Junhong Wang, 1,2 Terry Hock, 2 Stephen A. Cohn, 2 Charlie Martin, 2 Nick Potts, 2 Tony Reale, 3 Bomin Sun, 4 and Frank Tilley 4. 1.

Size: px
Start display at page:

Download "Junhong Wang, 1,2 Terry Hock, 2 Stephen A. Cohn, 2 Charlie Martin, 2 Nick Potts, 2 Tony Reale, 3 Bomin Sun, 4 and Frank Tilley 4. 1."

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1 6, doi: /grl.50246, 2013 Unprecedented upper-air dropsonde observations over Antarctica from the 2010 Concordiasi Experiment: Validation of satellite-retrieved temperature profiles Junhong Wang, 1,2 Terry Hock, 2 Stephen A. Cohn, 2 Charlie Martin, 2 Nick Potts, 2 Tony Reale, 3 Bomin Sun, 4 and Frank Tilley 4 Received 3 February 2013; revised 9 February 2013; accepted 11 February [1] The 2010 Concordiasi field experiment took place over Antarctica from September to December During Concordiasi, for the first time, 13 National Center for Atmospheric Research Driftsonde systems were launched from McMurdo station, ascended to the stratosphere, and then drifted with the winds. The Driftsonde provides a unique platform to release dropsondes that measure the atmosphere from the lower stratosphere to the surface in otherwise difficult to reach parts of the globe. A total of 639 soundings were obtained and provided unprecedented high quality profiles over Antarctica. The sounding temperature profiles are compared with matched profiles from ten satellite products. All satellite products except The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) are consistent colder than the sounding data, with larger discrepancies over the Antarctic continent than the coast and ocean. The COSMIC data are in agreement with the sounding data and display no degradation over the continent. Citation: Wang, J., T. Hock, S. A. Cohn, C. Martin, N. Potts, T. Reale, B. Sun, and F. Tilley (2013), Unprecedented upper-air dropsonde observations over Antarctica from the 2010 Concordiasi Experiment: Validation of satellite-retrieved temperature profiles, Geophys. Res. Lett., 40, doi: /grl Introduction [2] Antarctica plays an important role in the global climate system through teleconnections, Antarctic ice sheet changes, ozone depletion, and in other ways [SCAR, 2009]. However, it is very challenging to make measurements over Antarctica. Polar-orbiting passive satellites, GPS radio-occultation from COSMIC, and radiosondes are the only observing systems that provide routine upper-air observations over Antarctica. All of 16 operational radiosonde stations over Antarctica except Amundsen-Scott (at the South Pole) are along the coast, so they do not provide measurements over the deep interior of the Antarctic continent 1 Department of Atmospheric and Environmental Sciences, State University of New York, Albany, New York, USA. 2 National Center for Atmospheric Research, Boulder, Colorado, USA. 3 NOAA/NESDIS, Camp Springs, Maryland, USA. 4 IM System Group, Camp Springs, Maryland, USA. Corresponding author: Junhong Wang, National Center for Atmospheric Research, Boulder, CO, USA. (junhong@ucar.edu) American Geophysical Union. All Rights Reserved /13/ /grl (Figure 1). Also, the performance of radiosonde sensors is degraded at cold temperatures [Skony et al., 1994]. Complex, heterogeneous surface conditions over Antarctica introduce significant errors to satellite temperature retrievals. As a result of the lack of in-situ upper-air measurements over Antarctica, satellite retrievals have not been well validated, especially over the Antarctic continent. [3] In order to fill gaps of upper-air observations over remote areas such as Antarctica, the National Center for Atmospheric Research (NCAR) has developed its Driftsonde system (S. A. Cohn, T. Hock, J. Wang, and others, Driftsondes: Providing In-Situ Dropsonde Observations over Remote Regions, submitted to Bull. Am. Meteorol. Soc., 2013). The objective of the Driftsonde system is to provide cost-effective upper-air observations over oceans and remote areas from days to months. The Driftsonde has promising science applications, including validating satellite remote sensing data and improving retrieval techniques. For example, the Driftsonde data collected during the THORPEX-Pacific Asian Regional Campaign (T-PARC) were used to validate satellite and global reanalysis products [Wang et al., 2010]. In this study, we present an unprecedented upper-air dataset over Antarctica collected from the NCAR Driftsonde system during the Concordiasi experiment in 2010 [Rabier et al., 2010]. The driftsonde data along with the radiosonde data are used to evaluate temperature profiles from ten satellite products, and the discrepancies between the sonde and satellite data are investigated. 2. Field Campaign, Data, and Analysis Method [4] The NCAR Driftsonde system consists of a stratospheric balloon attached to a gondola that contains up to 56 Miniature In-situ Sounding Technology (MIST) dropsondes. The balloon is lifted up from the ground to the stratosphere and drifts with the wind. Sondes can be dropped either at a prescheduled time or by command from the ground. The Driftsonde system has been used in three large field projects, African Monsoon Multidisciplinary Analysis in 2006 [Redelsperger et al., 2006], T-PARC in 2008 [Parsons et al., 2008], and Concordiasi in 2010 [Rabier et al., 2010]. [5] The MIST sonde uses the same pressure/temperature/ humidity sensor module as is used in the Vaisala RS92 radiosonde [Vaisala, 2012a], and the accuracy of this module, especially the temperature sensor, is well documented. Based on the manufacture s technical data, the RS92 capacitive wire temperature sensor has an accuracy of 0.5 C when the Vaisala Ground Check Set (GC25) is used to perform the

