Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

Size: px
Start display at page:

Download "Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants"

Transcription

1 Data Systems ss doi: /gmd Author(s) CC Attribution 3.0 License. Geoscientific Model Development Open Access M Hydrology and Earth System Sciences Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants Ocean Science E. Solazzo 1, R. Bianconi 2, G. Pirovano 3, M. D. Moran 4, R. Vautard 5, C. Hogrefe 6, K. W. Appel 6, V. Matthias 7, P. Grossi 2, B. Bessagnet 9, J. Brandt 8, C. Chemel 12,13, J. H. Christensen 8, R. Forkel 16, X. V. Francis 13, A. B. Hansen 8, S. McKeen 17, U. Nopmongcol 14, M. Prank 11, K. N. Sartelet 10, A. Segers 15, J. D. Silver 8, G. Yarwood 14, J. Werhahn 16, J. Zhang 4, S. T. Rao 6, and S. Galmarini 1 1 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Solid ItalyEarth 2 Enviroware srl, Concorezzo (MB), Italy 3 Ricerca sul Sistema Energetico (RSE SpA), Milan, Italy 4 Air Quality Research Division, Science and Technology Branch, Environment Canada, Toronto, Canada 5 Laboratoire des Sciences du Climate et de l Environnement, IPSL Laboratoire CEA/CNRS/UVSQ, Orme des Merisier, Gif/Yvette Cedex, France 6 Atmospheric Modelling and Analysis Division, Environmental Protection Agency, Research The Cryosphere Triangle Park, NC, USA 7 Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany 8 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark 9 NERIS, National Institute for Industrial Environment and Risks, Parc Technologique ALATA, Verneuilen Halatte, France 10 CEREA, Joint Laboratory Ecole des Ponts ParisTech/ EDF R & D, Université Paris-Est, Paris, France 11 Finnish Meteorological Institute, Helsinki, Finland 12 National Centre for Atmospheric Science (NCAS), University of Hertfordshire, Hatfield, UK 13 Centre for Atmospheric & Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, UK 14 ENVIRON International Corporation, 773 San Marin Drive, Suite 2115, Novato, CA 94998, USA 15 Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, the Netherlands 16 Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany 17 CIRES/University of Colorado, and NOAA/ESRL/CSD, 325 Broadway, Boulder, CO, USA Correspondence to: S. Galmarini (stefano.galmarini@jrc.ec.europa.eu) Received: 27 November 2012 Published in Geosci. Model Dev. Discuss.: 24 January 2013 Revised: 26 April 2013 Accepted: 30 April 2013 Published: 12 June 2013 Open Access Open Access Open Access Open Access Abstract. This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and European (EU) continents for The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS) and direction (WD), temperature (T ), and relative humidity (RH), are compared against highquality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service aircraft (MOZAIC) programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas) and one in Europe (Frankfurt), from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs). The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL) or free troposphere) being analysed. While model performance for T is satisfactory at all sites Published by Copernicus Publications on behalf of the European Geosciences Union.

2 792 E. Solazzo et al.: Evaluating regional air quality models in the vertical (correlation coefficient in excess of 0.90 and fractional bias 0.01 K), WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability), while above 1000 m, the model performance improves (correlation coefficient often above 0.9). The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large discrepancies among models are observed, especially in EU. CO mixing ratios show the largest range of modelled-to-observed standard deviations of all the examined species at all heights and for all airports. Correlation coefficients for CO are typically below 0.6 for all sites and heights, and large errors are present at all heights, particularly in the first 250 m. Model performance for ozone in the PBL is generally good, with both bias and error within 20 %. Profiles of ozone mixing ratios depend strongly on surface processes, revealed by the sharp gradient in the first 2 km (10 to 20 ppb km 1 ). Modelled ozone in winter is biased low at all locations in the NA, primarily due to an underestimation of ozone from the BCs. Most of the model error in the PBL is due to surface processes (emissions, transport, photochemistry), while errors originating aloft appear to have relatively limited impact on model performance at the surface. Suggestions for future work include interpretation of the model-tomodel variability and common sources of model bias, and linking CO and ozone bias to the bias in the meteorological fields. Based on the results from this study, we suggest possible in-depth, process-oriented and diagnostic investigations to be carried out next. 1 Introduction Air quality (AQ) model evaluation studies are typically focused on the assessment of performance with respect to surface measurements since the primary goal of AQ models is to simulate the fate of pollutants to which humans, and the biosphere as a whole, are directly exposed, and also because regulatory limits are imposed at ground level only. Examples of model evaluation studies using only ground-level measurements are numerous (e.g. Van Loon et al., 2007; Vautard et al., 2009, 2012; Solazzo et al., 2012a, b; Appel et al., 2007, 2008, 2012). Evaluations of AQ models in the troposphere, from the ground to well above the planetary boundary layer (PBL), have been performed much less frequently than ground-level-only studies. Some specific experimental (e.g. Cros et al., 2004; Drobinski et al., 2007; Yu et al., 2007, 2010; Tang et al., 2011) or case studies (e.g. Emeis et al., 2011; Matthias et al., 2012) using upper-level measurements do exist, but comprehensive tropospheric evaluation and model inter-comparisons over long time periods are missing. The development of policies designed to control and reduce air pollution requires an accurate knowledge about the sensitivity of atmospheric concentration to changes in anthropogenic emissions. This sensitivity is modulated by a number of factors, including atmospheric conditions and their variability, the state of the land surface, deposition, and concentrations of long-range transported pollutants, and primary emissions that produce a chemical environment in which secondary air pollutants develop. All of these factors influence, and are influenced by, the three-dimensional spatial distribution of pollutants and the variability of the latter over time. Accurate simulation of the troposphere is crucial from the perspective of emission control, and requires testing the capability of models to represent the vertical distribution of pollutants, the exchanges between the PBL and the free troposphere, and the horizontal fluxes between continental domains (Jonson et al., 2010; Gilge et al., 2010; Brunner et al., 2005). In addition, the pivotal role of the meteorological forcing in determining the fate of pollutant species cannot be underestimated, as errors in meteorology are inherited by AQ models, thereby producing errors in modelpredicted pollutant concentrations, which can result in compounding or compensating errors. This is particularly true for long-lived species, whose concentrations are determined by the history of air parcels over long time periods during which meteorological errors may accumulate (e.g. Brunner et al., 2003; Blond and Vautard, 2004). Recent reports by the US National Research Council and the United Nations Task Force on Hemispheric Transport of Air Pollution (HTAP) (Szykman et al., 2012, and references therein) have urged the need for high-quality upper-air observational data to support model development and help address model deficiencies in the troposphere. Examples of ensemble model evaluation in the troposphere do exist for global chemical transport models. Stevenson et al. (2006) analysed 26 global model simulations evaluated against ozonesonde profiles for the year The study suggested that the primary sources of ozone in the troposphere are chemical production and influx from the stratosphere (the latter was estimated as being about a tenth of the production term), and that removal is determined by chemical transformation and dry deposition. Furthermore, the authors showed that the ensemble mean of model results for ozone typically ranges within one standard deviation of the measurements over the entire depth of the troposphere. However, several significant discrepancies were detected, depending on location and season, as for example over-prediction throughout the northern tropics and overestimation of winter ozone at N. A further example of ensemble modelling of tropospheric ozone is reported by Jonson et al. (2010), who compared the ensemble mean from 12 global scale models against ozonesonde profiles in the framework of HTAP for the year The ensemble mean bias of the models was found to be smaller in winter and autumn, with large day-to-day variability among the models.

3 E. Solazzo et al.: Evaluating regional air quality models in the vertical 793 Generally, model performance was better at locations closer to major emission sources than in remote locations, with the best scores for Goose Bay (eastern North America (NA)) and the poorest scores for the Arctic stations. The modelled standard deviation was found to be low in the upper troposphere compared to the ozonesondes at all sites. The authors attributed this latter behaviour of the models to the difficulties resolving plumes at remote stations due to the coarse grid spacing (ranging from 1 to 4 ) of global models. Most recently, Zyryanov et al. (2012) conducted a comparative threedimensional analysis of six regional AQ models over Europe (EU) using MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service aircraft) observations, focusing on ozone during the summer months of The authors found that a large model-to-model variability existed in the upper troposphere, between 8 and 10 km height. Although a definitive reason for such variability could not be identified, the authors suggested that the differences in the model transport schemes, horizontal and vertical grid spacing, treatment of the top boundary conditions (BCs), and the way that vertical velocity is computed (diagnostically or as output of the meteorological model) could be at least partially responsible for the variability between the models. Data from MOZAIC were also used by Elguindi et al. (2010) to evaluate the performance of four chemical transport models against vertical profiles of CO mixing ratios for the year In addition, there are a number of case studies where individual regionalscale models are compared to three-dimensional concentration data collected during intensive measurement campaigns (e.g. Fisher et al., 2006; Tulet et al., 2002; Boynard et al., 2011). However, none of the aforementioned studies is devoted to systematically evaluating an ensemble of regional-scale AQ models in the troposphere for extended periods and for several fields. Recently, a large effort within the air-quality community was established with the aim of evaluating many different regional-scale AQ modelling systems (Rao and Galmarini, 2011). The Air Quality Modelling Evaluation International Initiative (AQMEII) is the first consortium to provide a platform to evaluate the capability of AQ models to simulate pollutant transport and transformation processes throughout the PBL and the free troposphere. The specific goal of AQMEII is to perform an initial set of model evaluations and inter-comparisons on existing regional AQ model systems in NA and EU. To accomplish this goal, model simulations were conducted for the year 2006 for NA and EU model domains by independent modelling groups from both continents using state-of-the-science regional AQ modelling systems. Previous AQMEII analyses had focused on the evaluation of ensemble of AQ models at surface, using observational data provided by the regulatory ground-based networks in EU and NA for ozone, particulate matter, and meteorological fields (Solazzo et al., 2012a, b; Vautard et al., 2012) for the year of In the present study we extend the evaluation analyses to include the vertical component. We operate in the framework of the four components of model evaluation proposed by Dennis et al. (2010), which is the main pillar of AQMEII (Rao et al., 2011). The primary goal of the analysis presented here is the operational evaluation of models in the troposphere, attempting to identify and quantify discrepancies between the models and measurements, and then suggesting hypotheses that should be investigated in detail as part of subsequent diagnostic evaluations. This study is therefore not intended to be an in-depth diagnostic analysis but rather an illustration of the potential of using upper-air measurements for regional-scale model evaluation, by introducing various approaches, metrics, and methods to analyse the complex upper-air data set, and set the stage for future work. Particular emphasis is put on ozone due to its importance on human health and climate, and also because a complementary model evaluation for ground-level ozone is available for AQMEII (Solazzo et al., 2012a) 2 Processing of four-dimensional observational data in the context of AQMEII In this study we make use of the observational data for the year 2006 gathered by the MOZAIC programme at NA and EU airports. The MOZAIC project started in 1993 as a joint effort of European scientists, aircraft manufacturers and airlines to develop a better understanding of the natural and anthropogenic variability of the chemical composition of the atmosphere. The collection of chemical species and of meteorological drivers includes a large number of vertical profiles measured at several airports worldwide during the landing and take-off phases with a rate of data collection of 4 s, corresponding to approximately m in the vertical. The limit of detection is rather low (2 ppbv for ozone) with an error of only 2 %, thus making the MOZAIC data set very accurate (Marenco et al., 1998; Thouret et al., 1998). Permission to access to the MOZAIC data set for the reference year of 2006 was granted to the AQMEII community, allowing analysis of over 2000 vertical profiles measured by instrumented commercial aircraft landings and take-offs from 12 selected airports in NA (i.e. Portland, Vancouver, Atlanta, Dallas, Charlotte, Boston, Chicago, Montreal, New York, Philadelphia, Toronto, and Washington DC) and three in EU (i.e. Frankfurt, Munich, and Vienna). These profiles contain the following species and meteorological fields: ozone, CO, temperature (T ), relative humidity (RH), wind speed (WS) and direction (WD). Ozonesonde measurements are also used for further comparison in special cases. For the purposes of AQMEII, the MOZAIC domains that contained all the trajectories up to the altitude of approximately 13 km over the year of 2006 are identified around each airport. This was particularly useful in the case, for example, of the Northeast US where trajectories of aircrafts

