimated uncertainty of 9.7% was observed in case of relative humidity 9. Uncertainty estimated for wind speed ranged between -3 m/s and +2 m/s over Flat Mountain and coastal stations, whereas uncertainty in continental region is relatively less (1.4 m/s). Solar insolation values were obtained using NASA Langley Parameterized Shortwave Algorithm with inputs from NASA International Satellite Cloud Climatology and NASA Goddard Earth Observatory System (GEOS-I) reanalysis meteorology. The uncertainty range in the interior region varied between 12.9% and 17%, whereas for coastal zones it varied 9 between 12.9% and 15.4%. On an average SSE solar energy insolation are higher than ground measurements. However, it was suggested 9 that satellite based NASA SSE insolation estimates are reasonably consistent for a wide range of global environments and hence it is worth examining for the Orissa region. 2.2 Data analysis procedure Surface meteorological data for 17 meteorological stations are collected from India Meteorological Department, Bhubaneswar. Monthly mean fields are obtained by averaging for a ten year period ( ). When more than one ground measurement stations are located in one particular grid (Table 1 and Fig. 1), data of meteorological stations are averaged and then compared with SSE data for the particular grid. Observed surface meteorological parameters are compared with NASA SSE data by examining the annual cycles of both the data sources and also through scatter plots and estimation of statistical summary such as R 2 and standard error estimate. In order to understand the degree of coherence between observed (IMD) and NASA data sets, cross-spectrum analysis is performed using the SIGMA SPEC 3.2 spectral analysis programme 11. The programme uses standard time series analysis procedure such as filtering, de-trending, tapering and smoothing, which are discussed in Mohanty and Dash 12. Time series consisting of 132 monthly means are subjected to cross-spectrum analysis following Panofsky and Brier 13 and then the spectral densities are renormalized by frequency and the cross-spectra (coherence squared) are computed. The formula for the limiting coherence squared of probability level P is given as: 1/[(df/2) 1] β = 1 P where df/2 is the effective number of Fourier components in the spectral window. The number of degrees of freedom (df) is twice the number of Fourier components. The annual (12 months), semiannual (6 months) and intra-seasonal frequencies are determined as 0.083, 0.17 and 0.25 by taking the inverse of the periodicity in months. 3 Results and discussion Results are presented in four sections. First part deals with the annual cycle of surface meteorological parameters based on observed data from IMD and SSE data from NASA. In second part, annual cycle of solar energy parameters are discussed based on NASA data only. Third part examines the relationship between observed surface meteorological data and NASA SSE data through scatter plots and subsequent analysis of their statistical properties. Coherency

5 132 INDIAN J RADIO & SPACE PHYS, APRIL 2007 relationship between observed meteorological parameters and NASA data sets are discussed in the last section. 3.1 Annual cycle of surface meteorological parameters Processes in the tropics move from north to south and back following the annual cycle of the solar forcing, as the sun crosses the equator twice a year. However, the distribution of land-sea in the Indian subcontinent and the resulting heating contrast alter the circulation pattern in such a way that the annual cycles do not strictly follow the seasonal reversal of solar forcing 14, 15. In fact, the geography of this region dictates the circulation pattern, which is not only meridional in nature but also zonal in character. Therefore, the study assumes importance in a coastal state like Orissa, which has variable physiography Air temperature Figure 2 depicts the monthly mean air temperature ( C) over 11 grid points in Orissa based on observed IMD and NASA data sets. Grid 1 (Koraput and Malkangiri) and Grid 2 (Nabarangpur and Kalahandi) are not represented, as observed IMD data are not available for the two grids. Spatial variability in the annual cycle of air temperature is apparent both in the IMD and NASA data. However, in grid No. 6 represented by Angul and Phulbani stations, NASA air temperature is higher than the observed IMD temperature throughout the annual cycle. In grid Nos. 5, 10, 11 and 12, for part of the annual cycle NASA temperature is higher than the observed temperature. But in grids 3, 4, 7, 8 and 13, observed temperature is higher as compared to NASA temperature throughout the annual cycle. Table 2 elucidates the intensity and period of temperature maxima and minima over different grids in the course of the annual cycle. Intensity of temperature maxima are same over grid 12. IMD temperature maxima are more than NASA temperature maxima for grids 3, 4, 5, 7, 8, 10, 11 and less than NASA temperature maxima for grids 6, 9 and 13. Period of temperature maximum is May in most of the grids in IMD data, whereas it is April for NASA data. Intensities of temperature minima are higher for NASA data as compared to IMD data in most of the grids except for grids 4, 7 and 8. Period of temperature minimum is December, both in IMD and NASA data, for six grids, while in the rest of the five grids IMD data lags by one month as compared to NASA data. Thus, the results reveal that there is agreement in IMD and NASA data over some grids, while they slightly differ over other grids Daily temperature range Figure 3 depicts the daily temperature range ( C) over 11 grid points in Orissa. It represents the difference between daily temperature maximum and minimum. It is observed that daily temperature ranges in NASA data are less than those in IMD data from May to December, while the reverse pattern exists from January to May. In grid 9, IMD temperature ranges are higher than those in NASA data throughout the annual cycle. Period of maximum temperature range is observed between January and April in IMD data, while it is mostly in the month of March in NASA data (Table 2). The intensities of maximum temperature range are higher in NASA data as compared to those in IMD data. Period of minimum temperature range is August for all the grids in NASA data, while it varies between July and September in IMD data. The intensities of minimum temperature range in NASA data are less than those in IMD data in most of the grids. Thus, agreement between NASA and IMD data is better in the period of occurrence than that of intensity Wind speed The annual cycle of wind speed (m/s) is represented in Fig. 4. Intensity and period of maximum and minimum wind speed are also shown in Table 2. It is observed that throughout the annual cycle wind speed in NASA data are higher than those in IMD data. Further, the intensities and periods of occurrence of maximum and minimum wind speed are also different. NASA wind speed data have been estimated for 10 m height and is same as the height of measurement of IMD wind speed. GEOS-1 wind speed, which were originally provided on a 2 latitude by 2.5 longitude grid system were interpolated to a 1 grid system for the release of NASA SSE wind speed data. The agreement between NASA and IMD data for wind speed is relatively poor, because the localized topography effects are not accounted for in the SSE data and the interpolation technique followed. Further, IMD data is a point measurement type, while the NASA data based on satellite estimate are an aerial average and could contribute to the observed difference between the two data types. The uncertainty and the higher estimate of NASA wind speed was also pointed out by Whitlock et, al Relative humidity Annual cycles of relative humidity (%) based on IMD and NASA data are shown in Fig. 5. Despite the difference in magnitude, the patterns of annual cycles

6 MOHAPATRA et al.: METEOROLOGY OF ORISSA 133 Fig. 2 Annual cycle of air temperature ( C) (monthly means for the period ) over 11 grid points (1 1 ) in Orissa [Solid lines represent the observed air temperature from IMD and the dashed lines represent the temperature obtained from NASA data. Grid point numbers correspond to those shown in Fig. 1.]