2 WANG ET AL.: DROPSONDE OBSERVATIONS OVER ANTARCTICA (a) The capacitive wire is very small and thus responds quickly to temperature changes, with a response time of less than 1s at 100 hpa [Vaisala, 2012a]. The solar radiation error has a maximum value of 0.98 C at 1 hpa and 0 solar zenith angle and mainly depends on solar zenith angle and pressure [Vaisala, 2012b]. The Vaisala RS92 demonstrated its accurate performance in the WMO radiosonde intercomparison project in 2010 and showed a temperature accuracy of 0.3 C and 0.6 C from the surface to 100 hpa and from 100 hpa to 10 hpa, respectively [Nash et al., 2011]. Therefore, the MIST dropsonde temperature measurement can be considered as a reference to validate the satellite products. [6] Concordiasi is a joint French-United States initiative that began during the International Polar Year. The Concordiasi field experiment in 2010 took place over Antarctica from September to December 2010 [Rabier et al., 2010]. The scientific objective of Concordiasi was to combine innovative measurements and modeling for better analysis and prediction of the weather over Antarctica. During Concordiasi, a total of 639 carefully quality controlled MIST soundings were collected during 13 Driftsonde flights launched from McMurdo station (Figure 1). The quality control process is described in Wang et al. [2011]. The 13 Driftsonde balloons remained operational for different periods of time ranging from 43 to 94 days. They achieved unprecedented spatial and temporal coverage of Antarctica, providing high quality atmospheric profiles (Figure 1). Fifty-two soundings released from one Driftsonde illustrate the detailed temperature structures observed from the surface to 60 hpa (Figure 1). The temperature profiles over land show very strong near-surface inversions, while those over the ocean and coast frequently show complex structure and inversions in the lower troposphere (Figure 1). Waves are seen in the upper troposphere and lower stratosphere in all profiles (Figure 1). In addition to temperature profiles, the relative humidity and wind speed/direction profiles are also available for further exploration. [7] The NOAA PROducts Validation System (NPROVS) provides a centralized validation protocol for routine monitoring and comparison of derived atmospheric satellite products against in-situ observations (i.e., radiosonde and dropsonde) and Numerical Weather Prediction products [Reale et al., 2012]. In this work, NPROVS was used to identify in-situ Concordiasi soundings from either dropsondes or radiosondes that are collocated with ten satellite products from five different types of remote sensing instruments. A separation criterion of no more than 6 h temporally and 150 km spatially was used. The satellite temperature products used are from the Advanced InfraRed Sounder (AIRS) [Goldberg et al., 2003], the Infrared Atmospheric Sounding Interferometer (IASI), the Advanced TIROS Operational Vertical Sounder (ATOVS) [Reale et al., 2008], the Microwave Integrated Retrieval System (MIRS) [Boukabara et al., 2007], and GPS RO from COSMIC [Anthes et al., 2008]. Both the AIRS and IASI are hyperspectral instruments. Together, they provide 3 of the 10 products because IASI products are provided by both NOAA and European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) but using different retrieval algorithms [Maddy et al., 2009; Schlussel et al., 2005]. The NOAA IASI product is available under both clear and cloudy conditions, while the EUMETSAT IASI is only for clear sky. Together, ATOVS and MIRS provide six products because they are both flown on the MetOp, (b) 80 Coast High Plateau Coast Transit Temperature (C+3) Figure 1. The upper panel shows map of dropsonde locations (yellow squares), radiosonde stations (big purple balloons), and locations of 52 dropsondes (small colored balloons) from 21 October to 9 November 2010 on a single Driftsonde. The lower panel shows corresponding temperature profiles for the 52 sondes with a 3 C offset added to each profile from left to right. ground check [Vaisala, 2012a]. The temperature measurement is subject to calibration, solar heating, and sensor response time errors. The GC25 is used to correct the calibration error by comparing the sonde temperature measurement on the ground with a reference sensor inside the GC25. The six-year ( ) GC temperature data at Lindenberg, Germany show a consistent warm bias with a mean value of ~0.15 C [Holger Vömel, 2011, personal communication]. The NCAR dropsonde group also tested one MIST sonde in our calibration chamber and found a mean warm bias of 0.16 C. By applying the GC temperature correction, the warm bias is removed in the RS92 data. However, it is impractical to use the GC25 for dropsondes stored inside the unmanned driftsonde gondola. Therefore, the calibration bias of ~0.15 C exists in the Concordiasi dropsonde data. 2