4 794 E. Solazzo et al.: Evaluating regional air quality models in the vertical landing in Washington DC passed over New York airports too. Similarly, in EU, all the trajectories relating to Vienna also passed over Munich and Frankfurt. After we identified the MOZAIC domains, 13 vertical levels above the ground were selected at 0, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7500, and 8500 m to be relevant to the analysis of the model results. MOZAIC data were gathered during take-off and landing phases, with larger occurrences of early-to-mid-afternoon (corresponding to landings in NA) and mid-to-late afternoon (corresponding to take-offs in NA) local time flights, approximately 70 % of which occurred during spring and summer. Table 1 gives the list of airports within each simulation domain and the number of MOZAIC flights associated with each airport during To simplify the analysis, the airport with the largest number of flights is selected and used for the analysis. In total, five airports (four in NA and one in EU) are identified for analysis in this study. The Portland and Philadelphia airports are selected to represent the west and east coasts of NA, respectively, while the Dallas and Atlanta airports represent the two other areas of NA. Frankfurt (with over 1200 hourly flights) had the best yearly coverage and represents the central EU area. The locations of the airports and flight areas are shown in Fig. 1. In addition to the MOZAIC measurements, ozonesonde data were extracted from the World Meteorological Organization (WMO) World Ozone and Ultraviolet Radiation Data Centre in Toronto (Canada) and made available to the AQMEII community. These measurements report vertical profiles of ozone partial pressure at several vertical pressure levels. Further details on these data are given in Schere et al. (2012). 2.1 Pairing models and observational data The groups participating in AQMEII were requested to deliver their model results for the species, time, location, and altitude for which observational data were available. The model data corresponding to the three-dimensional grid enclosing the MOZAIC trajectories at the aforementioned 13 altitudes were subsequently delivered to European Commission s Joint Research Centre in Ispra (Italy) by each modelling group, with a common horizontal grid resolution for the whole period of 2006 with one-hour time resolution. Hosting the data is the ENSEMBLE system (Galmarini et al., 2004, 2012), a web-interfaced data hub allowing model and observed data to be harmonized and paired in time and space to facilitate the model evaluation. Once a specific airport, date, and flight are selected, the ENSEMBLE system automatically extracts the model data from the domain volume and couples them with the MOZAIC profiles in space and time. Since measurements and model results are stored in ENSEMBLE at the same heights, the trajectory analysis module in ENSEMBLE works by looping through the measurement points along each three-dimensional trajectory. 3 Participating models The participating research groups and modelling systems used are reported in Table 2. In total, four to five (depending on the variable) groups delivered data to compare against the MOZAIC profiles for NA, whereas data from eight to nine groups were available for EU. The emissions and chemical BCs used by the various AQMEII groups are summarised in Table 2. AQMEII provided a set of reference time-varying gridded emissions (referred to as the standard emissions) for each continent. These inventories have been extensively discussed in other AQMEII publications (Pouliot et al., 2012; Solazzo et al., 2012a, b). Although the standard emissions were used by the vast majority of the participating AQMEII groups, there were still a number of degrees of freedom (e.g. fire emissions or biogenic emissions) which were chosen by each group independently. Model results generated with other emissions inventories were also submitted. AQMEII also provided a set of time-dependent chemical concentrations at the lateral boundaries of the EU and NA domains, referred to as the standard BCs, extracted from the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) re-analysis product provided by the European Centre for Medium-range Weather Forecast (ECMWF) (Schere et al., 2012). These standard BCs were used by the majority of the modelling groups, although other BCs for ozone were also used, which were based on satellite measurements assimilated within the Integrated Forecast System (IFS). Models were driven by different meteorological simulations, which were described and evaluated in Vautard et al. (2012). Details on the model configurations are given in Table Participating models and settings WRF-CMAQ The model configurations used by the US Environmental Protection Agency (US EPA) and the University of Hertfordshire are similar for NA and EU, with both simulations utilizing the Community Multiscale Air Quality (CMAQ) model version (Byun and Schere, 2006; Foley et al., 2010). The NA simulation uses 34 vertical layers and 12 km horizontal grid spacing covering the continental United States, southern Canada and northern Mexico, while the EU simulation uses 34 vertical layers and 18 km horizontal grid spacing covering most of EU. Other model options employed that are common to both simulations include the CB05 chemical mechanism with chlorine chemistry extensions (Yarwood et al., 2005), the AERO5 aerosol module (Carlton et al., 2010), and the Asymmetric Convective Model 2 (ACM2) vertical mixing scheme (Pleim, 2007a, b). Additional details regarding the WRF-CMAQ simulations for AQMEII can be found in Appel et al. (2012) and references therein.

5 E. Solazzo et al.: Evaluating regional air quality models in the vertical 795 Table 1. Airport domains and number of hourly flights during 2006 for each variable. The airports selected for analyses are highlighted in bold. Domain Airports IATA Code Num. of Avail. flights Ozone CO T RH WS WD West Coast Portland KPDX Vancouver CYVR Atlanta Atlanta KATL Charlotte KCLT East Coast Boston KBOS Chicago KORD Montreal CYUL New York KJFK Philadelphia KPHL Toronto CYYZ Washington DC KIAD Dallas Dallas KDFW Central Europe Frankfurt EDDF Munich EDDM Vienna LOWW ECMWF-SILAM The SILAM (Sofiev et al., 2010) model uses a transport algorithm based on the non-diffusive Eulerian advection scheme of Galperin (1999, 2000) and the adaptive vertical diffusion algorithm of Sofiev (2002). The use of sub-grid variables in these schemes allows the model to be used with thick vertical layers. A detailed description of SILAM can be found in Sofiev et al. (2008). SILAM includes a meteorological pre-processor for diagnosing the basic features of the PBL and the free troposphere (e.g. diffusivities) from the meteorological fields provided by meteorological models (Sofiev et al., 2010). Only horizontal wind components are taken from the meteorological input, with the vertical component computed from the continuity equation. SILAM is a terrainfollowing height coordinate models, and for the AQMEII simulations the model consisted of nine layers up to approximately 10 km MM5-DEHM The Danish Eulerian Hemispheric Model (DEHM) (Christensen, 1997; Frohn et al., 2002; Brandt et al., 2012) is a 3-D long-range atmospheric chemistry-transport model with a horizontal domain covering the Northern Hemisphere with 150 km horizontal grid spacing. For AQMEII, the model includes two two-way nested domains, one covering EU and one covering NA, and both with 50 km horizontal grid spacing. The vertical grid is defined using the σ -coordinate system, with 29 vertical layers extending up to 100 hpa. The horizontal advection is solved numerically using the higher order accurate space derivatives scheme, applied in combination with a Forester filter (Forester, 1977). The vertical advection, as well as the dispersion sub-models, is solved using a finite elements scheme for the spatial discretisation. For the temporal integration of the dispersion, the method is applied and the temporal integration of the three-dimensional advection is carried out using a Taylor series expansion to third order. The three-dimensional wind fields are derived from the MM5 model, corrected in DEHM to ensure mass conservation. DEHM also includes a module for diagnostically calculating the vertical wind. For ozone, the initial and BCs (both lateral and top) are based on ozonesonde measurements, interpolated to global monthly three-dimensional values with a grid spacing of 4 5 (Logan, 1999). A thorough description of DEHM and model set-up for AQMEII is given in Brandt et al. (2012).

6 796 E. Solazzo et al.: Evaluating regional air quality models in the vertical Figures a) b) Figure 1. Flight trajectories by height for the selected airports in a) North America and b) Europe. Fig. 1. Flight trajectories by height for the selected airports in (a) North America and (b) Europe MM5-CHIMERE The CHIMERE model (Bessagnet et al., 2004) applied over EU uses a 0.25 ( 25 km) horizontal grid spacing and nine vertical layers expressed in a hybrid σ -pressure coordinate system between surface and 500 hpa. The first near-surface layer height was 20 m. All meteorological fields are interpolated from the driver meteorology (MM5), with the vertical velocity recalculated to preserve mass balance. Turbulence in the PBL is represented using a diffusivity coefficient following the parameterization of Troen and Mahrt (1986) without the counter-gradient term. The second-order Van Leer scheme (Van Leer, 1979) is used for the horizontal transport, and horizontal diffusion is neglected. Top BCs are obtained from the GEMS re-analysis at 3 h interval and interpolated in three dimensions. The depth of the 33 PBL is taken directly from MM5. Full model documentation is available at ECMWF-LOTOS-EUROS The LOTOS-EUROS model (Schaap et al., 2008) simulated pollutant concentrations over EU at a regular horizontal grid spacing of approximately 25 km. In the vertical, the model is defined on four layers: a 25 m surface layer, the PBL, and 2 residual layers with a top at 3.5 km (or higher in mountainous areas). The height of the PBL, as well as the other meteorological input, is taken from ECMWF meteorological fields (short range forecasts over 0 12 h at 3 h interval). Advection

7 E. Solazzo et al.: Evaluating regional air quality models in the vertical 797 Table 2. Participating models and features. Met AQ model Resolution (km) North America Vertical (bottom-top) GEM AURAMS (14 in the first 2 km) MM5 DEHM (100 hpa) WRF CMAQ (25 m to 50 hpa) WRF CAM from 30 m Cosmo-CLM (CCLM) Europe CMAQ (60 m to 100 hpa) MM5 DEHM (100 hpa) ECMWF SILAM 24 9 (10 km) MM5 CHIMERE 25 9 (20 m to 500 hpa) ECMWF LOTOS- EUROS WRF CMAQ (20 m to 50 hpa) MM5 CAM (30 m to 12 km) WRF WRF-Chem1, (16 m to 50 hpa) Cosmo-CLM (CCLM) Emission Standard b Global emission database/ EMEP d Standard Standard Standard a Global emission database/emep d Standard Standard BC Climatology Estimated from hemispheric domain Standard Standard Standard Estimated from hemispheric domain Standard Standard, MEGAN 25 4 Standard a Standard CMAQ (36 m to 100 hpa) MM5 Polyphemus 24 9 (up to 1200 m) Standard a Standard Supplied by WRF/Chem (constant background values) Standard a Standard a,c Standard Standard Standard Standard Standard a Standard anthropogenic emission and biogenic emission derived from meteorology (temperature and solar radiation) and land use distribution implemented in the meteorological driver (Guenther et al., 1994; Simpson et al., 1995). b Standard anthropogenic inventory but independent emissions processing, exclusion of wildfires, and different version of BEIS (v3.09) used c Emissions include biomass burning, biogenic organic compounds of SOA: α-pinene, limonene, sesquiterpene, and hydrophilic isoprene. d Global: IPCC RCP 3-PD Lamarque et al. (2010); Bond et al. (2007); Smith et al. (2001); ships: Corbett and Fischbeck (1997); GEIA natural emissions (Graedel et al., 1993); wildfires as in Schultz et al. (2008). Europe: EMEP (Vestreng and Støren, 2000) of tracers is implemented in all three dimensions following Walcek (2000), where vertical mass fluxes are derived from the mass balance. Vertical mixing is primarily determined by the growth of the second model layer following the rise of the PBL during the day, which leads to mixing of concentrations from the residual layer to the lower layer. Additional vertical mixing is implemented following standard K-diffusion (Louis, 1979). In the horizontal direction, no explicit diffusivity was added, apart from the numerical diffusion implied by the advection on a discrete grid MM5-Polyphemus The Polyphemus AQ modelling platform is used with the Polair3D Eulerian chemistry transport model (Sartelet et al., 2012). Over EU, the horizontal resolution is 0.25 ( 25 km). Polyphemus used terrain-following height coordinates with nine vertical layers ranging from 20 m to 9 km for the AQMEII simulation. The reactive-transport equations are solved using operator splitting (sequence: advection, diffusion, chemistry and aerosol). The advection scheme is a direct space time third-order scheme with a Koren flux limiter.