7 134 INDIAN J RADIO & SPACE PHYS, APRIL 2007

8 MOHAPATRA et al.: METEOROLOGY OF ORISSA 135 Fig. 3 Annual cycle of daily temperature range ( C) (monthly means for the period ) over 11 grid points (1 1 ) in Orissa [Solid lines represent the observed daily temperature range from IMD and the dashed lines represent the daily temperature range obtained from NASA data. Grid point numbers correspond to those shown in Fig. 1.]

9 136 INDIAN J RADIO & SPACE PHYS, APRIL 2007 Fig. 4 Annual cycle of wind speed (m/s) (monthly means for the period ) over 11 grid points (1 1 ) in Orissa [Solid lines represent the observed wind speed from IMD and the dashed lines represent the wind speed obtained from NASA data. Grid point numbers correspond to those shown in Fig. 1.]

10 MOHAPATRA et al.: METEOROLOGY OF ORISSA 137 Fig. 5 Annual cycle of relative humidity (%) (monthly means for the period ) over 11 grid points (1 1 ) in Orissa [Solid lines represent the observed relative humidity from IMD and the dashed lines represent the relative humidity obtained from NASA data. Grid point numbers correspond to those shown in Fig.1.]

11 138 INDIAN J RADIO & SPACE PHYS, APRIL 2007 are similar both for IMD and NASA data in most of the grids, which follow traditional seasonal cycle with highest relative humidity in northern summer and lowest during northern winter. Except for grids 3, 4 and 13, relative humidities are higher in NASA data than those in IMD data. Whitlock et al. 9 also showed an average estimated uncertainty of 9.7% for NASA data. Table 2 depicts the intensity and periods of maximum and minimum of relative humidity. A close agreement between the IMD and NASA data is observed for the period of maximum relative humidity, which is either August or July in most of the grids (Table 2). Period of occurrence of relative humidity minimum is March for almost all grids in NASA data, while in IMD data the period varies from November to April/May Total daylight cloud amount The annual cycle of total daylight cloud amount (%) is shown in Fig. 6. Presence of traditional seasonal maxima during monsoon period and minima during winter is very much apparent in the annual cycles of both IMD and NASA data set for most of the grids except grid 3. It is observed that throughout the annual cycle the magnitudes of daylight cloud amount based on NASA data are higher than those in IMD data and for all the 11 grids. Considering the periods of occurrences of maximum and minimum intensities of total daylight cloud amount, July is observed as the period of maximum daylight cloud amount in NASA data for all the grids (Table 2). But in IMD data, the period of maximum daylight cloud amount varies between June through September, well known as the south-west monsoon season. Similarly, in case of minimum daylight cloud amount, the period varies between December and January for NASA data and between November and February for IMD data. However, there are some grids where close agreement is observed between IMD and NASA data sets. The intensities of maximum and minimum daylight cloud amount in NASA data are significantly higher than those in IMD data and could be associated with the uncertainty in the estimation of daylight cloud amount based on satellite cloud climatology in NASA data. 3.2 Annual cycle of solar energy parameters Solar energy parameters such as insolation, clear sky insolation, clear sky days, earth skin temperature and surface albedo are obtained from NASA satellite and reanalysis derived insolation and meteorological data for the 10-year period from July 1983 through to June NASA SSE data set has been utilized as a stand-alone data source by the researchers around the world involved in Renewable Energy Technologies (RETs) 9. These technologies (RETs) are poised to change the face of the world s energy market, particularly for the rural communities by providing technologies for solar ovens, simple photovoltaic panels, construction of commercial buildings and large thermal and wind generating power plants. Crucial to the success of the RETs is the availability of accurate, global solar radiation and meteorology data. Therefore, the study assumes importance for the state of Orissa, where no information is available on solar energy parameters except for one station, i.e. Bhubaneswar. Thus, this data set could be an important information base in order to design any RET Project in the rural belts of Orissa. Monthly mean climatology of solar energy parameters for 10-year period over 13 grid points in Orissa are examined. Looking at the no/less spatial variability between different grids, monthly mean values were again averaged for the 13 grids and are presented in the annual cycle to represent the conditions for the state of Orissa. Figure 7 depicts the annual cycle of solar energy parameters for the state of Orissa Insolation The insolation in the state of Orissa ranges between 3.5 and 6.79 kwh/m 2 /day. The lowest values are observed in the southern districts of Koraput and Malkangiri, whereas highest values are observed in the district of western Orissa and coastal Orissa. In the course of the annual cycle, insolation values start from a lower minimum in January, reach the highest in April and then a sudden decline is observed to reach the lowest minimum in July/ August during monsoon season (Table 3). Later, it gradually increases again Clear sky insolation Clear sky insolation is the amount of solar radiation incident on the surface of the earth during clear sky days (cloud fraction < 10%). The trend of annual cycle is somewhat different from insolation. May is observed as the period of maximum insolation and December as the period of minimum insolation in the state of Orissa (Table 3), which are respectively the period of hottest and coldest months in Orissa 1. The values range between 4.73 and 7.8 kwh/m 2 /day Clear sky days Numbers of clear sky days (cloud fraction < 10%) are depicted in Fig. 7. December/January is the period

12 MOHAPATRA et al.: METEOROLOGY OF ORISSA 139 Fig. 6 Annual cycle of total daylight cloud amount (%) (monthly means for the period ) over 11 grid points (1 1 ) in Orissa [Solid lines represent the observed daylight cloud amount from IMD and the dashed lines represent the daylight cloud amount obtained from NASA data. Grid point numbers correspond to those shown in Fig. 1.]