3 NOAA-18, and NOAA-19 satellites. The tenth product, GPS RO, is available from the constellation of GPS satellites. In the following discussions, we group these ten products into two categories: radiance-derived (including all except COSMIC) and GPS-RO (i.e., COSMIC). 3. Intercomparisons of Temperature Profiles [8] The mean bias and root-mean-square error (RMSE) of temperature differences between sondes and satellite products are shown in Figure 2. Note that Figure 2 only shows ATOVS and MIRS data from NOAA-19; the data from MetOp and NOAA-18 have similar features. We first focus on the results for the nine radiance-derived products and then the COSMIC data in the last paragraph of this section. All satellite data are consistently colder than the dropsonde data except in ~ hpa for EUMETSAT_IASI and MIRS and below ~850 hpa for NOAA_IASI and ATOVS. This cold bias varies from one product to another one and changes with altitude. The RMSE generally increases with pressures and is consistent among different products except ATOVS, which has the largest RMSE. There are no significant discrepancies for different satellites using the same sounders, such as ATOVS on NOAA19, NOAA18, and MetOp. All radiance-derived satellite products are also shown to be colder than the radiosonde data collected from the stations shown in Figure 1. The cold bias with respect to dropsonde data has a larger magnitude than that relative to radiosonde data (see an example for NOAA_IASI in Figure 2). [9] The reproducibility of the satellite data is presented as profiles of the correlation coefficients between the sonde and satellite data for all matched soundings and scatter plots of temperature comparisons at 500 hpa (Figure 3). The temperatures from the satellite and sonde data are highly correlated with statistically significant correlation coefficients (Figure 3). ATOVS has the smallest correlation coefficients, which is in concord with its large RMSE shown in Figure 2. The reproducibility is also clearly illustrated by individual matched profiles (see one example in Figure 3). The general structure of the AIRS profiles matches very well with the dropsonde data. However, these retrievals do not resolve the detailed structure near the surface and tropopause. The cold bias of the AIRS data is also evident in the scatter plot. [10] The larger cold bias of the radiance-derived satellite data relative to the dropsonde data than relative to the radiosonde data remains unexplained. Only nine of the 16 radiosonde stations use the Vaisala RS92 radiosonde which has the same temperature thermistor as in the dropsondes, but there are no systematic differences seen in the satellite cold bias relative to different types of radiosondes (not shown). The radiosonde and dropsonde temperature datasets collected during Concordiasi do differ in spatial and temporal coverage. The Driftsonde (dropsonde) soundings cover a much larger area with greater spatial variability in temperature (Figure 1). In contrast, the radiosonde stations are all along the coast except the South Pole station, so the radiosonde profiles mainly characterize the variability along the coast. A map of the temperature differences at 500 hpa between the dropsonde data and the AIRS and IASI retrievals (Figure 4) shows that a cold bias over the continent prevails and has much larger magnitude than that along the coast and the surrounding ocean, where a warm bias is sometimes found. Histograms of the differences are also shown in Figure 4 for surface pressures smaller and larger 900 hpa, approximately representing the continent and the coastal/ocean region, respectively. The bias is clearly larger over the continent. Such contrast in the satellite bias between the continent and the ocean is also confirmed by the differences between the radiosonde stations along the coast and South Pole station (not shown). The same conclusion can be drawn for other radiance-derived satellite products. NOAA_IASI Aqua_AIRS NOAA19_ATOVS NOAA19_MIRS EMET_IASI COSMIC Mean bias/rmse (C) Mean bias/rmse (C) NOAA_IASI.RAOB NOAA_IASI.Drift COSMIC.RAOB COSMIC.Drift Figure 2. The left panel shows mean (solid line) and RMS (dashed line) differences between six satellite products and the dropsonde data. The right panel shows mean and RMS differences between NOAA_IASI or COSMIC and dropsonde (red and blue lines, denoted as Drift in the legend) or radiosonde data (black and green lines, denoted as RAOB in the legend). 3

4 NOAA_IASI Aqua_AIRS NOAA19_ATOVS NOAA19_MIRS EMET_IASI COSMIC Correlation (satellite/driftsonde) T500 (C NOAA_IASI) N/Cor/Mean: Aqua_AIRS.Drift A Driftsonde Aqua_AIRS Temperature (C) Figure 3. The left panel shows correlation coefficient profiles of temperatures between satellite and dropsonde data for six satellite products. Scatter plot of matched temperatures at 500 hpa for NOAA_IASI versus dropsonde is in the upper right panel. The lower right panel shows temperature profiles for one matched sounding from dropsonde (black line) and AIRS (red line) data. T500hPa (C NOAA_IASI Driftsonde) T500hPa (C NOAA_IASI vs Driftsonde) < 5 5~ 4 4~ 3 3~ 2 2~ 1 1~0 0~1 1~2 2~3 3~4 4~5 >5 Frequency (%) Coast/Ocean N/Mean/SD: 95/ 0.51/1.32 Continent N/Mean/SD: 157/ 2.21/ T500 (C Sonde Sat) T500hPa (C Aqua_AIRS Driftsonde) T500hPa (C Aqua_AIRS vs Driftsonde) < 5 5~ 4 4~ 3 3~ 2 2~ 1 1~0 0~1 1~2 2~3 3~4 4~5 >5 Frequency (%) Coast/Ocean N/Mean/SD: 162/ 2.08/1.77 Continent N/Mean/SD: 201/ 3.11/ T500 (C Sonde Sat) Figure 4. Left panels: Maps of 500 hpa temperature differences between NOAA_IASI/AIRS and dropsonde data at dropsonde locations. Right panels: histogram of temperature differences for soundings over the coast and ocean (black line) and continent (red lines). Number of samplings and mean and standard deviation of the differences are also shown in the legend. The X symbols on the maps are the radiosonde stations. 4