8 798 E. Solazzo et al.: Evaluating regional air quality models in the vertical Diffusion and chemistry are solved with a second-order Rosenbrock method. The vertical eddy-diffusion coefficient is parameterized following Louis (1979), except in the unstable convective PBL where the coefficients are calculated using the parameterization of Troen and Mahrt (1986). The horizontal diffusion coefficient is constant and equal to m 2 s 1. In the AQMEII simulation, meteorological fields are interpolated from MM5, except for the eddydiffusion coefficient and the vertical velocity, which are derived from the continuity equation GEM-AURAMS The AURAMS model (Gong et al., 2006; Smyth et al., 2009) applied for AQMEII on the NA domain uses a secant polarstereographic map projection true at 60 N, with 45 km horizontal grid spacing. In the vertical, 29 layers are used with a terrain-following modified Gal-Chen vertical coordinate and relatively thin layers near the surface (the first five layers were located at 0, 14, 55, 120, and 196 m) increasing monotonically in thickness to a model top at approximately 22 km. Horizontal and vertical advection are both calculated using a semi-lagrangian advection scheme (e.g. Pudykiewicz et al., 1997) with wind components provided by the GEM meteorological model (Côté et al., 1998a, b; Mailhot et al., 2006). The vertical diffusion operator is solved using an implicit first-order Laasonen scheme, where the vertical eddydiffusion coefficient is parameterized in GEM using a turbulence kinetic energy scheme (Benoit et al., 1989; Bélair et al., 1999). Horizontal diffusion is neglected. Model output is only saved for the first 20 layers, so vertical profiles are only available for the AURAMS model up to 5 km WRF-WRF/Chem The only model with atmospheric chemistry coupled online with the meteorology applied within this study is the community WRF/Chem mode (Grell et al., 2005). The two instances of WRF/Chem applied for EU are the same in all aspects except that only one (referred to as WRF/Chem1) includes feedback of the direct and indirect aerosol radiative effects to meteorology. The other simulation that does not include the radiative feedback effects is referred to as WRF/Chem2. Both simulations are set up with a horizontal grid spacing of 22.5 km, 36 vertical layers, and identical physics and chemistry options as described by Forkel et al. (2012). Gasphase/aerosol chemistry and non-hydrostatic physics within WRF/Chem are tightly coupled, with fifth-order horizontal, third-order vertical, and a third-order Runge Kutta time integration scheme (Skamarock et al., 2008). YSU PBL physics (Hong et al., 2006) are used for vertical mixing within the PBL. Boundary conditions for all species are derived from the default WRF/Chem configuration, which are designed to be representative of clean, mid-latitude Pacific Ocean conditions. In spite of major differences in simulated solar radiation for cloudy conditions, only small differences between the two model versions were found, since simulated T, mixing ratio, and wind are nudged to the driving global analysis above the PBL for the simulations discussed here (Forkel et al., 2012) Cosmo-CLM-CMAQ At the Helmholtz-Zentrum Geesthacht (HZG) Institute, the CMAQ model is set up using 24 km horizontal grid spacing and 30 vertical layers for both continents. Eleven of the 30 layers are below 1000 m, with the lowest layer top at approximately 36 m. Version 4.6 of the CMAQ (Matthias et al., 2010; Aulinger et al., 2011) model was used for the EU domain, while version of the model was used for NA (the same version as the other CMAQ participants). Horizontal and vertical advection schemes in CMAQ use a modification of the piecewise parabolic method (PPM; Colella and Woodward, 1984). At each grid cell, a vertical velocity component is derived from the horizontal advection that satisfies the continuity equation using the density from driving meteorological model. In CMAQ 4.7.1, this scheme is further modified by adjusting the vertical velocities by the ratio of upwind fluxes to PPM-calculated fluxes. Vertical diffusion is based on the asymmetric convective model (ACM; Pleim and Chang, 1992). In both CMAQ 4.6 and 4.7.1, version 2 of the ACM (ACM2; Pleim, 2007, 2007a) is implemented. The minimum value for the eddy diffusivity depends on the land use of the individual grid cells and varies between 0.5 m 2 s 1 in grid cells with no urban areas and 2 m 2 s 1 in grid cells that contain only urban area. Zero flux BCs are used at the horizontal borders and at the top of the domain WRF/MM5-CAMx Simulations for both the NA and EU continents use CAMx version 5.21 (ENVIRON, 2010), with the CB05 chemical mechanism (Yarwood et al., 2005). The EU domain has by 0.25 ( 12 km 25 km) latitude/longitude grid spacing and 23 vertical layers that follow the WRF pressure levels between the surface and 100 hpa. The MM5 vertical domain has 32 vertical layers with a 30 m deep surface layer. CAMx employed fewer vertical layers (23) than MM5 to reduce the computational burden of the AQ simulations. The CAMx vertical layers exactly match those used in MM5 for the lowest 14 layers (up to 1800 m), and above this altitude were aggregates of several MM5 layers. The top CAMx layer placed at 12 km height was 3.4 km deep. The NA domain has 12 km horizontal grid spacing and 26 layers that follow MM5 pressure levels between the surface and 50 hpa. The BCs and emissions provided by AQMEII are used, with the exception of biogenic emissions for EU, which are estimated using MEGAN (Guenther et al., 2006). The CAMx vertical transport scheme is described by Emery et al. (2011) with vertical advection solved by a backward-euler (time)

9 E. Solazzo et al.: Evaluating regional air quality models in the vertical 799 hybrid centred/upstream (space) scheme and vertical diffusion solved using K-theory. 4 Model performance in the troposphere 4.1 Mean vertical profiles Figure 2 presents the comparison of modelled versus observed seasonally averaged mean profiles of ozone and annually averaged mean profiles of CO, T, RH and WS. Observations are the grey symbols. While interpreting the results, it should be kept in mind that a source of model underestimation may derive from the incommensurability of comparing point measurements over airports to grid cell model values (Elguindi et al., 2010). All models show similar mean profiles of wind above the PBL and T from the ground to higher level and in agreement with the observed profiles, most likely due to the nudging techniques applied to these fields. The MM5-DEHM is the only model with a positive bias for WS, which increases with altitude at all sites, possibly due to the grid spacing, which is two to three times coarser than the other models. Relative humidity profiles have the lowest bias within the first approximately 2 km, but significantly diverge above that height at all sites. It should be noted that in regions where the water vapour mixing ratio is very low (e.g. in the diverging zone), small differences in T can give rise to significant differences in RH. The RH peaks at 1000 m at all airports, although with different magnitudes. The peak is generally well captured by the models at all airports, with the exception of Dallas, where the bias at 1000 m ranges between 7 and 15 %. The observed annual mean profiles of CO peak at ground level and diminish monotonically with altitude. The rate of decay is faster in the first km (dependant on the airport) due to enhanced mixing near the surface, and is smoother aloft. This feature is common to all sites. The value of the observed CO peak ranges between a minimum of 166 ppb at Dallas and a maximum of 250 ppb at Frankfurt, with the remaining airports all in the range of approximately 200 ppb. Since CO is a directly emitted pollutant, its concentration is primarily determined by local emissions and BCs for CO. The modelled profiles of CO are significantly biased, typically with the largest bias near the ground, with few exceptions. While the DEHM model is biased low throughout the altitudinal range at all sites, the other models tend to have high biases near the ground, the exception being the CCLM- CMAQ model, which performs the best in general, possibly due to a more effective vertical mixing scheme employed by the CCLM driver compared to the WRF driver for the other CMAQ simulations. Mean profiles of observed CO show a steep decrease in mixing ratio in the first 2 km, with an average gradient ranging between approximately 24 ppb km (Dallas and Philadelphia) and 37 ppb km (Atlanta), while Frankfurt is an outlier at 57 ppbkm. Between 2 and 8 km, the rate of decrease in CO mixing ratio is considerably less, with a gradient of approximately 5 6 ppbkm 1 at all airports. Averaged profiles of modelled CO show that ground-level mixing ratios can differ by up to a factor of 2, although differences are smaller above the PBL, but still significant, as discussed in detail with the aid of Taylor diagram in Sect (the large range of the horizontal axis in Fig. 2 has the effect of clustering the observed and modelled profiles at any given altitude, thus deceptively reducing the bias). A possible reason for the difference might be related to the horizontal grid spacing of the AQ model (e.g. Brunner et al., 2003). As shown in Table 2, the DEHM model, which has the coarsest horizontal grid resolution, simulated the lowest mixing ratios, whereas the CAMx and CMAQ models, with much smaller horizontal grid spacing, simulated the highest mixing ratios. Another possible reason could be related to the influence of the chemical BCs to CO and ozone. At the NA airports that are closer to the boundaries (i.e. Portland and Philadelphia), the models that used GEMS BCs (i.e. CMAQ and CAMx) simulated CO mixing ratios that are closer in magnitude to each other than the DEHM and AURAMS models, which are driven by different BCs (model sensitivity to BCs is further discussed in Sect. 6). The seasonally averaged ozone has the lowest mixing ratios in winter (all airports) and the typical maximum in spring and summer. The mean ozone mixing ratio increases with altitude in the first 1000 m, as near-ground depletion by deposition and titration reduce the ozone availability (e.g. Chevalier et al., 2007). The effect of surface processes on ozone is also evident by the strong gradient in the first 2 km of the troposphere, ranging on average between 10 and 20 ppbkm 1 at all sites. Modelled ozone mixing ratio in winter is typically biased low at all locations, with the exception of the DEHM model (both NA and EU). The CCLM-CMAQ, MM5-CAMx, and SILAM for EU are all biased high above approximately 6 km throughout the year, likely due to inadequate representation of the tropopause in the model, which results in too much mixing between the high stratospheric ozone mixing ratios in the BCs and the troposphere in the model. Ozone within the PBL is generally overestimated in the summer (NA only), while in the autumn the simulated mixing ratios are closer to the observed values, especially for Frankfurt. Layered ozone structures are most notable in summer months in the lowest levels close to the surface as result of the photochemistry and thermal mixing. At Portland, by contrast, the observed ozone in June August peaks at 3 km and is underestimated by all models. A relative minimum of RH at the same height (annual average), which corresponds to the plateau values ( 45 %) of RH above 3 km, might indicate a downward intrusion of ozone from the upper

10 800 E. Solazzo et al.: Evaluating regional air quality models in the vertical a) Fig. 2. Seasonally averaged mean profiles of ozone (top rows) and annually averaged mean profiles of CO, temperature, relative humidity (RH) and wind speed (WS) (bottom rows) (year 2006) for (a) Portland, (b) Philadelphia, (c) Atlanta, (d) Dallas, and (e) Frankfurt. The grey symbols are the observations. b) troposphere (Tulet et al., 2002). The lack of seasonal variation of ozone for WRF/Chem in the upper air is due to the use of constant background values of ozone as BCs. 4.2 Operational statistics and variability In this section, operational statistics are presented with the aid of Taylor diagrams (Taylor, 2001), which simultaneously show error, standard deviation and Pearson correlation coefficient (PCC). In a Taylor diagram, the observed field is represented by a point at a distance from the origin along the abscissa that is equal to the variance. All other points on the plot area represent values for the simulated fields and are positioned such that the variance of the modelled fields is the radial distance from the origin, the correlation coefficient of the two fields is the cosine of the azimuthal angle (desired value: 1), and the RMSE is the distance to the observed point (desired value: 0). In practical terms, the closer a model point is to an observed point, the better the model performance. To synthesise the discussion, we present annually averaged statistics (Figs. 3 6). At any given height, the number of paired observation model data is the same as the number of MOZAIC flights for all of 2006 reported in Table 2. Because flight paths differ between ascents and descents and can also vary due to meteorological conditions, the horizontal spatial 34 location of the various measurements for a given altitude will also vary, and computing a temporal average across all data points also implies computing a spatial average. The spatial coverage of the virtual horizontal plane containing the individual flight trajectories over which the spatial averaging is calculated depends on the height. While the z = 0 level has the spatial coverage of a point (having the airport s coordinates), that of the z = 8.5 km level is much larger, containing all the trajectories (ascending and descending) to and from

11 E. Solazzo et al.: Evaluating regional air quality models in the vertical 801 c) d) 35 e) Figure 2. Fig. 2. Continued. Seasonal averaged mean profiles of ozone (top rows) and annual averaged mean profiles of CO, temperature, relative humidity (RH) and wind speed (WS) (year 2006) for a) Portland, b) Philadelphia, c) Atlanta, d) Dallas, and e) Frankfurt. The grey symbols are the observations.