13 140 INDIAN J RADIO & SPACE PHYS, APRIL 2007 surface albedo and clear sky days is observed. Period representing the maximum number of clear sky days are also observed as the period of maximum surface albedo and vice versa (Table 3). Periods of minimum surface albedo also closely match with the periods of minimum insolation (Table 3) Earth skin temperature Earth skin temperature is the temperature of the earth s surface. The annual cycle pattern somewhat resembles the pattern of clear sky insolation. The earth skin temperature in Orissa ranges between 16.6 and 30.7 C. The periods of earth skin temperature maxima (April) closely match with the periods of insolation maxima, which is obvious due to the direct relationship between the two. Periods of earth skin temperature minima also closely match with that of clear sky insolation minima. Earth skin temperature maxima are relatively more in the western districts of Orissa, whereas the minima show an opposite trend (Table 3). 3.3 Co-variability between IMD and NASA data sets In order to establish the goodness of NASA SSE data sets, they are compared with IMD data sets through scatter plots and analyzing the regression equation, R 2 and standard error of estimate. Further, coherence relationship between observed surface meteorological parameters and NASA insolation and air temperature are examined at annual (12 months), semi-annual (6 months) and intra-seasonal (4 months) frequencies. Fig. 7 Annual cycle of solar energy parameters over Orissa: (a) Insolation (kwh/m 2 /day), (b) Clear sky insolation (kwh/m 2 /day), (c) Clear sky days (days), (d) Surface albedo and (e) Earth skin temperature ( C) when maximum number of clear sky days is observed (Table 3) while it becomes zero during the monsoon season (June to September). Clear sky days are maximum in the district of western and central Orissa and minimum in the district of southern and coastal Orissa Surface albedo Surface albedo is the fraction of insolation reflected by the surface of the earth and is very much dependent on the nature of the surface. However, in the present study a direct proportionality between Scatter plots Figure 8 depicts the scatter plots and the slope and intercept of the linear regression lines, considering IMD data as independent variable and NASA data as dependent variable. It is observed that out of the five scatter plots, goodness of fit is better between IMD and NASA data in air temperature and is corroborated by the statistical summary having highest values of R 2 and lower standard error of estimate (Table 4). Excepting total daylight cloud amount, where the standard error of estimate is quite high and there is a great deal of scatter, other parameters show relatively low scatter as well as low standard error of estimates. The lowest standard error of estimate is observed in case of wind speed and the goodness of fit is better at lower wind speed. The results suggest that NASA temperature compare very well with observed air temperature. Other NASA meteorological parameters such as wind speed, relative humidity and temperature

14 MOHAPATRA et al.: METEOROLOGY OF ORISSA 141

15 142 INDIAN J RADIO & SPACE PHYS, APRIL 2007 Table 4 Statistical summary of multiple regression analysis with IMD and NASA data as independent and dependent variables. (R - Coefficient of multiple correlations, R 2 - coefficient of multiple determinations, df-degree of freedom) Variable pairs R R 2 D f Standard error of estimate Air temperature (IMD/NASA) Temperature range (IMD/NASA) Relative humidity (IMD/NASA) Wind speed (IMD/NASA) Total cloud amount (IMD/NASA) range can also be used for Orissa region but with caution. Fig. 8 Scatter plots between Observed (IMD) and NASA data (a) Air temperature ( C), (b) Temperature range ( C), (c) Relative humidity (%), (d) Wind speed (m/s) and (e) Daylight cloud amount (%) Coherence The co-variability of two time series can be measured by cross-spectrum analysis 16. Cross-spectral technique, especially coherence square, has been used to characterize the extent of spectral coherence in many fields of natural sciences. Periodicities in drought and their association with periodicities in solar terrestrial phenomena are common in climatological investigations 17,18. Therefore, attempts have been made in this study to examine the coherence relationship between IMD and NASA data. The parameters considered are observed air temperature, observed precipitation, NASA air temperature and NASA insolation. Coherence relationship has been determined only for grid No. 7, as a representative grid, because, it is represented by Bhubaneswar meteorological station, which is also the regional meteorological center and thus monthly data for the considered ten-year period are available. Coherence spectra between different parameters are depicted in Fig. 9. The parameters are considered in the following order to facilitate cross-spectrum analysis: (i) IMD air temperature, (ii) NASA air temperature, (iii) IMD precipitation and (iv) NASA insolation. (a) IMD air temperature: NASA air temperature (iii) Two dominant spectral peaks are observed at annual and semi-annual bands. However, the spectral peaks are of relatively less magnitude in the intraseasonal and higher frequencies. Thus, the result indicates that both IMD and NASA air temperatures are highly coherent in the annual and semi-annual bands but less/incoherent in the higher frequencies.

16 MOHAPATRA et al.: METEOROLOGY OF ORISSA 143 Fig. 9 Coherence square of (a) IMD air temperature NASA air temperature (i-ii), (b) IMD precipitation-imd air temperature (iiii), (c) IMD precipitation-nasa air temperature (iii-ii), (d) IMD precipitation-nasa insolation (iii-iv), (e) IMD air temperature NASA insolation (i-iv) [Dashed horizontal line represents the 99% significance level.] (b) IMD precipitation-imd air temperature (iii-i) For the combination (iii-i) two spectral peaks, one in the annual and the other in the semiannual band, are distinctly observed. Spectral peak in the intra-seasonal band and two more in the higher frequencies are also observed. But the magnitudes of the spectral peaks at intra-seasonal and other higher frequencies are relatively less as compared to those in the annual and semi-annual bands. Thus, the coherence of IMD precipitation with IMD air temperature is better in annual and semi-annual bands. (c) IMD precipitation-nasa air temperature (iiiii) For the combination (iii-ii) spectral peaks are almost similar and also of same magnitudes respectively, as in case (iii-i). Thus, the result suggests that IMD precipitation is equally coherent with NASA air temperature, as it is with IMD air temperature. However, the magnitudes of coherence in the annual and semi-annual bands are less as compared to those in IMD air temperature versus NASA air temperature (i-ii). (d) IMD precipitation-nasa insolation (iii-iv) For the said combination, besides the spectral peaks at annual, semi-annual and intra-seasonal bands, a very distinct peak is observed in the lower frequency (0.01) corresponding to a cycle of 100 months. This feature is not observed in the other coherence plots. Thus, coherence of precipitation with insolation at smaller frequency (100 months) is an interesting feature, and could be a matter of further study using observed insolation. (e) IMD air temperature-nasa insolation (i-iv) For this combination, very good coherent relationship is observed at annual, semi-annual and seasonal bands. Unlike other combinations, a spectral peak at higher frequency (0.38) corresponding to a cycle of 2.7 months is also observed. Therefore, it can be stated that IMD air temperature is coherent with NASA insolation in annual, semi-annual and intraseasonal frequencies and hence NASA insolation could be of much value in energy related study of varying time scales. Thus, the above results on coherence suggest that NASA air temperature and insolation show very good coherence relationship with observed air temperature and precipitation, and can be used for further applications, where observed data are inadequate or not available. 4 Summary and conclusions Results of the present study assumes importance as the NASA SSE data set (satellite and reanalysis derived 10-year climatology) available at 1 latitude and 1 longitude grid spacing over the globe,