5 [11] Several factors can contribute to the temperature differences between the sonde and radiance-derived satellite data shown above, including the spatial and temporal separation between the sondes and the satellite overpasses, errors in the sonde temperature measurements, and deficiencies in the satellite retrievals. No correlation is found between the temperature bias and the spatial or temporal separations, suggesting that the first factor is not important. As discussed in section 2, the main errors in sonde temperature measurements are calibration error, solar heating, and sensor response time errors. The calibration error of ~0.15 C(warmbias) is much smaller than the differences between the dropsonde and satellite data shown in Figure 2. The sensor response error is expected to cause cold/warm biases in the dropsonde/radiosonde data in the troposphere. It should result the satellite data to have a smaller cold bias relative to the dropsonde data than to the radiosonde data, which is contrary to Figure 2. The dependence of solar radiation errors on solar zenith angle and pressure was not found in the data. Therefore, deficiencies in the radiance-derived satellite retrievals are suspected as the primary reason for thecoldbias.thesedeficiencies are known to include the difference between surface skin temperature and surface air temperature, the complex and varied surface types over Antarctica, cloud contamination, and the ability to resolve complex temperature structures [cf., Rabier et al., 2010]. Detailed investigation of the causes for the cold bias in the satellite data is beyond the scope of this study and will require close collaboration with each satellite product developer. [12] Comparing to the dropsonde data, the COSMIC performs better than or at least the same as the radiance-derived temperature data above 800 hpa and shows a mean cold bias of 0.48 C, which is within the 0.5 C uncertainty of the temperature sensor (Figure 2). The COSMIC above 900 hpa agrees very well with the radiosonde data with a mean difference close to zero(figure2).thecosmicdata also did not show the land/ocean contrast in the temperature bias relative to the dropsonde data displayed in Figure 4. This is likely due to the fact that the GPS RO technique is not affected by surface conditions and weather such as clouds. Our findings are inconsistent with the ~2 Ccoldbias found by Wang and Lin [2007] in the COSMIC temperature data comparing to the radiosonde data. This is speculated to be partially due to the slower response of Vaisala RS80 or RS90 temperature sensor used in Wang and Lin [2007] than Vaisala RS92 launched at nine out of 13 radiosonde stations during Concordiasi period. Note that the slow response causes a warm bias in the radiosonde data. 4. Conclusions [13] Thirteen NCAR Driftsonde systems were deployed in the Concordiasi field experiment over Antarctica from September to December They collected 639 unprecedented pressure, temperature, humidity, and wind profiles from the stratosphere to the surface with high data quality, high vertical resolution, and large spatial coverage. The soundings cover the Antarctic continent, coast, and surrounding ocean, including areas where in-situ upper-air observations have never before been made. The Antarctic polar vortex provides ideal conditions for deploying the long duration stratospheric balloons carrying the Driftsondes. This study shows that the unique Concordiasi dataset is useful for validating satellite products over Antarctica, especially over the continent where the upper-air data are scarce. Many scientific applications of the Concordiasi dropsonde data remain to be discovered, such as studying Antarctic surface-based inversions [Zhang et al., 2011] and validating global reanalysis and model products. For example, previous studies have shown that the near-surface temperature is too warm in the weather models over the Antarctic plateau, but too cold over the surrounding sea ice due to the challenges in simulating the strong near-surface inversions in models [Rabier et al., 2010]. [14] NPROVS was used to co-locate the Concordiasi dropsonde and radiosonde data with ten satellite products. Comparisons of temperature profiles show consistent cold biases in all nine radiance-derived satellite products. The magnitude of the cold bias ranges from 0 Cto4 Cvaries from one product to another one and changes over altitude. The cold bias is larger relative to dropsonde measurements than radiosonde measurements for all radiance-derived products. This is attributed to the spatial coverage difference between the dropsonde and radiosonde data. All radiosonde stations but one are located along the coast, while the dropsondes cover the continent, coast, and surrounding ocean (Figure 1). All radiance-derived products exhibit larger cold biases over the Antarctic continent than over the coast and ocean. This finding would not be possible without the complete spatial coverage of the Concordiasi dropsonde data. Possible causes for the cold bias and larger bias over the continent are discussed, but investigation of deficiencies in satellite retrievals are left for future work. Collaboration with the satellite product developers is essential to understand these differences and improve the products. The COSMIC performs much better than other satellite products with very good agreement with the radiosonde data and a small cold bias comparing with the dropsonde data. It indicates that the GPS RO technique has advantages over traditional MW, IR and even hyper-spectral techniques. These are the absence of its dependence on surface properties and availability under all weather conditions. Finally, the satellite retrievals do reproduce the general structure of temperature profilesreasonablywellinspite of the cold bias. [15] The findings on the systematic errors of the satellite temperature retrievals over Antarctica have potential significant implications on past and future research on Antarctic weather and climate. Over Antarctica, the scarcity of in-situ observations especially over the interior continent makes it more important to assimilate satellite data in weather and climate models and to analyze satellite data to study the Antarctic climate changes. Previous studies also show that satellite data have much larger impact on the forecasts and reanalyses in Antarctica than in areas, such as the Arctic, where more in-situ measurements are available [cf., Rabier et al., 2010]. As a result, any systematic error in the satellite retrievals would translate in greater errors in model forecasts and reanalyses. Bracegirdle and Marshall [2012] found that four current global reanalysis products show a domination of cold biases over the period when compared with the radiosonde data, with the largest bias at Amundsen-Scott station. This result is consistent with the characteristics of satellite biases found in this study. Further investigation is required to understand whether such a cold 5