12 802 E. Solazzo et al.: Evaluating regional air quality models in the vertical the airport. This aspect has an influence on the spread of the data. Coefficients of variation (CoVs), defined as the ratio between the standard deviation and the average of the annual distribution at any height, have been calculated in order to assess the model s capability of reproducing the observed variability. For synthesis, CoVs are shown for Frankfurt only (Fig. 7), but are discussed for all airports. Performance for T is considered to be satisfactory for all models, at all domains for at least the first 5 km (PCC in excess of 0.90 and fractional bias 1 %). For this reason, analysis for T is not shown Wind speed For all the airports, all models show significant errors in the modelled WS, and poor correlation with the observed values in the first 100 m. Although the sign of the bias cannot be deduced from a Taylor diagram, further analysis (not shown) indicates that the models are biased high. Smaller errors (still positive bias) are also observed at 500 and 1000 m. Poor correlation and moderate to high error within the PBL are common to all models at all sites, thus indicating that the meteorological models are not reproducing WS in the PBL precisely, which is arguably the most important region of the atmosphere in relation to AQ processes. This result supports the findings by Vautard et al. (2012) for the groundbased measurements. The poor model performance in the first 100 m at all sites is also confirmed by the analysis of the CoV, with modelled values well below the observations. A feature emerging is the clustering of performance based on altitude rather than on modelling system. For heights below the PBL, all models show the same deficiencies, indicating that incorrect simulation of WS near the surface is a common problem. There may be several reasons for this. First, near-surface winds are sensitive to several driving factors other than the synoptic circulation, such as land cover and surface energy exchange processes, which have been found to exhibit large model-to-model variability in global and regional models (e.g. see de Noblet-Ducoudré et al., 2012; Stegehuis et al., 2012). Second, unlike upper-air winds which are measured by rawinsondes and are incorporated in reanalysis products, surface winds are not used for producing reanalyses. Therefore, even with a strong nudging of the wind field to the reanalyses, a lower model skill is expected for surface winds as compared to upper-air winds. This is demonstrated by the improvement of model performance above 500 m. For all models at all sites, and more markedly at Portland and Philadelphia, PCC, error and variability improve constantly with height. In general, the best performance by all models is observed for z 3 km, with PCC > 0.8 at all NA sites, with the exception of the WRF/Chem model (PCC 0.65 at z = 3 km), and at Frankfurt Wind direction Although of pivotal importance for the transport of the polluted air masses, evaluation of the modelled WD is often overlooked. In this section we summarise the results of evaluating the AQ models of Table 2 using observed WD data from ground to 8.5 km. To simplify the analysis we have binned the frequency counts of the occurrences of WD angle using a 20 interval. Results are discussed in terms of normalised bias (modelled minus observed count, and divided by the observed count). In general, we find that the bias in the PBL for the Frankfurt airport is smaller and decreases faster with height than the NA airports. For the NA airports, in general there is a large bias within the PBL, which is most pronounced on the west coast (Portland). For the Portland airport, WRF-CMAQ and GEM show similar biases from 0 to 500 m: positive for north-west and negative for south-east ( 100 %). The other models are biased low in the eastern sector. From z = 500 to 1000 m, the bias increases and all models show a clear tendency to overestimate the occurrences of both westerly and easterly winds. Above the 1000 m height, the bias decreases and the models better reproduce the frequency distribution of observed WD. On the east coast of NA (Philadelphia airport), isolated cases of large bias are present at the 500 m and 4 km heights, where the two WRF models are biased high in the north and south sectors, respectively. For the inland airports of Atlanta and Dallas, some occurrences of very large bias are observed. For the Atlanta airport, all models are biased high in the west and north-west directions (50 %) in the first 250 m. From 500 to 1000 m, the models are biased high (50 to 100 %) in the north-eastern and south-western directions. For the Dallas airport, the east-west positive bias ( 20 %) present for all of the models in the first 250 m turns clockwise at 500 m, directed in the north-west direction. GEM and WRF-CAMx models also acquire a south-western bias component (about 70 %) at 1000 m. The bias progressively decreases above 2 km. At the Frankfurt airport, the models share similar bias patterns, at the ground, with a tendency to underestimate occurrences of northerly winds (all models) and overestimate the westerly components (with different magnitude by all models). Finally, we note that for the NA airports, the two simulations that used WRF do not always provide the same counts at all heights and at all locations. These two fields were derived from the same underlying WRF simulation. Therefore, the differences in this analysis were introduced when the two modelling groups independently interpolated these fields to the common horizontal and vertical analysis grid defined for the MOZAIC analysis under AQMEII and transferred these processed fields to ENSEMBLE. Thus, these differences highlight the difficulties in attributing differences in model performance to differences in model options, in particular for quantities with significant horizontal and vertical gradients such as wind direction.

13 E. Solazzo et al.: Evaluating regional air quality models in the vertical 803 a b c d e Fig. 3. Taylor diagrams for wind speed at (a) Portland, (b) Philadelphia, (c) Atlanta, (d) Dallas and Figure (e) 3 Frankfurt. - Taylor diagrams Height for by wind colours, speed at model a) Portland; b) Philadelp Frankfurt. Height by colours, model by symbols by symbols Relative humidity In contrast to WS, modelled values of RH exhibit a smaller increase in variability with height and vary more by site than WS (Fig. 4). The variability is underestimated by all models, as shown by the normalised standard deviation of Fig. 4, most predominantly below unity at all airports, with the exception of Portland where the variability in the first 1000 m is close to the observed variability. The best model performance for variability occurs between 500 and 1000 m, and then deteriorates with height. As stated earlier, this could be due to very small water vapour mixing ratio values aloft, which makes RH computation less reliable at higher altitudes. The analysis of the CoV reveals that the models tend to underestimate the observed variability in the free troposphere, especially for z > 6 km. Model performance is in general grouped by height, although with a few exceptions (such as the WRF/Chem at Frankfurt, Fig. 4e). The minimum model errors and maximum PCC occur for altitudes in the range of 1 to 3 km, although with some exceptions (most notably Atlanta) and not consistently for all models. For example, the Taylor diagram for Frankfurt (Fig. 4e) reveals a large scatter of data independent of height and model, with the same model performing well in some instances (LOTOS- EUROS at 3 km) but very poorly in others (the same model is off-scale at the surface). Further investigation is needed to determine whether the modelled variation of RH is not ill-treated, or in other words whether the modelling systems are getting the right answer for the right reason, which is one of the main objectives of the diagnostic model evaluation component defined in 37 Dennis et al. (2010) CO Profiles of modelled CO show PCC values typically below 0.6 at all heights and airports, with a limited number of exceptions (e.g. WRF-CMAQ at Frankfurt, whose PCC above 3 km exceeds 0.7) (Fig. 5a). All of the models have difficulty reproducing the temporal variability of CO mixing ratios, possibly due to the influence of local sources close to the airport, whose temporal variation is not captured by the models due to too coarse grid spacing. Analysis of the CoV demonstrates that the variability is largely overestimated in the PBL at all NA airports (up to a factor of two at Dallas, Atlanta, and Philadelphia). CoV estimates improve slightly with height above the PBL, with the best agreement in the range of 2 to 4 km. This may be due to a stronger dependence on the large-scale transport from the BCs combined with the

14 804 E. Solazzo et al.: Evaluating regional air quality models in the vertical a b c d e Figure 4 Taylor diagrams for relative humidity at a) Portland; b) Phila Fig. 4. Taylor diagrams for relative humidity at (a) Portland, (b) Philadelphia, (c) Atlanta, (d) Dallas Frankfurt. and Height (e) Frankfurt. by colours, model Height by symbols by colours, model by symbols. nudging of winds at these altitudes, while in the lower troposphere CO mixing ratios are the result of a more complex mix between transport and emission. The analysis for CO was not separated by season, but as there are more measurements available in summer than in winter, a bias to summer months is expected in the Taylor diagrams of Fig. 5a. CO concentrations are typically lower in the spring and summer than in winter at all altitudes with a minimum in July and maximum in February to April (Gilge et al., 2010; Elguindi et al., 2010). As a result, the annual mean deviation of the modelled to the observed profiles in Fig. 2 and the error in Fig. 5a are primarily associated with lower CO mixing ratios. Because model performance for CO is similar across all models, this may indicate problems with the inputs that were shared among the models. In particular, the fact that at the ground the majority of models overestimate observed mixing ratios suggests that emissions from certain source categories, such as mobile sources or biomass burning, are overestimated. Another reason could be the emission profiles used. If CO is primarily emitted in the lowest layer, mixing ratios at the surface might be overestimated. This hypothesis could be explored further by comparing the vertical profiles of other more long-lived species, such as aerosols. However, it is beyond the scope of this study to conclusively determine the reasons for the poor model performance near the surface. It is important to consider that biased meteorological drivers might have a bigger impact on long-lived species such as CO. Any error in the input wind field (speed and direction) can accumulate over time, possibly exacerbating errors introduced by imperfect 39 emission inventories. To test this hypothesis for CO, we calculated the correlation between the error in the modelled CO mixing ratio and the error in the WS at each given altitude and airport. Let corr(f z,s1 ;g z,s2 ) be the operator returning the PCC of any two fields f and g at height z for the species s 1 and s 2. Then corr(e z,w S ;e z,co ) is the PCC between the error of the WS at height z and the error of CO at the same height, whose profiles are reported in Fig. 5b. From the graph it can be seen that there are instances for the NA airports where the two fields are largely positively correlated (up to values of 0.3): CAMx, AURAMS, and DEHM models for the Philadelphia airport for z = 500 m and the WRF-CMAQ model at z = 3 km; the CCLM-CMAQ model for the Dallas airport for height up to 4 km and all models for the Dallas airport for z between 3 and 4 km. For these cases the errors of the two fields have the same trend. While a general trend is difficult to identify, there does appear to be a correlation between the fields for isolated