17 144 INDIAN J RADIO & SPACE PHYS, APRIL 2007 formulated for assessing and designing renewable energy systems for any region of the world, has been compared with observed IMD data over Orissa. Annual cycle of surface meteorological parameters using both the data sets reveal large spatio-temporal variability in the intensities (maxima and minima) and periods of surface meteorological parameters and thus point to the need for closer network of observatories or data at high resolution to assess the exact nature of weather and climate variability even in the regional scale. On the other hand, the annual cycles of solar energy parameters based on NASA data alone show only temporal variability and very less spatial variability and suggest the usefulness of NASA data for resource assessment and initiating regional renewable energy programs. Scatter plots and the corresponding statistical summary indicate the better goodness of fit between IMD and NASA data in air temperature. The lowest standard error of estimate is observed in case of wind speed. Coherence relationship indicates that IMD and NASA air temperature are highly coherent in the annual and semi-annual bands. Besides the spectral peaks at annual, semi-annual and seasonal bands, a dominant peak in the lower frequency (100 months) for IMD precipitation and NASA insolation and a peak at higher frequency corresponding to a cycle of 2.7 months for IMD air temperature and NASA insolation are some of the significant features observed. Therefore, it can be stated that NASA data when used in conjunction with good quality observed data, can make it possible to assess the renewable energy potential of different districts in Orissa besides its use for weather and climate study. The present study offers scope to assess the renewable energy potential of different districts in the state with the use of NASA data and also provides an alternative meteorological and solar energy data source for the data sparse region of Orissa. Acknowledgements The authors wish to thank NASA and IMD for making available the necessary data. Authors acknowledge the financial support extended by the Department of Science and Technology, New Delhi under its grant ES/48/002/2001 to carry out part of the work reported in this paper. References 1 India Meteorological Department (IMD), Climate of Orissa (The Meteorological Office Press, Pune), 2002, Mohanty P K, Panda U S, Mohapatra G N & Dash S K, Variability in Weather and Climate of Orissa, J Wea Mod (USA), 2005 (Communicated). 3 Subrahmanyam V P, Water Balance and its Applications (with special reference to India), (Andhra University Press, Waltair), 1982, Sikka D R, Proceedings of the Brain Storming Session on Meteorological extremes and local climate variability (Regional Research Laboratory, Bhubaneswar), 2000, Mohanty P K, Panda U S & Mohapatra G N, Proceedings of the National seminar on GIS Application in Rural development with Focus on Disaster Management (National Institute of Rural Development, Hyderabad), 2005, De U S & Mukhopadhay R K, Severe heatwave over Indian subcontinent in 1998 in a perspective of global climate, Curr Sci (India), 75 (1998) Sikka D R, Developments in tropospheric aerosols studies in India, Indian J Radio & Space Phys, 31 (2002) Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report, World Climate News, 19 (2001) Whitlock C H, Brown D E, Chandler W S, DiPasquale R C, Meloche N, Leng G J, Gupta S K, Wilber A C, Ritchey N A, Carlson A B, Kratz D P & Stackhouse P W, Release 3 NASA Surface meteorology and Solar Energy data set for renewable industry use, Paper presented at the 26th Annual Conference of the Solar Energy Society of Canada Inc. & Solar Nova Scotia, Canada, Oct, Pinker R T & Laszlo I, Modeling surface solar irradiance for satellite applications on a global scale, J Appl Meteorol (USA), 31 (1992) Yamartino B, Report on SIGMA SPEC 3.2 Spectral analysis Programme, MA (1996) Mohanty P K & Dash S K, Spectral characteristics of surface fields in the Indian seas and interannual monsoon variability, Indian J Radio & Space Phys, 30(2001) Panofsky H & Brier G, The Pennsylvania State Univ Press Report, 1958, Meehl G A, The annual cycle and the interannual variability in the tropical pacific and Indian ocean region, Mon Weather Rev (USA), 115 (1987) Webster P J, The annual cycle and the predictibility of the tropical coupled ocean atmosphere system, Meteorol & Atmos Phys (USA), 56 (1995) Wallace J M, Spectral studies of tropospheric wave disturbances in the tropical western pacific, Rev Geophys Space Phys, 9 (1971) Pittock A B, Solar variability, weather and climate: An update, Quart J R Met Soc (UK), 109 (1983) Olukayode Oladipo E, Power spectra and coherence of drought in the interior plains, J Climatol (UK), 7 (1987) 477.

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( ) International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.706.295

More information

THE STUDY OF NUMBERS AND INTENSITY OF TROPICAL CYCLONE MOVING TOWARD THE UPPER PART OF THAILAND

THE STUDY OF NUMBERS AND INTENSITY OF TROPICAL CYCLONE MOVING TOWARD THE UPPER PART OF THAILAND THE STUDY OF NUMBERS AND INTENSITY OF TROPICAL CYCLONE MOVING TOWARD THE UPPER PART OF THAILAND Aphantree Yuttaphan 1, Sombat Chuenchooklin 2 and Somchai Baimoung 3 ABSTRACT The upper part of Thailand

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Summary and Conclusions

Summary and Conclusions 241 Chapter 10 Summary and Conclusions Kerala is situated in the southern tip of India between 8 15 N and 12 50 N latitude and 74 50 E and 77 30 E longitude. It is popularly known as Gods own country.

More information

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850 CHAPTER 2 DATA AND METHODS Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 185 2.1 Datasets 2.1.1 OLR The primary data used in this study are the outgoing

More information

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh Open Journal of Geology, 2012, 2, 294-300 http://dx.doi.org/10.4236/ojg.2012.24028 Published Online October 2012 (http://www.scirp.org/journal/ojg) Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist

More information

Advanced Hydrology. (Web course)

Advanced Hydrology. (Web course) Advanced Hydrology (Web course) Subhankar Karmakar Assistant Professor Centre for Environmental Science and Engineering (CESE) Indian Institute of Technology Bombay Powai, Mumbai 400 076 Email: skarmakar@iitb.ac.in

More information

Mozambique. General Climate. UNDP Climate Change Country Profiles. C. McSweeney 1, M. New 1,2 and G. Lizcano 1

Mozambique. General Climate. UNDP Climate Change Country Profiles. C. McSweeney 1, M. New 1,2 and G. Lizcano 1 UNDP Climate Change Country Profiles Mozambique C. McSweeney 1, M. New 1,2 and G. Lizcano 1 1. School of Geography and Environment, University of Oxford. 2.Tyndall Centre for Climate Change Research http://country-profiles.geog.ox.ac.uk

More information

Chapter-1 Introduction

Chapter-1 Introduction Modeling of rainfall variability and drought assessment in Sabarmati basin, Gujarat, India Chapter-1 Introduction 1.1 General Many researchers had studied variability of rainfall at spatial as well as