6 bias in the reanalyses is a result of biases in the input satellite data. In spite of significant efforts to reconstruct in-situ Antarctic temperature records and study trends [Screen and Simmonds, 2012; references therein], there are still few studies using the satellite data other than Johanson and Fu [2007]. Further improvement of satellite temperature retrievals over Antarctica is needed to reconstruct consistent long-term records for climate studies. [16] Acknowledgments. The Concordiasi driftsonde data have been obtained through cooperation between UCAR and CNES, under the sponsorship of the NSF and the CNES. NSF Office of Polar Program supported the Concordiasi Driftsonde deployment through the grant ANT We are grateful to all NCAR/EOL and French CNAS staff that developed Driftsonde system, and all of people who participated in Concordiasi to deploy and operate the system and collect the data. We also would like to thank Florence Rabier and other Concordiasi principle investigators for leading the project. Comments from Jordan Powers and Bill Brown have been very helpful. The National Center for Atmospheric Research is sponsored by the National Science Foundation. References Anthes R. A., et al. (2008), The COSMOC/FORMOSAT-3 - Mission early results, Bull. Am. Meteorol. Soc., 89(3), , Doi / Bams Boukabara, S.-A., F. Weng, and Q. Liu (2007), Passive microwave remote sensing of extreme weather events using NOAA-18 AMSU-A and MHS, IEEE Trans. Geosci. Remote Sens., 45, , doi: / TGRS Bracegirdle T. J., and G. J. Marshall (2012), The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses, J. Climate, 25, doi: /JCLI-D Goldberg M. D., Y. Qu, L. M. McMillin, W. W. Wolf, L. Zhou, and M. Divakarla (2003), AIRS near-real-time products and algorithms in support of operational weather prediction, IEEE Trans. Geosci. Remote Sens., 41, , doi: /TGRS Johanson C.M., and Q. Fu (2007), Antarctic atmospheric temperature trend patterns from satellite observations. Geophys. Res. Lett., 34, L12703, doi: /2006gl Maddy E. S., C. D. Barnet, and A. Gambacorta (2009), A computationally efficient retrieval algorithm for hyperspectral sounders incorporating a priori information. IEEE Geosci. Remote Sens. Lett., 6, , doi: /LGRS Nash J., T. Oakley, H. Vömel and W. Li (2011), WMO Intercomparisons of high quality radiosonde system, Yangjiang, China, 12-July 3 August 2010, WMO/TD-No. 1580, available online at pages/prog/www/imop/publications/iom-107_yangjiang.pdf. Parsons D., P. Harr, T. Nakazawa, S. Jones, and M. Weissmann (2008), An overview of the THORPEX-Pacific Asian Regional Campaign (T-PARC) during August September 2008, Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 7C.7. Rabier F., et al. (2010), The CONCORDIASI Project in Antarctica, Bull. Am. Meteor. Soc., 91, 69 86, doi: /2009bams Reale T., B. Sun, F. H. Tilley, M. Pettey (2012), The NOAA Products Validation System (NPROVS), J. Atmos. Oceanic Technol., 29, doi: /JTECH-D Reale T., F. Tilley, M. Ferguson, and A. Allegrino (2008), NOAA operational sounding products for ATOVS, Int. J. Remote Sens., 29, , DOI: / Redelsperger J.-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, J. Polcher (2006), African Monsoon Multidisciplinary Analysis: An international research project and field campaign, Bull. Amer. Meteor. Soc., 87, doi: /BAMS SCAR (2009), Antarctic Climate Change and the Environment, Edited by J Turner, R A Bindschadler, P Convey, G Di Prisco, E Fahrbach, J Gutt, D A Hodgson, P A Mayewski and C P Summerhayes, Published in Cambridge by SCAR, ISBN Schlussel P., T. H. Hultberg, P. L. Phillips, T. August, and X. Calbet (2005), The operational IASI level 2 processor, Adv. Space Res., 26, , doi: /j.asr Screen J. A., and I. Simmonds (2012), Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions, J. Geophys. Res., 117, D16108, doi: /2012jd Skony S.M., J.D. Kahl, and N.A. Zaitseva (1994), Differences between radiosonde and dropsonde temperature profiles over the Arctic Ocean, J. Atmos. Ocean. Tech., 11, , doi: / (1994) 011<1400:DBRADT>2.0.CO;2 Vaisala (2012a), Vaisala Radiosonde RS91 data sheet, available on Datasheets/RS92SGP-Datasheet-B210358EN-E-LoRes.pdf. Vaisala (2012b), Revised Solar Radiation Correction Table RSN2010 for RS92 Temperature Sensor, available on meteorology/products/soundingsystemsandradiosondes/ soundingdatacontinuity/pages/ revisedsolarradiationcorrectiontablersn2010.aspx. Wang J., et al. (2010), Water vapor variability and comparisons in subtropical Pacific from T-PARC Driftsonde, COSMIC and reanalyses, J. Geophys. Res., 115, D21108, doi: /2010jd Wang J., K. Young, T. Hock, N. Potts and C. Martin (2011), Concordiasi 2010 quality controlled driftsonde data set, Available at ucar.edu/datafile/nph-get/ /readme.concordiasi.driftsonde.pdf. Wang K.-Y., and S.-C. Lin (2007), First continuous GPS soundings of temperature structure over Antarctic winter from FORMOSAT-3/ COSMIC constellation, Geophys. Res. Lett., 34, L12805, doi: / 2007GL Zhang Y., D. J. Seidel, J.-C. Golaz, C. Deser, R. A. Tomas (2011), Climatological characteristics of Arctic and Antarctic surface-based inversions, J. Climate, 24, , doi: /2011JCLI