15 E. Solazzo et al.: Evaluating regional air quality models in the vertical 805 a b c d e Fig. 5a. Taylor diagrams for CO at (a) Portland, (b) Philadelphia, (c) Atlanta, (d) Dallas and (e) Figure Frankfurt. 5a Taylor Height diagrams byfor colours, CO at a) model Portland; byb) Philadelphia; c Height by colours, model by symbols symbols. model/airport/height combinations. Nonetheless, this analysis demonstrates that an association exists in certain cases, which deserve further investigations. We also note that instances of anti-correlation (negative PCC) are also numerous. In these cases, a decrease in WS error corresponds to an increase in CO error and vice versa, but it is difficult to determine whether they are associated with vertical intrusion or should just be treated as uncorrelated. Finally, WS and CO errors at Frankfurt do not show any association and can be considered independent Ozone Due to its adverse effects on human health, climate, and ecosystems, surface ozone is among the most extensively studied atmospheric trace gases. Solazzo et al. (2012a) have shown that overall the AQ modelling systems participating in AQMEII perform satisfactorily in reproducing ozone mixing ratios at ground level (showing better skill in NA than in EU). For most models and airports, the yearly averaged ozone scores of Fig. 6 indicate better performance near the ground (z 1000 m) than aloft. At Portland the scores under and above the PBL are overall comparable, and at Frankfurt several models 41 have scores higher for altitude between 500 and 1000 m (PCC in excess of 0.7) than for z < 500 m. The 1000 m height tends to mark a transition from the PBL regime, characterised by well-mixed dynamics and active photochemistry, to a tropospheric regime characterised by a more marked model-to-model variability. Similar conclusions were drawn by Chevalier et al. (2007). No clear factor emerges for grouping the ozone skill scores in Fig. 6. The two simulations using CMAQ over NA (driven by WRF and CCLM) do not produce similar scores at any of the airports, although they share the same BCs and emissions. By contrast, CMAQ and CAMx, the two AQ models driven by WRF, have rather similar results, indicating that the meteorological driver may have a substantial weight in determining the skill for ozone (in particular PBL dynamics). However, this latter hypothesis is not confirmed by the Taylor plots for Frankfurt (WRF/Chem and CMAQ are both driven by WRF) though, as the scores are primarily grouped

16 806 E. Solazzo et al.: Evaluating regional air quality models in the vertical Fig. 5b. Profiles offigure correlation 5b. Profiles between of the correlation WS andbetween CO errors the for WS the and airports CO errors of Portland, for the airports Philadelphia of Portland, (first row), Atlanta, Dallas (middle row) and Frankfurt Philadelphia (lower panel). (first row), Atlanta, Dallas (middle row), and Frankfurt (lower panel). by AQ modelling system, with the two simulations of CMAQ producing similar scores. The standard deviation and the CoV are generally overestimated within the PBL and underestimated aloft, although with several exceptions depending on the site, height, and model used, especially at the Atlanta, Dallas, and Frankfurt airports where the variability score at high altitudes is comparable to that in the PBL. WRF/Chem at Frankfurt shows the lowest variability at all heights, and close to zero for z 3 km, possibly because at these heights the simulated values are already influenced to some extent by the WRF/Chem BCs (constant values), which are too low, particularly in the spring and summer, at and above that height (see Fig. 2). The DEHM model underestimates the CoV at all NA airports, possibly due to the use of RCP emissions and different set of BCs (see Table 2). The variability and errors above 3 km and up to 8.5 km reveal some model deficiencies. The mean seasonal profiles in Fig. 2 indicate that the models tend to underestimate ozone between 3 and 6 km, but they overestimate ozone mixing ratios above that height (see Frankfurt for example), though not systematically for all locations and all seasons. This could be due to an underestimation of the exchange between the upper troposphere and the lower stratosphere and/or diffusive model errors related to coarse vertical gridding. By contrast, for the case of global-scale chemistry models, Brunner et al. (2003) reported a tendency of models to overestimate ozone mixing ratios over NA between 5.5 and 8 km throughout the year (based on the period ). However, while those results were averaged over the entire NA continent, here we are comparing regional-scale models at considerably smaller scales, and the different behaviour could simply be attributed to the different grid sizing as well as the different time period. 5 Altitudinal correlations In this section we investigate the degree of association between the error at the ground and the error aloft (0<z 8.5 km), measured by the PCC for each of 43 the variables. With the terminology introduced in Sect , the association is expressed as corr(e 0,s,e z,s ), where s is the variable under investigation (either ozone, CO, WS, RH) and z identifies the altitude in the range defined above (between 0 and 8500 m). The intent of this analysis is to investigate whether errors in each field stem from sources and processes common to the surface and upper air. If errors at the ground and aloft are caused by independent processes, we would expect the respective time series of errors to be uncorrelated. For example, if errors near the surface are primarily due to the treatment of PBL processes (photochemistry, deposition, emissions, turbulent mixing), these errors should not be correlated with errors above the PBL. Conversely, in the case where errors are

17 E. Solazzo et al.: Evaluating regional air quality models in the vertical 807 a b c d e Figure 6 Taylor diagrams for ozone at a) Portland; b) Philadelphia; c) Atlant Height by colours, model by symbols Fig. 6. Taylor diagrams for ozone at (a) Portland, (b) Philadelphia, (c) Atlanta, (d) Dallas and (e) Frankfurt. Height by colours, model by symbols. contributed to the large-scale circulation, we would expect that under- or over-estimation is observed simultaneously at different altitudes, and therefore correlated. Figure 8 reports how the fractional difference (FD) at the ground is correlated with the FD aloft for all investigated airports. FD is defined as FD = Mod Obs 0.5(Mod + Obs), (1) where Mod and Obs are N-length vectors denoting the modelled and the observed field value, respectively. Here N is the number of hourly flights available for the period being analysed (reported in Table 1). The correlations are calculated between the N-length FD vector at the ground and the N-length FD vector at other levels. The profiles of FD correlations in Fig. 8 demonstrate that for the investigated fields (with some exceptions for CO as discussed below) positive correlations are limited to the PBL, and biases within the PBL are poorly correlated with those of the free troposphere at all airports. The gradient of the correlation profiles drops sharply with height for both WS and RH. For these latter fields in particular, we observe the strongest vertical gradient as well as the most homogeneous behaviour among the different models, suggesting that the 44 proper simulation of WS and RH in the PBL is principally determined by near-surface processes (the only exception is WRF/WRF-Chem at Frankfurt). Correlation of FD profiles for CO exhibits a less homogeneous behaviour. PCC varies aloft between and , this latter value primarily associated with the MM5- DEHM modelling system, for which the hypothesis of largescale error might explain the correlation between bias at the ground and aloft (note that DEHM results reflect the strong vertical mixing shown by the mean vertical profiles of Fig. 2). Correlation of FD profiles for ozone is more homogeneous than CO among the different models, supporting the proposition that the vertical ozone profile is the result of an interplay between an ozone reservoir in the upper troposphere and ground-level mixing ratios (Zhang and Rao, 1999; Godowitch et al., Overall, errors produced in the PBL for ozone remain contained within the PBL (all models show similar patterns) and are weakly connected with those above,

18 808 E. Solazzo et al.: Evaluating regional air quality models in the vertical Figure 7. Modelled (vertical axis) versus observed (horizontal axis) coefficients of variation for Fig. 7. Modelled (vertical Frankfurt axis) (year versus 2006) observed for (clockwise (horizontal from top-left): axis) coefficients ozone, CO, of RH, variation and WS. for The Frankfurt straight line (year is the 2006) for (clockwise from top-left) ozone, CO, perfect WS, and agreement. RH. TheHeight straight by line colours, is themodel perfectby agreement. symbols. Height by colours, model by symbols. although for Frankfurt this pattern is less pronounced. Above the PBL, and especially for the two CMAQ simulations at Portland and WRF/Chem at Frankfurt, the FD correlation profiles are more varied, typically low for CAMx (close to zero between 3 and 4 km at all airports) and scattered between PCC values of 0 to 0.3 for the other models. Although the altitudinal correlation analysis is very informative about how far the errors at the ground propagate in the vertical, it cannot be considered exhaustive as it does not provide detailed insight into the modelling systems ability to represent specific processes. Instead, it reveals the need for a more quantitative evaluation of vertical mixing. This could be accomplished by comparing the modelled PBL height with measurements; however, these data were not collected within AQMEII. 6 Altitudinal error: the case of ozone 6.1 Aggregate seasonal error The seasonal error associated with the model s capability of estimating ozone mixing ratios in the vertical is investigated for all airports and models. The error is expressed as fractional absolute difference (FAD): FAD = Mod Obs 0.5(Mod + Obs) (2) (the elements in Eq. 2 have been defined in Eq. 1). Results are presented for the winter months of December, January, and February (DJF, Fig. 9) and for the summer months of June, July, and August (JJA, Fig. 10) in terms of cumulative FAD. The bars in Figs. 9 and 10 represent the sum of the errors produced by each model for that height. Since there are about twice the number of models for EU as for NA (9 vs. 5), one would expect the cumulative FAD of EU to be about twice that of NA. However, this is not the case for winter at Frankfurt, where errors at the ground are more than twice those of the NA airports. Almost every model has a large FAD at the ground, suggesting some common problem among the models (possibly biased emissions). With height the errors of CAMx and LOTOS-EUROS decrease, while SILAM s remains large (Frankfurt, winter). By contrast, 46 in the summer, cumulative FAD at Frankfurt is about twice that of Philadelphia and Dallas, but approximately the same as Portland and Atlanta, where all of the models exhibit larger errors than at Philadelphia and Dallas (the AURAMS model has the largest FAD). The marked decrease of FAD with height for summer (Fig. 10) indicates that model discrepancies are mainly related to surface processes. Particularly, errors could stem from an overestimation of emissions in the surrounding area, giving rise to an excess of ozone production from primary precursors. As for ozone, the underestimation of deposition processes could also be a source of error. Horizontal advection and photochemistry schemes are also possible causes of model-to-model discrepancies (Zyryanov et al., 2012).

19 E. Solazzo et al.: Evaluating regional air quality models in the vertical 809 Fig. 8. Correlation coefficient Figure 8. Correlation between the coefficient fractional between difference the (FD) Fractional at any height Difference and the (FD) FD at at any the height ground and (z the = 0) FD for at ozone, CO, RH, and WS (columns) and the for the ground airports (z=0) of for Portland, ozone, CO, Philadelphia, RH, and WS Atlanta, (columns) Dallas, and and for the Frankfurt airports (rows) of Portland, (year 2006). Philadelphia, The first line of the legend Atlanta, Dallas, and Frankfurt (rows) (year 2006). The first line of the legend refers to the NA models, refers to the NA models, while the other two lines to Frankfurt. while the other two lines to Frankfurt. Furthermore, the error of the WRF-CMAQ model at the ground at Philadelphia in winter is larger than the other instance of CMAQ driven by CCLM, likely due to a higher titration effect. Figure 2 also shows that WRF-CMAQ exhibits the highest CO mixing ratio, suggesting that differences between the two CMAQ simulations may be due to the different vertical diffusion scheme used. Moreover, the distribution of FAD from the CCLM-CMAQ model (negligible at ground and larger above 500 m) at Portland in winter and at Philadelphia and Dallas in summer suggests that CCLM- CMAQ is able to capture the surface layer equilibrium between NOx and ozone better than the other models. It is also worth noting that the performance of CCLM-CMAQ aloft is comparable with those of the other models, indicating that surface-level processes are not strongly influenced by ozone aloft. Finally, the large error at 8.5 km at Frankfurt is due to model top boundary being close to that height, 47 as for example the SILAM model. Overall the diversity of modelling errors both in the PBL (particularly in summer) and in the free troposphere (particularly in winter) indicates a large range of differences in the AQ models, particularly at Frankfurt in both seasons. These differences relate to turbulence, transport, and photochemistry in the PBL (the emissions are largely shared), and to grid spacing, top and lateral boundaries, and the advection schemes used in the free troposphere.