More information

NEAR REAL TIME GLOBAL RADIATION AND METEOROLOGY WEB SERVICES AVAILABLE FROM NASA

NEAR REAL TIME GLOBAL RADIATION AND METEOROLOGY WEB SERVICES AVAILABLE FROM NASA NEARREAL TIMEGLOBALRADIATIONANDMETEOROLOGYWEBSERVICESAVAILABLE FROMNASA ABSTRACT WilliamS.Chandler JamesM.Hoell DavidWestberg CharlesH.Whitlock TaipingZhang ScienceSystems&Applications,Inc. OneEnterpriseParkway,Suite200

More information

Projected Change in Climate Under A2 Scenario in Dal Lake Catchment Area of Srinagar City in Jammu and Kashmir

Projected Change in Climate Under A2 Scenario in Dal Lake Catchment Area of Srinagar City in Jammu and Kashmir Current World Environment Vol. 11(2), 429-438 (2016) Projected Change in Climate Under A2 Scenario in Dal Lake Catchment Area of Srinagar City in Jammu and Kashmir Saqib Parvaze 1, Sabah Parvaze 2, Sheeza

More information

ANNUAL CLIMATE REPORT 2016 SRI LANKA

ANNUAL CLIMATE REPORT 2016 SRI LANKA ANNUAL CLIMATE REPORT 2016 SRI LANKA Foundation for Environment, Climate and Technology C/o Mahaweli Authority of Sri Lanka, Digana Village, Rajawella, Kandy, KY 20180, Sri Lanka Citation Lokuhetti, R.,

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia.

Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia. Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia. 1 Hiromitsu Kanno, 2 Hiroyuki Shimono, 3 Takeshi Sakurai, and 4 Taro Yamauchi 1 National Agricultural

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

Analysis of Historical Pattern of Rainfall in the Western Region of Bangladesh

Analysis of Historical Pattern of Rainfall in the Western Region of Bangladesh 24 25 April 214, Asian University for Women, Bangladesh Analysis of Historical Pattern of Rainfall in the Western Region of Bangladesh Md. Tanvir Alam 1*, Tanni Sarker 2 1,2 Department of Civil Engineering,

More information

3. HYDROMETEROLOGY. 3.1 Introduction. 3.2 Hydro-meteorological Aspect. 3.3 Rain Gauge Stations

3. HYDROMETEROLOGY. 3.1 Introduction. 3.2 Hydro-meteorological Aspect. 3.3 Rain Gauge Stations 3. HYDROMETEROLOGY 3.1 Introduction Hydrometeorology is a branch of meteorology and hydrology that studies the transfer of water and energy between the land surface and the lower atmosphere. Detailed hydrological

More information

Long-Term Trend of Summer Rainfall at Selected Stations in the Republic of Korea

Long-Term Trend of Summer Rainfall at Selected Stations in the Republic of Korea Long-Term Trend of Summer Rainfall at Selected Stations in the Republic of Korea Il-Kon Kim Professor, Department of Region Information Rafique Ahmed Professor, Geography and Earth Science Silla University

More information

Evidence for Weakening of Indian Summer Monsoon and SA CORDEX Results from RegCM

Evidence for Weakening of Indian Summer Monsoon and SA CORDEX Results from RegCM Evidence for Weakening of Indian Summer Monsoon and SA CORDEX Results from RegCM S K Dash Centre for Atmospheric Sciences Indian Institute of Technology Delhi Based on a paper entitled Projected Seasonal

More information

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall Lecture 8 Monsoons and the seasonal variation of tropical circulation and rainfall According to the second hypothesis, the monsoon is a manifestation of the seasonal variation of the tropical circulation

More information

Rainfall is the major source of water for

Rainfall is the major source of water for RESEARCH PAPER: Assessment of occurrence and frequency of drought using rainfall data in Coimbatore, India M. MANIKANDAN AND D.TAMILMANI Asian Journal of Environmental Science December, 2011 Vol. 6 Issue

More information

The role of teleconnections in extreme (high and low) precipitation events: The case of the Mediterranean region

The role of teleconnections in extreme (high and low) precipitation events: The case of the Mediterranean region European Geosciences Union General Assembly 2013 Vienna, Austria, 7 12 April 2013 Session HS7.5/NP8.4: Hydroclimatic Stochastics The role of teleconnections in extreme (high and low) events: The case of

More information

First results from a new observational system over the Indian seas

First results from a new observational system over the Indian seas PERSPECTIVES ON OCEAN RESEARCH IN INDIA First results from a new observational system over the Indian seas K. Premkumar, M. Ravichandran, S. R. Kalsi*, Debasis Sengupta** and Sulochana Gadgil**, National

More information

Why Has the Land Memory Changed?

Why Has the Land Memory Changed? 3236 JOURNAL OF CLIMATE VOLUME 17 Why Has the Land Memory Changed? QI HU ANDSONG FENG Climate and Bio-Atmospheric Sciences Group, School of Natural Resource Sciences, University of Nebraska at Lincoln,

More information

NOTES AND CORRESPONDENCE A Quasi-Stationary Appearance of 30 to 40 Day Period in the Cloudiness Fluctuations during the Summer Monsoon over India

NOTES AND CORRESPONDENCE A Quasi-Stationary Appearance of 30 to 40 Day Period in the Cloudiness Fluctuations during the Summer Monsoon over India June 1980 T. Yasunari 225 NOTES AND CORRESPONDENCE A Quasi-Stationary Appearance of 30 to 40 Day Period in the Cloudiness Fluctuations during the Summer Monsoon over India By Tetsuzo Yasunari The Center

More information

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell 1522 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 60 NOTES AND CORRESPONDENCE On the Seasonality of the Hadley Cell IOANA M. DIMA AND JOHN M. WALLACE Department of Atmospheric Sciences, University of Washington,

More information

Seasonal Climate Outlook for South Asia (June to September) Issued in May 2014

Seasonal Climate Outlook for South Asia (June to September) Issued in May 2014 Ministry of Earth Sciences Earth System Science Organization India Meteorological Department WMO Regional Climate Centre (Demonstration Phase) Pune, India Seasonal Climate Outlook for South Asia (June

More information

Key Finding: Long Term Trend During 2014: Rain in Indian Tradition Measuring Rain

Key Finding: Long Term Trend During 2014: Rain in Indian Tradition Measuring Rain Chapter 34 RAINFALL Key Finding: Long Term Trend Despite of theories suggesting increase in rainfall in Asian Region due to global warming, no significant trend has been observed at all India level (confirmed

More information

A High Resolution Daily Gridded Rainfall Data Set ( ) for Mesoscale Meteorological Studies

A High Resolution Daily Gridded Rainfall Data Set ( ) for Mesoscale Meteorological Studies National Climate Centre Research Report No: 9/2008 A High Resolution Daily Gridded Rainfall Data Set (1971-2005) for Mesoscale Meteorological Studies M. Rajeevan and Jyoti Bhate National Climate Centre

More information

Chapter 2 Variability and Long-Term Changes in Surface Air Temperatures Over the Indian Subcontinent

Chapter 2 Variability and Long-Term Changes in Surface Air Temperatures Over the Indian Subcontinent Chapter 2 Variability and Long-Term Changes in Surface Air Temperatures Over the Indian Subcontinent A.K. Srivastava, D.R. Kothawale and M.N. Rajeevan 1 Introduction Surface air temperature is one of the

More information

Suppressed Surface Heating over northwestern parts of the Country and the ensuing Monsoon Rainfall

Suppressed Surface Heating over northwestern parts of the Country and the ensuing Monsoon Rainfall Suppressed Surface Heating over northwestern parts of the Country and the ensuing Monsoon Rainfall During this year, the temperatures have been below normal over north and northwestern parts of India.