New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data

New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data Eighth FORMOSAT-3/COSMIC Data Users Workshop 30 September 2 October 2014 Boulder, Colorado, USA New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data Bomin Sun

More information

The Concordiasi Project

The Concordiasi Project The Concordiasi Project WWRP, THORPEX, WCRP POLAR PREDICTION WORKSHOP Oslo, 6-8 October 2010 by Florence Rabier, Concordiasi project leader and Eric Brun CNRM/GAME : Météo-France and CNRS 1 Part of THORPEX-IPY

More information

F. Rabier, N. Saint-Ramond, V. Guidard, A. Doerenbecher, A. Vincensini Météo-France and CNRS

F. Rabier, N. Saint-Ramond, V. Guidard, A. Doerenbecher, A. Vincensini Météo-France and CNRS Impact of observations in the Southern Polar Area during the Concordiasi field experiment F. Rabier, N. Saint-Ramond, V. Guidard, A. Doerenbecher, A. Vincensini Météo-France and CNRS C. Cardinali ECMWF

More information

The Concordiasi Project Additional observations over Antarctica for NWP

The Concordiasi Project Additional observations over Antarctica for NWP The Concordiasi Project Additional observations over Antarctica for NWP F. Rabier, L. El Amraoui, V. Guidard, S. Noton-Haurot, A. Doerenbecher, D. Puech, P. Brunel, A. Vincensini, H. Bénichou, Ph Cocquerez,

More information

Model performance and data impact over polar regions

Model performance and data impact over polar regions Model performance and data impact over polar regions F. Rabier, N. Saint-Ramond, F. Karbou, A. Vincensini, S. Guedj, V. Guidard, N. Fourrié, A. Doerenbecher Météo-France C. Cardinali, J.-N. Thépaut, P.

More information

Impact of observations in the Southern Polar Area during the Concordiasi field experiment

Impact of observations in the Southern Polar Area during the Concordiasi field experiment Impact of observations in the Southern Polar Area during the Concordiasi field experiment F. Rabier, N. Saint-Ramond, V. Guidard, A. Doerenbecher, A. Vincensini Météo-France and CNRS C. Cardinali ECMWF

More information

Extending the use of surface-sensitive microwave channels in the ECMWF system

Extending the use of surface-sensitive microwave channels in the ECMWF system Extending the use of surface-sensitive microwave channels in the ECMWF system Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United

More information

The NOAA Unique CrIS/ATMS Processing System (NUCAPS): first light retrieval results

The NOAA Unique CrIS/ATMS Processing System (NUCAPS): first light retrieval results The NOAA Unique CrIS/ATMS Processing System (NUCAPS): first light retrieval results A. Gambacorta (1), C. Barnet (2), W.Wolf (2), M. Goldberg (2), T. King (1), X. Ziong (1), N. Nalli (3), E. Maddy (1),

More information

Michelle Feltz, Robert Knuteson, Dave Tobin, Tony Reale*, Steve Ackerman, Henry Revercomb

Michelle Feltz, Robert Knuteson, Dave Tobin, Tony Reale*, Steve Ackerman, Henry Revercomb P1 METHODOLOGY FOR THE VALIDATION OF TEMPERATURE PROFILE ENVIRONMENTAL DATA RECORDS (EDRS) FROM THE CROSS-TRACK INFRARED MICROWAVE SOUNDING SUITE (CRIMSS): EXPERIENCE WITH RADIO OCCULTATION FROM COSMIC

More information

Principal Component Analysis (PCA) of AIRS Data

Principal Component Analysis (PCA) of AIRS Data Principal Component Analysis (PCA) of AIRS Data Mitchell D. Goldberg 1, Lihang Zhou 2, Walter Wolf 2 and Chris Barnet 1 NOAA/NESDIS/Office of Research and Applications, Camp Springs, MD 1 QSS Group Inc.