20 810 E. Solazzo et al.: Evaluating regional air quality models in the vertical Figure 9 Cumulative Fractional Absolute Difference (FAD) of modelled ozone for the months of Fig. 9. Cumulative fractional absolute difference (FAD) of modelled ozone for the months of December, January, and February December, January, and February Figure 10. Cumulative Fractional Absolute Difference (FAD) of modelled ozone for the months of June, July, and August Fig. 10. Cumulative fractional absolute difference (FAD) of modelled ozone for the months of June, July, and August Bias due to boundary conditions In this section we expand the model evaluation by providing comparison between the lateral BCs for ozone and the vertical profiles of ozone measured on-board MOZAIC aircraft. We show the analysis for NA only, as the proximity of the airports to the edges of the modelled domain allows testing the influence of the BCs more effectively. Details about the preparation of the standard BCs for AQMEII are given in Schere et al. (2012). For the airports of Vancouver and Portland (west coast) and Philadelphia (east coast), we analyse the following hourly vertical profiles averaged over the months of January and August:

The Air Quality Model Evaluation International Initiative (AQMEII)

The Air Quality Model Evaluation International Initiative (AQMEII) The Air Quality Model Evaluation International Initiative (AQMEII) Christian Hogrefe 1, Stefano Galmarini 2, Efisio Solazzo 2, Ulas Im 3, Marta Garcia Vivanco 4,5, Augustin Colette 4, and AQMEII modeling

More information

Supplement to the. Final Report on the Project TRACHT-MODEL. Transport, Chemistry and Distribution of Trace Gases in the Tropopause Region: Model

Supplement to the. Final Report on the Project TRACHT-MODEL. Transport, Chemistry and Distribution of Trace Gases in the Tropopause Region: Model Anhang 2 Supplement to the Final Report on the Project TRACHT-MODEL Transport, Chemistry and Distribution of Trace Gases in the Tropopause Region: Model H. Feldmann, A. Ebel, Rheinisches Institut für Umweltforschung

More information

Using Global and Regional Models to Represent Background Ozone Entering Texas

Using Global and Regional Models to Represent Background Ozone Entering Texas Using Global and Regional Models to Represent Background Ozone Entering Texas AQRP Project 12-011 Chris Emery, Ed Tai, Greg Yarwood ENVIRON International Corporation Meiyun Lin Princeton University/NOAA

More information

Feedbacks between Air Pollution and Weather, Part 1: Effects on Weather

Feedbacks between Air Pollution and Weather, Part 1: Effects on Weather Accepted Manuscript Feedbacks between Air Pollution and Weather, Part 1: Effects on Weather P.A. Makar, W. Gong, J. Milbrandt, C. Hogrefe, Y. Zhang, G. Curci, R. Žabkar, U. Im, A. Balzarini, R. Baró, R.

More information

Improvement of Meteorological Inputs for Air Quality Study

Improvement of Meteorological Inputs for Air Quality Study July 21, 2008 NCAR GEO Turbulance Improvement of Meteorological Inputs for Air Quality Study Fong (Fantine) Ngan Daewon W. Byun DaeGyun Lee, Soontae Kim, XiangShang Li and Peter Percell Institute for Multidimensional

More information

Regional modelling and assessment of atmospheric particulate matter concentrations at rural background locations in Europe

Regional modelling and assessment of atmospheric particulate matter concentrations at rural background locations in Europe Regional modelling and assessment of atmospheric particulate matter concentrations at rural background locations in Europe Goran Gašparac 1, Amela Jeričević 2 Prashant Kumar 3 1 Geophysical and Ecological

More information

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

The North Atlantic Oscillation: Climatic Significance and Environmental Impact 1 The North Atlantic Oscillation: Climatic Significance and Environmental Impact James W. Hurrell National Center for Atmospheric Research Climate and Global Dynamics Division, Climate Analysis Section

More information

APPLICATION OF CMAQ ON HEMISPHERIC SCALES

APPLICATION OF CMAQ ON HEMISPHERIC SCALES APPLICATION OF CMAQ ON HEMISPHERIC SCALES O. Russell Bullock, Jr.* and Rohit Mathur US Environmental Protection Agency, Research Triangle Park, NC, USA Francis S. Binkowski and Neil N. Davis Carolina Environmental

More information

Comprehensive Analysis of Annual 2005/2008 Simulation of WRF/CMAQ over Southeast of England

Comprehensive Analysis of Annual 2005/2008 Simulation of WRF/CMAQ over Southeast of England Comprehensive Analysis of Annual 2005/2008 Simulation of WRF/CMAQ over Southeast of England The 13 th International Conference on Harmonization within Atmospheric Dispersion Modelling for Regulatory Purposes

More information

Regional Climate Simulations with WRF Model

Regional Climate Simulations with WRF Model WDS'3 Proceedings of Contributed Papers, Part III, 8 84, 23. ISBN 978-8-737852-8 MATFYZPRESS Regional Climate Simulations with WRF Model J. Karlický Charles University in Prague, Faculty of Mathematics

More information

Impacts of Aerosol Direct/Indirect Effect Feedbacks and Forest Shading/Turbulence on Urban Air Quality Forecasts

Impacts of Aerosol Direct/Indirect Effect Feedbacks and Forest Shading/Turbulence on Urban Air Quality Forecasts Impacts of Aerosol Direct/Indirect Effect Feedbacks and Forest Shading/Turbulence on Urban Air Quality Forecasts Paul A. Makar, Ayodeji Akingunola, Craig Stroud, Junhua Zhang, Wanmin Gong, Michael D. Moran,

More information

The Challenge of. Guy Brasseur

The Challenge of. Guy Brasseur The Challenge of Monitoring and Predicting Chemical Weather Guy Brasseur Introduction: What is Chemical Weather? What is Chemical Weather? Local, regional, and global distributions of important trace gases

More information

REGIONAL AIR QUALITY FORECASTING OVER GREECE WITHIN PROMOTE

REGIONAL AIR QUALITY FORECASTING OVER GREECE WITHIN PROMOTE REGIONAL AIR QUALITY FORECASTING OVER GREECE WITHIN PROMOTE Poupkou A. (1), D. Melas (1), I. Kioutsioukis (2), I. Lisaridis (1), P. Symeonidis (1), D. Balis (1), S. Karathanasis (3) and S. Kazadzis (1)

More information

Atmospheric composition modeling over the Arabian Peninsula for Solar Energy applications

Atmospheric composition modeling over the Arabian Peninsula for Solar Energy applications Atmospheric composition modeling over the Arabian Peninsula for Solar Energy applications S Naseema Beegum, Imen Gherboudj, Naira Chaouch, and Hosni Ghedira Research Center for Renewable Energy Mapping

More information

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS,

More information

Regional services and best use for boundary conditions

Regional services and best use for boundary conditions Regional services and best use for boundary conditions MACC-III User Workshop Roma, 11 May 2015 Virginie Marécal (Météo-France) Laurence Rouïl (INERIS) and the MACC regional consortium Regional services

More information

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Impacts of Climate Change on Autumn North Atlantic Wave Climate Impacts of Climate Change on Autumn North Atlantic Wave Climate Will Perrie, Lanli Guo, Zhenxia Long, Bash Toulany Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS Abstract

More information

Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics

Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics Tieh-Yong KOH 1 and Ricardo M. FONSECA 2 1 Singapore University of Social Sciences, Singapore 2

More information

1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT

1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT 1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT Enrico Minguzzi 1 Marco Bedogni 2, Claudio Carnevale 3, and Guido Pirovano 4 1 Hydrometeorological Service of Emilia Romagna (SIM),

More information

MOZAIC-IAGOS : Its role in the satellite validation and in assessing the ozone trends.

MOZAIC-IAGOS : Its role in the satellite validation and in assessing the ozone trends. MOZAIC-IAGOS : Its role in the satellite validation and in assessing the ozone trends. MOZAIC Aug. 1994 Jun. 2009 http://mozaic.aero.obs-mip.fr 32 000 flights 230 000 Hours http://www.iagos.org V. Thouret,

More information

3. Carbon Dioxide (CO 2 )

3. Carbon Dioxide (CO 2 ) 3. Carbon Dioxide (CO 2 ) Basic information on CO 2 with regard to environmental issues Carbon dioxide (CO 2 ) is a significant greenhouse gas that has strong absorption bands in the infrared region and

More information

The benefits and developments in ensemble wind forecasting

The benefits and developments in ensemble wind forecasting The benefits and developments in ensemble wind forecasting Erik Andersson Slide 1 ECMWF European Centre for Medium-Range Weather Forecasts Slide 1 ECMWF s global forecasting system High resolution forecast

More information

Creating Meteorology for CMAQ

Creating Meteorology for CMAQ Creating Meteorology for CMAQ Tanya L. Otte* Atmospheric Sciences Modeling Division NOAA Air Resources Laboratory Research Triangle Park, NC * On assignment to the National Exposure Research Laboratory,

More information

Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model

Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model 251 Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model Mai Van KHIEM, Ryozo OOKA, Hong HUANG and Hiroshi HAYAMI In recent

More information

MULTI-MODEL AIR QUALITY FORECASTING OVER NEW YORK STATE FOR SUMMER 2008

MULTI-MODEL AIR QUALITY FORECASTING OVER NEW YORK STATE FOR SUMMER 2008 MULTI-MODEL AIR QUALITY FORECASTING OVER NEW YORK STATE FOR SUMMER 2008 Christian Hogrefe 1,2,*, Prakash Doraiswamy 2, Winston Hao 1, Brian Colle 3, Mark Beauharnois 2, Ken Demerjian 2, Jia-Yeong Ku 1,

More information

European Developments in Mesoscale Modelling for Air Pollution Applications Activities of the COST 728 Action

European Developments in Mesoscale Modelling for Air Pollution Applications Activities of the COST 728 Action European Developments in Mesoscale Modelling for Air Pollution Applications Activities of the COST 728 Action R S Sokhi*, A Baklanov, H Schlünzen, M Sofiev, M Athanassiadou, Peter Builtjes and COST 728

More information

14.4 NUMERICAL SIMULATION OF AIR POLLUTION OVER KANTO AREA IN JAPAN USING THE MM5/CMAQ MODEL

14.4 NUMERICAL SIMULATION OF AIR POLLUTION OVER KANTO AREA IN JAPAN USING THE MM5/CMAQ MODEL . NUMERICAL SIMULATION OF AIR POLLUTION OVER KANTO AREA IN JAPAN USING THE MM/CMAQ MODEL - COMPARISON OF AIR POLLUTION CONCENTRATION BETWEEN TWO DIFFERENT CLIMATIC DAYS - Hong HUANG*,a, Ryozo OOKA a, Mai

More information

Impact of forest fires, biogenic emissions and high. temperatures on the elevated Eastern Mediterranean. ozone levels during the hot summer of 2007

Impact of forest fires, biogenic emissions and high. temperatures on the elevated Eastern Mediterranean. ozone levels during the hot summer of 2007 Supplementary Material to Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007 Ø. Hodnebrog 1,2, S. Solberg

More information

J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA 3.