More information

The Global Scope of Climate. The Global Scope of Climate. Keys to Climate. Chapter 8

The Global Scope of Climate. The Global Scope of Climate. Keys to Climate. Chapter 8 The Global Scope of Climate Chapter 8 The Global Scope of Climate In its most general sense, climate is the average weather of a region, but except where conditions change very little during the course

More information

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE INTRODUCTION V. Guryanov, A. Fahrutdinova, S. Yurtaeva Kazan State University, Kazan, Russia When constructing empirical

More information

By: J Malherbe, R Kuschke

By: J Malherbe, R Kuschke 2015-10-27 By: J Malherbe, R Kuschke Contents Summary...2 Overview of expected conditions over South Africa during the next few days...3 Significant weather events (27 October 2 November)...3 Conditions

More information

NOTES AND CORRESPONDENCE. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China

NOTES AND CORRESPONDENCE. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China 6036 J O U R N A L O F C L I M A T E VOLUME 21 NOTES AND CORRESPONDENCE Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China JIAN LI LaSW, Chinese Academy of Meteorological

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

KUALA LUMPUR MONSOON ACTIVITY CENT

KUALA LUMPUR MONSOON ACTIVITY CENT T KUALA LUMPUR MONSOON ACTIVITY CENT 2 ALAYSIAN METEOROLOGICAL http://www.met.gov.my DEPARTMENT MINISTRY OF SCIENCE. TECHNOLOGY AND INNOVATIO Introduction Atmospheric and oceanic conditions over the tropical

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Direct Normal Radiation from Global Radiation for Indian Stations

Direct Normal Radiation from Global Radiation for Indian Stations RESEARCH ARTICLE OPEN ACCESS Direct Normal Radiation from Global Radiation for Indian Stations Jaideep Rohilla 1, Amit Kumar 2, Amit Tiwari 3 1(Department of Mechanical Engineering, Somany Institute of

More information

Meteorology. Chapter 15 Worksheet 1

Meteorology. Chapter 15 Worksheet 1 Chapter 15 Worksheet 1 Meteorology Name: Circle the letter that corresponds to the correct answer 1) The Tropic of Cancer and the Arctic Circle are examples of locations determined by: a) measuring systems.

More information

What Is Climate Change?

What Is Climate Change? 1 CCAPS: Climate Change 101 Series, Topic 4. What is Climate Change? Climate Change 101 Series About this topic. The blog-posts entitled Climate Change 101 Series are designed for a general audience and

More information

Effect of rainfall and temperature on rice yield in Puri district of Odisha in India

Effect of rainfall and temperature on rice yield in Puri district of Odisha in India 2018; 7(4): 899-903 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 TPI 2018; 7(4): 899-903 2018 TPI www.thepharmajournal.com Received: 05-02-2018 Accepted: 08-03-2018 A Baliarsingh A Nanda AKB

More information

DEVELOPMENT OF A LARGE-SCALE HYDROLOGIC PREDICTION SYSTEM

DEVELOPMENT OF A LARGE-SCALE HYDROLOGIC PREDICTION SYSTEM JP3.18 DEVELOPMENT OF A LARGE-SCALE HYDROLOGIC PREDICTION SYSTEM Ji Chen and John Roads University of California, San Diego, California ABSTRACT The Scripps ECPC (Experimental Climate Prediction Center)

More information

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION CHAPTER 1: INTRODUCTION There is now unequivocal evidence from direct observations of a warming of the climate system (IPCC, 2007). Despite remaining uncertainties, it is now clear that the upward trend

More information

Analysis of Relative Humidity in Iraq for the Period

Analysis of Relative Humidity in Iraq for the Period International Journal of Scientific and Research Publications, Volume 5, Issue 5, May 2015 1 Analysis of Relative Humidity in Iraq for the Period 1951-2010 Abdulwahab H. Alobaidi Department of Electronics,

More information

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES Ian Grant Anja Schubert Australian Bureau of Meteorology GPO Box 1289

More information

Volume 6, Number 2, December, 2014 ISSN Pages Jordan Journal of Earth and Environmental Sciences

Volume 6, Number 2, December, 2014 ISSN Pages Jordan Journal of Earth and Environmental Sciences JJEES Volume 6, Number 2, December, 20 ISSN 995-668 Pages 9-97 Jordan Journal of Earth and Environmental Sciences Seasonal Variation of Temperature in Dhaka Metropolitan City, Bangladesh 2* Md. Zakaria

More information

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC This threat overview relies on projections of future climate change in the Mekong Basin for the period 2045-2069 compared to a baseline of 1980-2005.

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

Convective scheme and resolution impacts on seasonal precipitation forecasts

Convective scheme and resolution impacts on seasonal precipitation forecasts GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2078, doi:10.1029/2003gl018297, 2003 Convective scheme and resolution impacts on seasonal precipitation forecasts D. W. Shin, T. E. LaRow, and S. Cocke Center

More information

Statistical Analysis of Temperature and Rainfall Trend in Raipur District of Chhattisgarh

Statistical Analysis of Temperature and Rainfall Trend in Raipur District of Chhattisgarh Current World Environment Vol. 10(1), 305-312 (2015) Statistical Analysis of Temperature and Rainfall Trend in Raipur District of Chhattisgarh R. Khavse*, R. Deshmukh, N. Manikandan, J. L Chaudhary and

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Activity 2.2: Recognizing Change (Observation vs. Inference)

Activity 2.2: Recognizing Change (Observation vs. Inference) Activity 2.2: Recognizing Change (Observation vs. Inference) Teacher Notes: Evidence for Climate Change PowerPoint Slide 1 Slide 2 Introduction Image 1 (Namib Desert, Namibia) The sun is on the horizon

More information

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 Projection of Changes in Monthly Climatic Variability at Local Level in India as Inferred from Simulated Daily