More information

P2.7 CHARACTERIZATION OF AIRS TEMPERATURE AND WATER VAPOR MEASUREMENT CAPABILITY USING CORRELATIVE OBSERVATIONS

P2.7 CHARACTERIZATION OF AIRS TEMPERATURE AND WATER VAPOR MEASUREMENT CAPABILITY USING CORRELATIVE OBSERVATIONS P2.7 CHARACTERIZATION OF AIRS TEMPERATURE AND WATER VAPOR MEASUREMENT CAPABILITY USING CORRELATIVE OBSERVATIONS Eric J. Fetzer, Annmarie Eldering and Sung -Yung Lee Jet Propulsion Laboratory, California

More information

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Fuzhong Weng Environmental Model and Data Optima Inc., Laurel, MD 21 st International TOV

More information

IMPACT OF IASI DATA ON FORECASTING POLAR LOWS

IMPACT OF IASI DATA ON FORECASTING POLAR LOWS IMPACT OF IASI DATA ON FORECASTING POLAR LOWS Roger Randriamampianina rwegian Meteorological Institute, Pb. 43 Blindern, N-0313 Oslo, rway rogerr@met.no Abstract The rwegian THORPEX-IPY aims to significantly

More information

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK Ju-Hye Kim 1, Jeon-Ho Kang 1, Hyoung-Wook Chun 1, and Sihye Lee 1 (1) Korea Institute of Atmospheric

More information

INTRODUCTION OPERATIONS

INTRODUCTION OPERATIONS IASI EOF and ANN Retrieved Total Columnar Amounts Ozone, Compared to Ozone Sonde and Brewer Spectrometer Measurements from the Lindenberg and Sodankylä Validation Campaigns Olusoji O. Oduleye, Thomas August,

More information

Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS

Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS M.D. Goldberg, W. Wolf, L. Zhou, M. Divakarla,, C.D. Barnet, L. McMillin, NOAA/NESDIS/ORA Oct 31, 2003 Presented at ITSC-13 Risk Reduction

More information

Overview of Met Office Intercomparison of Vaisala RS92 and RS41 Radiosondes

Overview of Met Office Intercomparison of Vaisala RS92 and RS41 Radiosondes Overview of Met Office Intercomparison of Vaisala RS92 and RS41 Radiosondes Camborne, United Kingdom, 7 th 19 th November 2013 David Edwards, Graeme Anderson, Tim Oakley, Peter Gault 12/02/14 FINAL_Overview_Branded_Vaisala_RS41_RS92_Report_12

More information

IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST. (a) (b) (c)

IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST. (a) (b) (c) 9B.3 IMPACT OF GROUND-BASED GPS PRECIPITABLE WATER VAPOR AND COSMIC GPS REFRACTIVITY PROFILE ON HURRICANE DEAN FORECAST Tetsuya Iwabuchi *, J. J. Braun, and T. Van Hove UCAR, Boulder, Colorado 1. INTRODUCTION

More information

NOAA MSU/AMSU Radiance FCDR. Methodology, Production, Validation, Application, and Operational Distribution. Cheng-Zhi Zou

NOAA MSU/AMSU Radiance FCDR. Methodology, Production, Validation, Application, and Operational Distribution. Cheng-Zhi Zou NOAA MSU/AMSU Radiance FCDR Methodology, Production, Validation, Application, and Operational Distribution Cheng-Zhi Zou NOAA/NESDIS/Center for Satellite Applications and Research GSICS Microwave Sub-Group

More information

IASI Level 2 Product Processing

IASI Level 2 Product Processing IASI Level 2 Product Processing Dieter Klaes for Peter Schlüssel Arlindo Arriaga, Thomas August, Xavier Calbet, Lars Fiedler, Tim Hultberg, Xu Liu, Olusoji Oduleye Page 1 Infrared Atmospheric Sounding

More information

Procedures to Characterize Sounding Profiles using Conventional and Reference/Dedicated Observations --- NPROVS & NPROVS+

Procedures to Characterize Sounding Profiles using Conventional and Reference/Dedicated Observations --- NPROVS & NPROVS+ Procedures to Characterize Sounding Profiles using Conventional and Reference/Dedicated Observations --- NPROVS & NPROVS+ Tony Reale 1 and Bomin Sun 2 and many others 1 STAR/NESDIS/NOAA 2 IMSG at STAR/NESDIS/NOAA

More information

CORRELATION BETWEEN ATMOSPHERIC COMPOSITION AND VERTICAL STRUCTURE AS MEASURED BY THREE GENERATIONS OF HYPERSPECTRAL SOUNDERS IN SPACE

CORRELATION BETWEEN ATMOSPHERIC COMPOSITION AND VERTICAL STRUCTURE AS MEASURED BY THREE GENERATIONS OF HYPERSPECTRAL SOUNDERS IN SPACE CORRELATION BETWEEN ATMOSPHERIC COMPOSITION AND VERTICAL STRUCTURE AS MEASURED BY THREE GENERATIONS OF HYPERSPECTRAL SOUNDERS IN SPACE Nadia Smith 1, Elisabeth Weisz 1, and Allen Huang 1 1 Space Science