J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA 3. J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA Scott Beaver 1*, Ahmet Palazoglu 2, Angadh Singh 2, and Saffet Tanrikulu

More information

Baseline Ozone in Western North America: Measurements and Models. David Parrish

Baseline Ozone in Western North America: Measurements and Models. David Parrish Baseline Ozone in Western North America: Measurements and Models David Parrish CIRES University of Colorado NOAA/ESRL Chemical Sciences Division Boulder, Colorado USA Consultant with David.D.Parrish, LLC

More information

2. Outline of the MRI-EPS

2. Outline of the MRI-EPS 2. Outline of the MRI-EPS The MRI-EPS includes BGM cycle system running on the MRI supercomputer system, which is developed by using the operational one-month forecasting system by the Climate Prediction

More information

Data Assimilation for Tropospheric CO. Avelino F. Arellano, Jr. Atmospheric Chemistry Division National Center for Atmospheric Research

Data Assimilation for Tropospheric CO. Avelino F. Arellano, Jr. Atmospheric Chemistry Division National Center for Atmospheric Research Data Assimilation for Tropospheric CO Avelino F. Arellano, Jr. Atmospheric Chemistry Division National Center for Atmospheric Research Caveat: Illustrative rather than quantitative, applied rather than

More information

Evaluation of the meteorological forcing used for the Air Quality Model Evaluation InternationaI Initiative (AQMEII) air quality simulations

Evaluation of the meteorological forcing used for the Air Quality Model Evaluation InternationaI Initiative (AQMEII) air quality simulations 1 2 3 4 5 6 7 Evaluation of the meteorological forcing used for the Air Quality Model Evaluation InternationaI Initiative (AQMEII) air quality simulations Robert Vautard (1), Michael D. Moran (2), Efisio

More information

Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde

Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde Jesper H. Christensen NERI-ATMI, Frederiksborgvej 399 4000 Roskilde The model work is financially supported by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental

More information

Will a warmer world change Queensland s rainfall?

Will a warmer world change Queensland s rainfall? Will a warmer world change Queensland s rainfall? Nicholas P. Klingaman National Centre for Atmospheric Science-Climate Walker Institute for Climate System Research University of Reading The Walker-QCCCE

More information

An Upper Boundary Condition for Chemical Species

An Upper Boundary Condition for Chemical Species An Upper Boundary Condition for Chemical Species Mary Barth Gabriele Pfister, Jean-Francois Lamarque, Jeff Lee NCAR Earth System Laboratory National Center for Atmospheric Research Boulder, Colorado NCAR

More information

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By:

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By: AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution Paper No. 33252 Prepared By: Anthony J Schroeder, CCM Managing Consultant TRINITY CONSULTANTS 7330 Woodland Drive Suite 225

More information

NOAA s Air Quality Forecasting Activities. Steve Fine NOAA Air Quality Program

NOAA s Air Quality Forecasting Activities. Steve Fine NOAA Air Quality Program NOAA s Air Quality Forecasting Activities Steve Fine NOAA Air Quality Program Introduction Planned Capabilities Initial: 1-day 1 forecast guidance for ozone Develop and validate in Northeastern US September,

More information

Source apportionment of fine particulate matter over the Eastern U.S. Part I. Source sensitivity simulations using CMAQ with the Brute Force method

Source apportionment of fine particulate matter over the Eastern U.S. Part I. Source sensitivity simulations using CMAQ with the Brute Force method S1 SUPPORTING MATERIAL Source apportionment of fine particulate matter over the Eastern U.S. Part I. Source sensitivity simulations using CMAQ with the Brute Force method Michael Burr and Yang Zhang Department

More information

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013 WRF/Chem forecasting of boundary layer meteorology and O 3 Xiaoming Hu @ 湖南气象局 Nov. 22 th 2013 Importance of O 3, Aerosols Have adverse effects on human health and environments Reduce visibility Play an

More information

6.11 BOUNDARY LAYER EVOLUTION OVER PHILADELPHIA, PA DURING THE 1999 NARSTO-NE-OPS PROJECT: COMPARISON OF OBSERVATIONS AND MODELING RESULTS

6.11 BOUNDARY LAYER EVOLUTION OVER PHILADELPHIA, PA DURING THE 1999 NARSTO-NE-OPS PROJECT: COMPARISON OF OBSERVATIONS AND MODELING RESULTS 6.11 BOUNDARY LAYER EVOLUTION OVER PHILADELPHIA, PA DURING THE 1999 NARSTO-NE-OPS PROJECT: COMPARISON OF OBSERVATIONS AND MODELING RESULTS Kevin L. Civerolo 1,*, Jia-Yeong Ku 1, Bruce G. Doddridge 2, Richard

More information

1.07 A FOUR MODEL INTERCOMPARISON CONCERNING CHEMICAL MECHANISMS AND NUMERICAL INTEGRATION METHODS

1.07 A FOUR MODEL INTERCOMPARISON CONCERNING CHEMICAL MECHANISMS AND NUMERICAL INTEGRATION METHODS 1.7 A FOUR MODEL INTERCOMPARISON CONCERNING CHEMICAL MECHANISMS AND NUMERICAL INTEGRATION METHODS Bedogni M. 1, Carnevale C. 2, Pertot C. 3, Volta M. 2 1 Mobility and Environmental Ag. of Milan, Milan,

More information

Application and verification of ECMWF products: 2010

Application and verification of ECMWF products: 2010 Application and verification of ECMWF products: 2010 Hellenic National Meteorological Service (HNMS) F. Gofa, D. Tzeferi and T. Charantonis 1. Summary of major highlights In order to determine the quality

More information

Precipitation processes in the Middle East

Precipitation processes in the Middle East Precipitation processes in the Middle East J. Evans a, R. Smith a and R.Oglesby b a Dept. Geology & Geophysics, Yale University, Connecticut, USA. b Global Hydrology and Climate Center, NASA, Alabama,

More information

The climate change penalty on US air quality: New perspectives from statistical models

The climate change penalty on US air quality: New perspectives from statistical models The climate change penalty on US air quality: New perspectives from statistical models Charles River Path, Boston, July 2010 Salt Lake City, January 2013 Loretta J. Mickley, Lu Shen, Xu Yue Harvard University

More information

Regional climate modelling in the future. Ralf Döscher, SMHI, Sweden

Regional climate modelling in the future. Ralf Döscher, SMHI, Sweden Regional climate modelling in the future Ralf Döscher, SMHI, Sweden The chain Global H E H E C ( m 3/s ) Regional downscaling 120 adam 3 C HAM 4 adam 3 C HAM 4 trl A2 A2 B2 B2 80 40 0 J F M A M J J A S

More information

Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF

Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Water Balance in the Murray-Darling Basin and the recent drought as modelled with WRF Evans, J.P. Climate

More information

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR In this chapter, comparisons between the model-produced and analyzed streamlines,

More information

Regional Production Quarterly report on the daily analyses and forecasts activities, and verification of the ENSEMBLE performances

Regional Production Quarterly report on the daily analyses and forecasts activities, and verification of the ENSEMBLE performances Regional Production Quarterly report on the daily analyses and forecasts activities, and verification of the ENSEMBLE performances December 2015 January 2016 February 2016 Issued by: METEO-FRANCE Date:

More information

2. The french National Centre for Meteorological Forecasts (CNP)

2. The french National Centre for Meteorological Forecasts (CNP) RSMC TOULOUSE USERS INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS March 2016 1. Introduction Météo-France is a French executive agency with legal status and financial autonomy. Its responsibilities

More information

Wen Xu* Alberta Environment and Sustainable Resource Development, Edmonton, Alberta, Canada

Wen Xu* Alberta Environment and Sustainable Resource Development, Edmonton, Alberta, Canada Air Quality and Acid Deposition Simulation of South Athabasca Oil Sands Area Applying WRF, CMAQ and CALPUFF Models, and Model Performance Evaluations of WRF and CMAQ Models Wen Xu* Alberta Environment

More information

Know and Respond AQ Alert Service. Paul Willis SCOTTISH AIR QUALITY DATABASE AND WEBSITE ANNUAL SEMINAR Stirling 30 th March 2011

Know and Respond AQ Alert Service. Paul Willis SCOTTISH AIR QUALITY DATABASE AND WEBSITE ANNUAL SEMINAR Stirling 30 th March 2011 Know and Respond AQ Alert Service Paul Willis SCOTTISH AIR QUALITY DATABASE AND WEBSITE ANNUAL SEMINAR Stirling 30 th March 2011 Outline: Know and Respond AQ Alert Service Introduction. The Website. How

More information

Global and regional Earth-System (atmosphere) Monitoring using Satellite and in-situ data (GEMS)

Global and regional Earth-System (atmosphere) Monitoring using Satellite and in-situ data (GEMS) Global and regional Earth-System (atmosphere) Monitoring using Satellite and in-situ data (GEMS) T. Hollingsworth 1, O. Boucher 2, H. Eskes 3, C. Granier 4, V.H. Peuch 5, P. Rayner 6, M. Schultz 7, A.

More information

AQMEII and ENSEMBLE. S. Galmarini, PhD C. Hogrefe, PhD

AQMEII and ENSEMBLE. S. Galmarini, PhD C. Hogrefe, PhD AQMEII and ENSEMBLE S. Galmarini, PhD C. Hogrefe, PhD EC/JRC/IES US-EPA outline AQMEII P1 ENSEMBLE platform AQMEII P2 Developments in the direction of interoperability AQMEII/HTAP see C. Hogrefe Talk on

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

Transport of Asian ozone pollution into surface air over the western U.S. in spring. Meiyun Lin

Transport of Asian ozone pollution into surface air over the western U.S. in spring. Meiyun Lin HTAP, NASA JPL, 2/2/2012 Transport of Asian ozone pollution into surface air over the western U.S. in spring Meiyun Lin Lin, M., A. M. Fiore, L. W. Horowitz, O. R. Cooper, V. Naik, J. S. Holloway, B. J.

More information

ECMWF global reanalyses: Resources for the wind energy community

ECMWF global reanalyses: Resources for the wind energy community ECMWF global reanalyses: Resources for the wind energy community (and a few myth-busters) Paul Poli European Centre for Medium-range Weather Forecasts (ECMWF) Shinfield Park, RG2 9AX, Reading, UK paul.poli

More information

NOAA-EPA s s U.S. National Air Quality Forecast Capability

NOAA-EPA s s U.S. National Air Quality Forecast Capability NOAA-EPA s s U.S. National Air Quality Forecast Capability May 10, 2006 Paula M. Davidson 1, Nelson Seaman 1, Jeff McQueen 1, Rohit Mathur 1,2, Chet Wayland 2 1 National Oceanic and Atmospheric Administration

More information

A B C D PROBLEMS Dilution of power plant plumes. z z z z

A B C D PROBLEMS Dilution of power plant plumes. z z z z 69 PROBLEMS 4. Dilution of power plant plumes Match each power plant plume (-4) to the corresponding atmospheric lapse rate (A-D, solid lines; the dashed line is the adiabatic lapse rate Γ). Briefly comment

More information

PRELIMINARY EXPERIENCES WITH THE MULTI-MODEL AIR QUALITY FORECASTING SYSTEM FOR NEW YORK STATE

PRELIMINARY EXPERIENCES WITH THE MULTI-MODEL AIR QUALITY FORECASTING SYSTEM FOR NEW YORK STATE PRELIMINARY EXPERIENCES WITH THE MULTI-MODEL AIR QUALITY FORECASTING SYSTEM FOR NEW YORK STATE Prakash Doraiswamy 1,,*, Christian Hogrefe 1,2, Winston Hao 2, Brian Colle 3, Mark Beauharnois 1, Ken Demerjian

More information

University of Reading, Reading, United Kingdom. 2 Hadley Centre for Climate Prediction and Research, Meteorological Office, Exeter, United Kingdom.