More information

Spatial and Temporal Analysis of Rainfall Variation in Yadalavagu Hydrogeological unit using GIS, Prakasam District, Andhra Pradesh, India

Spatial and Temporal Analysis of Rainfall Variation in Yadalavagu Hydrogeological unit using GIS, Prakasam District, Andhra Pradesh, India International Research Journal of Environment Sciences ISSN 2319 1414 Spatial and Temporal Analysis of Rainfall Variation in Yadalavagu Hydrogeological unit using GIS, Prakasam District, Andhra Pradesh,

More information

Understanding the Global Distribution of Monsoon Depressions

Understanding the Global Distribution of Monsoon Depressions DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding the Global Distribution of Monsoon Depressions William R. Boos PO Box 208109 New Haven, CT 06520 phone: (203)

More information

Interdecadal variation in rainfall patterns in South West of Western Australia

Interdecadal variation in rainfall patterns in South West of Western Australia Interdecadal variation in rainfall patterns in South West of Western Australia Priya 1 and Bofu Yu 2 1 PhD Candidate, Australian Rivers Institute and School of Engineering, Griffith University, Brisbane,

More information

Appendix 1: UK climate projections

Appendix 1: UK climate projections Appendix 1: UK climate projections The UK Climate Projections 2009 provide the most up-to-date estimates of how the climate may change over the next 100 years. They are an invaluable source of information

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

P2.14 CLOUD TO GROUND FLASHES IN MEXICO AND ADJACENT OCEANIC AREAS: A PRELIMINARY STUDY USING DATA FROM THE WWLL NETWORK

P2.14 CLOUD TO GROUND FLASHES IN MEXICO AND ADJACENT OCEANIC AREAS: A PRELIMINARY STUDY USING DATA FROM THE WWLL NETWORK P2.14 CLOUD TO GROUND FLASHES IN MEXICO AND ADJACENT OCEANIC AREAS: A PRELIMINARY STUDY USING DATA FROM THE WWLL NETWORK G.B. Raga and Olivia Rodríguez* Centro de Ciencias de la Atmósfera, UNAM 1. INTRODUCTION

More information

Where does precipitation water come from?

Where does precipitation water come from? Chapter II Climate and Meteorology Where does precipitation water come from? Introduction The source of water vapor existing over Mongolia has been considered to consist of evapotranspiration at several

More information

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal Advances in Space Research 33 (2004) 1104 1108 www.elsevier.com/locate/asr Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal S. Dey a, S. Sarkar b, R.P. Singh a, * a Department

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 23 April 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Page 1 of 5 Home research global climate enso effects Research Effects of El Niño on world weather Precipitation Temperature Tropical Cyclones El Niño affects the weather in large parts of the world. The

More information

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB)

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB) Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB) Shani Tiwari Graduate School of Environmental Studies Nagoya University, Nagoya, Japan Email: pshanitiwari@gmail.com

More information

Characteristics of Precipitation Systems over Iraq Observed by TRMM Radar

Characteristics of Precipitation Systems over Iraq Observed by TRMM Radar American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-11, pp-76-81 www.ajer.org Research Paper Open Access Characteristics of Precipitation Systems over Iraq

More information

Purdue University Meteorological Tool (PUMET)

Purdue University Meteorological Tool (PUMET) Purdue University Meteorological Tool (PUMET) Date: 10/25/2017 Purdue University Meteorological Tool (PUMET) allows users to download and visualize a variety of global meteorological databases, such as

More information

SHAPING OUR FUTURE: THE CLIMATE CHALLENGE KS3 LESSON 1 TEACHER GUIDE HOW IS OUR CLIMATE CHANGING?

SHAPING OUR FUTURE: THE CLIMATE CHALLENGE KS3 LESSON 1 TEACHER GUIDE HOW IS OUR CLIMATE CHANGING? SHAPING OUR FUTURE: THE CLIMATE CHALLENGE KS3 LESSON 1 TEACHER GUIDE HOW IS OUR CLIMATE CHANGING? KS3 LESSON 1 TEACHER GUIDE HOW IS OUR CLIMATE CHANGING? Learning objective: To understand, through the

More information

An Spatial Analysis of Insolation in Iran: Applying the Interpolation Methods

An Spatial Analysis of Insolation in Iran: Applying the Interpolation Methods International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An Spatial

More information

Assessment of the Impact of El Niño-Southern Oscillation (ENSO) Events on Rainfall Amount in South-Western Nigeria

Assessment of the Impact of El Niño-Southern Oscillation (ENSO) Events on Rainfall Amount in South-Western Nigeria 2016 Pearl Research Journals Journal of Physical Science and Environmental Studies Vol. 2 (2), pp. 23-29, August, 2016 ISSN 2467-8775 Full Length Research Paper http://pearlresearchjournals.org/journals/jpses/index.html

More information

Unseasonable weather conditions in Japan in August 2014

Unseasonable weather conditions in Japan in August 2014 Unseasonable weather conditions in Japan in August 2014 Summary of analysis by the TCC Advisory Panel on Extreme Climatic Events In an extraordinary session held at the Japan Meteorological Agency on 3

More information

Climate and the Atmosphere

Climate and the Atmosphere Climate and Biomes Climate Objectives: Understand how weather is affected by: 1. Variations in the amount of incoming solar radiation 2. The earth s annual path around the sun 3. The earth s daily rotation

More information

Malawi. General Climate. UNDP Climate Change Country Profiles. C. McSweeney 1, M. New 1,2 and G. Lizcano 1

Malawi. General Climate. UNDP Climate Change Country Profiles. C. McSweeney 1, M. New 1,2 and G. Lizcano 1 UNDP Climate Change Country Profiles Malawi C. McSweeney 1, M. New 1,2 and G. Lizcano 1 1. School of Geography and Environment, University of Oxford. 2. Tyndall Centre for Climate Change Research http://country-profiles.geog.ox.ac.uk

More information

Intraseasonal Characteristics of Rainfall for Eastern Africa Community (EAC) Hotspots: Onset and Cessation dates. In support of;

Intraseasonal Characteristics of Rainfall for Eastern Africa Community (EAC) Hotspots: Onset and Cessation dates. In support of; Intraseasonal Characteristics of Rainfall for Eastern Africa Community (EAC) Hotspots: Onset and Cessation dates In support of; Planning for Resilience in East Africa through Policy, Adaptation, Research

More information

Long Range Forecast Update for 2014 Southwest Monsoon Rainfall

Long Range Forecast Update for 2014 Southwest Monsoon Rainfall Earth System Science Organization (ESSO) Ministry of Earth Sciences (MoES) India Meteorological Department PRESS RELEASE New Delhi, 9 June 2014 Long Update for 2014 Southwest Monsoon Rainfall HIGHLIGHTS