University of Reading, Reading, United Kingdom. 2 Hadley Centre for Climate Prediction and Research, Meteorological Office, Exeter, United Kingdom. 9.1 RUNNING A CLIMATE MODEL IN FORECAST MODE TO IDENTIFY THE SOURCE OF TROPICAL CLIMATE ERRORS: WITH SPECIFIC REFERENCE TO THE DRY BIAS OVER THE MARITIME CONTINENT IN AN ATMOSPHERE ONLY GCM 1 Jane Strachan,

More information

Generating Virtual Wind Climatologies through the Direct Downscaling of MERRA Reanalysis Data using WindSim

Generating Virtual Wind Climatologies through the Direct Downscaling of MERRA Reanalysis Data using WindSim Generating Virtual Wind Climatologies through the Direct Downscaling of MERRA Reanalysis Data using WindSim WindSim Americas User Meeting December 4 th, 2014 Orlando, FL, USA Christopher G. Nunalee cgnunale@ncsu.edu

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Summertime State-Level Source-Receptor Relationships between NO x Emissions and Downwind Surface Ozone Concentrations over the Continental United States Daniel Q. Tong (tong.daniel@epa.gov)

More information

M. Mielke et al. C5816

M. Mielke et al. C5816 Atmos. Chem. Phys. Discuss., 14, C5816 C5827, 2014 www.atmos-chem-phys-discuss.net/14/c5816/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /, JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: an ensemble approach applied to

More information

ABSTRACT 2 DATA 1 INTRODUCTION

ABSTRACT 2 DATA 1 INTRODUCTION 16B.7 MODEL STUDY OF INTERMEDIATE-SCALE TROPICAL INERTIA GRAVITY WAVES AND COMPARISON TO TWP-ICE CAM- PAIGN OBSERVATIONS. S. Evan 1, M. J. Alexander 2 and J. Dudhia 3. 1 University of Colorado, Boulder,

More information

HTAP-2 analysis for the Arctic

HTAP-2 analysis for the Arctic Institute for Climate and Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT Photo: Chuck Brock, NOAA. HTAP-2 analysis for the Arctic Steve R. Arnold 1, Louisa K. Emmons 2, Kathy S. Law 3, Sarah A. Monks

More information

Bugs in JRA-55 snow depth analysis

Bugs in JRA-55 snow depth analysis 14 December 2015 Climate Prediction Division, Japan Meteorological Agency Bugs in JRA-55 snow depth analysis Bugs were recently found in the snow depth analysis (i.e., the snow depth data generation process)

More information

CAMS. Vincent-Henri Peuch (ECMWF) Atmosphere Monitoring. Copernicus EU.

CAMS. Vincent-Henri Peuch (ECMWF) Atmosphere Monitoring. Copernicus EU. CAMS COPERNICUS ATMOSPHERE M O NITO RING SERVICE Vincent-Henri Peuch (ECMWF) Copernicus EU Copernicus EU Copernicus EU www.copernicus.eu W H A T I S C O P E R N I C U S? Copernicus Copernicus is a flagship

More information

Use of climate reanalysis for EEA climate change assessment. Blaz Kurnik. European Environment Agency (EEA)

Use of climate reanalysis for EEA climate change assessment. Blaz Kurnik. European Environment Agency (EEA) Use of climate reanalysis for EEA climate change assessment Blaz Kurnik European Environment Agency (EEA) 2016: EEA content priorities Circular economy Climate and Energy Sustainable Development Goals

More information

Application and verification of ECMWF products 2009

Application and verification of ECMWF products 2009 Application and verification of ECMWF products 2009 Hungarian Meteorological Service 1. Summary of major highlights The objective verification of ECMWF forecasts have been continued on all the time ranges

More information

Air quality. EU GEMS project. European air quality satellite missions. Hennie Kelder. KNMI University of Technology, Eindhoven

Air quality. EU GEMS project. European air quality satellite missions. Hennie Kelder. KNMI University of Technology, Eindhoven Air quality EU GEMS project European air quality satellite missions Hennie Kelder KNMI University of Technology, Eindhoven Global and regional Earth-System (atmosphere) Monitoring using Satellite and in-situ

More information

HIGH RESOLUTION CMAQ APPLICATION FOR THE REGIONAL MUNICIPALITY OF PEEL, ONTARIO, CANADA

HIGH RESOLUTION CMAQ APPLICATION FOR THE REGIONAL MUNICIPALITY OF PEEL, ONTARIO, CANADA HIGH RESOLUTION CMAQ APPLICATION FOR THE REGIONAL MUNICIPALITY OF PEEL, ONTARIO, CANADA Jeff Lundgren*, Wayne Boulton, Greg Conley, Martin Gauthier, Akhila Wolfe, Carol McClellan RWDI, Guelph, Ontario,

More information

CAM-Chem Chemical Forecasts

CAM-Chem Chemical Forecasts CAM-Chem Chemical Forecasts D. Kinnison, J-F Lamarque, F. Vitt, S. Tilmes, C. Homeyer, L. Pan, S. Honomichi, J. Luo, E. Apel, R. Hornbrook, & A. Weinheimer (NCAR) A. Saiz-Lopez & R. Fernandez (CISC, Spain)

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

The skill of ECMWF cloudiness forecasts

The skill of ECMWF cloudiness forecasts from Newsletter Number 143 Spring 215 METEOROLOGY The skill of ECMWF cloudiness forecasts tounka25/istock/thinkstock doi:1.21957/lee5bz2g This article appeared in the Meteorology section of ECMWF Newsletter

More information

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels Pedro Jiménez nez, Oriol Jorba and José M. Baldasano Laboratory of Environmental Modeling Technical University of Catalonia-UPC (Barcelona,

More information

TNO (M. Schaap, R. Kranenburg, S. Jonkers, A. Segers, C. Hendriks) METNO (M. Schulz, A. Valdebenito, A. Mortier, M. Pommier, S.Tsyro, H.

TNO (M. Schaap, R. Kranenburg, S. Jonkers, A. Segers, C. Hendriks) METNO (M. Schulz, A. Valdebenito, A. Mortier, M. Pommier, S.Tsyro, H. This document has been produced in the context of the Copernicus Atmosphere Monitoring Service (CAMS). The activities leading to these results have been contracted by the Source contributions to EU cities

More information

Implementation of global surface index at the Met Office. Submitted by Marion Mittermaier. Summary and purpose of document

Implementation of global surface index at the Met Office. Submitted by Marion Mittermaier. Summary and purpose of document WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPAG on DPFS MEETING OF THE CBS (DPFS) TASK TEAM ON SURFACE VERIFICATION GENEVA, SWITZERLAND 20-21 OCTOBER 2014 DPFS/TT-SV/Doc. 4.1a (X.IX.2014)

More information

Potential sources of a priori ozone profiles for TEMPO

Potential sources of a priori ozone profiles for TEMPO Potential sources of a priori ozone profiles for TEMPO Matthew S. Johnson NASA Ames Research Center http://tempo.si.edu/overview.html Harvard-Smithsonian Center for Astrophysics TEMPO Science Team Meeting

More information

Andreas Stohl Norwegian Institute for Air Research (NILU) and

Andreas Stohl Norwegian Institute for Air Research (NILU) and Andreas Stohl Norwegian Institute for Air Research (NILU) and E. Andrews, T. Berg, J. F. Burkhart, A. M. Fjæraa, C. Forster, A. Herber, S. Hoch, Ø. Hov, D. Kowal, C. Lunder, T. Mefford, W. W. McMillan,

More information

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina. 2015 National Tournament Division B Meteorology Section 1: Weather versus Climate Chose the answer that best answers the question 1. The sky is partly cloudy this morning in Lincoln, Nebraska. 2. Fargo,

More information

Climate Modeling: From the global to the regional scale

Climate Modeling: From the global to the regional scale Climate Modeling: From the global to the regional scale Filippo Giorgi Abdus Salam ICTP, Trieste, Italy ESA summer school on Earth System Monitoring and Modeling Frascati, Italy, 31 July 11 August 2006

More information

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007.

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007. 1 0. CHEMICAL TRACER MODELS: AN INTRODUCTION Concentrations of chemicals in the atmosphere are affected by four general types of processes: transport, chemistry, emissions, and deposition. 3-D numerical

More information

Responsibilities of Harvard Atmospheric Chemistry Modeling Group

Responsibilities of Harvard Atmospheric Chemistry Modeling Group Responsibilities of Harvard Atmospheric Chemistry Modeling Group Loretta Mickley, Lu Shen, Daniel Jacob, and Rachel Silvern 2.1 Objective 1: Compile comprehensive air pollution, weather, emissions, and

More information

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES Ian Grant Anja Schubert Australian Bureau of Meteorology GPO Box 1289

More information

Simulation of Air Quality Using RegCM Model

Simulation of Air Quality Using RegCM Model Simulation of Air Quality Using RegCM Model The Regional Climate Model (RegCM) The Regional Climate Model (RegCM) is one of the RCMs that was originally developed at the National Center for Atmospheric

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

AIRQUEST Annual Report and State of the Model

AIRQUEST Annual Report and State of the Model AIRQUEST Annual Report and State of the Model Brian Lamb 1, Serena Chung 1, Farren Herron-Thorpe 2 and Joseph Vaughan 1 1 Laboratory for Atmospheric Research, Washington State University, Pullman, W, USA

More information

The impact of polar mesoscale storms on northeast Atlantic Ocean circulation

The impact of polar mesoscale storms on northeast Atlantic Ocean circulation The impact of polar mesoscale storms on northeast Atlantic Ocean circulation Influence of polar mesoscale storms on ocean circulation in the Nordic Seas Supplementary Methods and Discussion Atmospheric

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Icelandic Meteorological Office (www.vedur.is) Bolli Pálmason and Guðrún Nína Petersen 1. Summary of major highlights Medium range weather forecasts

More information

ENVIRONMENTAL MANAGEMENT I

ENVIRONMENTAL MANAGEMENT I ENVIRONMENTAL MANAGEMENT I Environmental science is the study of the interaction of humans with the natural environment. The environment includes all conditions that surround living organisms: Climate

More information

List of Exposure and Dose Metrics

List of Exposure and Dose Metrics List of Exposure and Dose Metrics First approved by the TOAR Steering Committee on July 31, 2015, and revised on June 27, 2016 to add two additional metrics. Following is the list of exposure and dose

More information

Global Change and Air Pollution (EPA-STAR GCAP) Daniel J. Jacob

Global Change and Air Pollution (EPA-STAR GCAP) Daniel J. Jacob Global Change and Air Pollution (EPA-STAR GCAP) and some more recent work on climate-aq interactions Daniel J. Jacob (djacob@fas.harvard.edu) with Eric M. Leibensperger, Shiliang Wu, Amos Tai, and Loretta

More information

REGIONAL AIR POLLUTION MODELLING

REGIONAL AIR POLLUTION MODELLING 5th International Congress of Croatian Society of Mechanics September, 21-23, 2006 Trogir/Split, Croatia REGIONAL AIR POLLUTION MODELLING M. Čavrak, Z. Mrša and G. Štimac Keywords: air pollution, atmospheric

More information

RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS

RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS -Version 2.0- (January 2007) 1. Introduction In the context of current agreements between the National Oceanic and Atmospheric

More information

Regional Production Quarterly report on the daily analyses and forecasts activities, and verification of the CHIMERE performances

Regional Production Quarterly report on the daily analyses and forecasts activities, and verification of the CHIMERE performances Regional Production Quarterly report on the daily analyses and forecasts activities, and verification of the CHIMERE performances December 2015 January 2016 February 2016 This document has been produced

More information

Data Assimilation Working Group

Data Assimilation Working Group Data Assimilation Working Group Dylan Jones (U. Toronto) Kevin Bowman (JPL) Daven Henze (CU Boulder) IGC7 4 May 2015 1 Chemical Data Assimilation Methodology State optimization: x is the model state (e.g.,

More information

Assessment of Ozone Variability in East Asia during Recent Years

Assessment of Ozone Variability in East Asia during Recent Years EANET Research Fellowship Program 2005 Assessment of Ozone Variability in East Asia during Recent Years Eyi Wang 1) *, Tatsuya Sakurai 2) and Hiromasa Ueda 2) 1) Division of Air Polluting Monitoring, China

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information