More information

URBAN HEAT ISLAND IN SEOUL

URBAN HEAT ISLAND IN SEOUL URBAN HEAT ISLAND IN SEOUL Jong-Jin Baik *, Yeon-Hee Kim ** *Seoul National University; ** Meteorological Research Institute/KMA, Korea Abstract The spatial and temporal structure of the urban heat island

More information

Chapter- Three GEOMORPHOLOGY AND RAINFALL PATTERN

Chapter- Three GEOMORPHOLOGY AND RAINFALL PATTERN Chapter- Three GEOMORPHOLOGY AND RAINFALL PATTERN 3.1 INTRODUCTION Geomorphology and its slope as a basic and applied science in general and as tool for searching groundwater resources in efficient geomorphological

More information

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 5 Ver. I (Sep.-Oct. 2014), PP 56-62 Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria Audu,

More information

Recent Trends in Northern and Southern Hemispheric Cold and Warm Pockets

Recent Trends in Northern and Southern Hemispheric Cold and Warm Pockets Recent Trends in Northern and Southern Hemispheric Cold and Warm Pockets Abstract: Richard Grumm National Weather Service Office, State College, Pennsylvania and Anne Balogh The Pennsylvania State University

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70. Periods Topic Subject Matter Geographical Skills

Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70. Periods Topic Subject Matter Geographical Skills Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70 Sr. No. 01 Periods Topic Subject Matter Geographical Skills Nature and Scope Definition, nature, i)

More information

Drought in Southeast Colorado

Drought in Southeast Colorado Drought in Southeast Colorado Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu 1 Historical Perspective on Drought Tourism

More information

Combining Deterministic and Probabilistic Methods to Produce Gridded Climatologies

Combining Deterministic and Probabilistic Methods to Produce Gridded Climatologies Combining Deterministic and Probabilistic Methods to Produce Gridded Climatologies Michael Squires Alan McNab National Climatic Data Center (NCDC - NOAA) Asheville, NC Abstract There are nearly 8,000 sites

More information

The Spatial Analysis of Insolation in Iran

The Spatial Analysis of Insolation in Iran The Spatial Analysis of Insolation in Iran M. Saligheh, F. Sasanpour, Z. Sonboli & M. Fatahi Department of Geography, Tehran Tarbiat Moallem University, Iran E-mail: salighe@hamoon.usb.ac.ir; far20_sasanpour@yahoo.com;

More information

Thai Meteorological Department, Ministry of Digital Economy and Society

Thai Meteorological Department, Ministry of Digital Economy and Society Thai Meteorological Department, Ministry of Digital Economy and Society Three-month Climate Outlook For November 2017 January 2018 Issued on 31 October 2017 -----------------------------------------------------------------------------------------------------------------------------

More information

Two aspects of moisture origin relevant to analysis of isotope modeling

Two aspects of moisture origin relevant to analysis of isotope modeling Two aspects of moisture origin relevant to analysis of isotope modeling Maxwell Kelley MIT Department of Earth, Atmospheric, and Planetary Sciences and NASA Goddard Institute for Space Studies IAEA SIMS

More information

11/30/2015 Source of Support: None, No Conflict of Interest: Declared

11/30/2015 Source of Support: None, No Conflict of Interest: Declared Volume 2, No 2/2015 ISSN 2313-0008 (Print); ISSN 2313-0016 (Online); Prefix 10.18034 STUDY OF THE CHARACTERISTICS AND CONNECTIVITY OF DIFFERENT CLIMATIC PARAMETERS: TEMPERATURE, HUMIDITY, BMD & TRMM RAINFALL

More information

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. Climatology is the study of Earth s climate and the factors that affect past, present, and future climatic

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

Occurrence of heavy rainfall around the confluence line in monsoon disturbances and its importance in causing floods

Occurrence of heavy rainfall around the confluence line in monsoon disturbances and its importance in causing floods Occurrence of heavy rainfall around the confluence line in monsoon disturbances and its importance in causing floods GNAGESWARA RAO Department of Meteorology & Oceanography, Andhra University, Visakhapatnam

More information

World geography 3200/3202 Unit 2 review

World geography 3200/3202 Unit 2 review World geography 3200/3202 Unit 2 review 1. Does this statement use the terms revolve & rotate correctly? "Saturn revolves on its axis while several moons rotate around it." 2. Does this statement use the

More information

A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China

A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2011, VOL. 4, NO. 1, 41 46 A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China YANG Qing 1, 2, MA Zhu-Guo 1,

More information

Keywords: lightning climatology; lightning flashes; Macedonia Greece.

Keywords: lightning climatology; lightning flashes; Macedonia Greece. International Scientific Conference GEOBALCANICA 2018 A 10-YEAR CLIMATOLOGY OF LIGHTNING FOR MACEDONIA, GREECE Paraskevi Roupa 1 Theodore Karacostas 2 1 Hellenic National Meteorological Service, Greece

More information

Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF

Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF Evans, J.P. Climate

More information

A summary of the weather year based on data from the Zumwalt weather station

A summary of the weather year based on data from the Zumwalt weather station ZUMWALT PRAIRIE WEATHER 2016 A summary of the weather year based on data from the Zumwalt weather station Figure 1. An unusual summer storm on July 10, 2016 brought the second-largest precipitation day

More information

CLIMATE. UNIT TWO March 2019

CLIMATE. UNIT TWO March 2019 CLIMATE UNIT TWO March 2019 OUTCOME 9.2.1Demonstrate an understanding of the basic features of Canada s landscape and climate. identify and locate major climatic regions of Canada explain the characteristics

More information

Introduction to Climatology. GEOG/ENST 2331: Lecture 1

Introduction to Climatology. GEOG/ENST 2331: Lecture 1 Introduction to Climatology GEOG/ENST 2331: Lecture 1 Us! Graham Saunders (RC 2006C) graham.saundersl@lakeheadu.ca! Jason Freeburn (RC 2004) jtfreebu@lakeheadu.ca Graham Saunders! Australian Weather Bureau!

More information

GEOGRAPHY (029) CLASS XI ( ) Part A: Fundamentals of Physical Geography. Map and Diagram 5. Part B India-Physical Environment 35 Marks

GEOGRAPHY (029) CLASS XI ( ) Part A: Fundamentals of Physical Geography. Map and Diagram 5. Part B India-Physical Environment 35 Marks GEOGRAPHY (029) CLASS XI (207-8) One Theory Paper 70 Marks 3 Hours Part A Fundamentals of Physical Geography 35 Marks Unit-: Geography as a discipline Unit-3: Landforms Unit-4: Climate Unit-5: Water (Oceans)

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information