More information

ASSIMILATION OF GRAS GPS RADIO OCCULTATION MEASUREMENTS AT ECMWF

ASSIMILATION OF GRAS GPS RADIO OCCULTATION MEASUREMENTS AT ECMWF ASSIMILATION OF GRAS GPS RADIO OCCULTATION MEASUREMENTS AT ECMWF Sean Healy ECMWF, Shinfield Park, Reading, UK. Abstract GPS radio occultation bending angle profiles are assimilated from the GRAS instrument

More information

Working Together on the Stratosphere: Comparisons of RO and Hyperspectral IR Data in Temperature and Radiance Space

Working Together on the Stratosphere: Comparisons of RO and Hyperspectral IR Data in Temperature and Radiance Space Working Together on the Stratosphere: Comparisons of RO and Hyperspectral IR Data in Temperature and Radiance Space Michelle Feltz, Robert Knuteson, Johannes Nielsen 1, Lori Borg, Thomas August 2, Tim

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D23104, doi: /2010jd014457, 2010

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D23104, doi: /2010jd014457, 2010 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jd014457, 2010 Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect

More information

VALIDATION OF CROSS-TRACK INFRARED SOUNDER (CRIS) PROFILES OVER EASTERN VIRGINIA. Author: Jonathan Geasey, Hampton University

VALIDATION OF CROSS-TRACK INFRARED SOUNDER (CRIS) PROFILES OVER EASTERN VIRGINIA. Author: Jonathan Geasey, Hampton University VALIDATION OF CROSS-TRACK INFRARED SOUNDER (CRIS) PROFILES OVER EASTERN VIRGINIA Author: Jonathan Geasey, Hampton University Advisor: Dr. William L. Smith, Hampton University Abstract The Cross-Track Infrared

More information

THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF

THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF THE ASSIMILATION OF SURFACE-SENSITIVE MICROWAVE SOUNDER RADIANCES AT ECMWF Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom

More information

Satellite Radiance Data Assimilation at the Met Office

Satellite Radiance Data Assimilation at the Met Office Satellite Radiance Data Assimilation at the Met Office Ed Pavelin, Stephen English, Brett Candy, Fiona Hilton Outline Summary of satellite data used in the Met Office NWP system Processing and quality

More information

Figure ES1 demonstrates that along the sledging

Figure ES1 demonstrates that along the sledging UPPLEMENT AN EXCEPTIONAL SUMMER DURING THE SOUTH POLE RACE OF 1911/12 Ryan L. Fogt, Megan E. Jones, Susan Solomon, Julie M. Jones, and Chad A. Goergens This document is a supplement to An Exceptional Summer

More information

291. IMPACT OF AIRS THERMODYNAMIC PROFILES ON PRECIPITATION FORECASTS FOR ATMOSPHERIC RIVER CASES AFFECTING THE WESTERN UNITED STATES

291. IMPACT OF AIRS THERMODYNAMIC PROFILES ON PRECIPITATION FORECASTS FOR ATMOSPHERIC RIVER CASES AFFECTING THE WESTERN UNITED STATES 291. IMPACT OF AIRS THERMODYNAMIC PROFILES ON PRECIPITATION FORECASTS FOR ATMOSPHERIC RIVER CASES AFFECTING THE WESTERN UNITED STATES Clay B. Blankenship, USRA, Huntsville, Alabama Bradley T. Zavodsky

More information

4/23/2014. Radio Occultation as a Gap Filler for Infrared and Microwave Sounders Richard Anthes Presentation to Joshua Leiling and Shawn Ward, GAO

4/23/2014. Radio Occultation as a Gap Filler for Infrared and Microwave Sounders Richard Anthes Presentation to Joshua Leiling and Shawn Ward, GAO Radio Occultation as a Gap Filler for Infrared and Microwave Sounders Richard Anthes Presentation to Joshua Leiling and Shawn Ward, GAO 1 RICHARD ANTHES is President Emeritus of the University Corporation

More information

Observed Trends in Wind Speed over the Southern Ocean

Observed Trends in Wind Speed over the Southern Ocean GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051734, 2012 Observed s in over the Southern Ocean L. B. Hande, 1 S. T. Siems, 1 and M. J. Manton 1 Received 19 March 2012; revised 8 May 2012;

More information

Comparison of AMSU-B Brightness Temperature with Simulated Brightness Temperature using Global Radiosonde Data

Comparison of AMSU-B Brightness Temperature with Simulated Brightness Temperature using Global Radiosonde Data Comparison of AMSU-B Brightness Temperature with Simulated Brightness Temperature using Global Radiosonde Data V.O. John, S.A. Buehler, and M. Kuvatov Institute of Environmental Physics, University of

More information

DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA

DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA David Santek 1, Sharon Nebuda 1, Christopher Velden 1, Jeff Key 2, Dave Stettner 1 1 Cooperative Institute for Meteorological Satellite

More information

The Development of Hyperspectral Infrared Water Vapor Radiance Assimilation Techniques in the NCEP Global Forecast System

The Development of Hyperspectral Infrared Water Vapor Radiance Assimilation Techniques in the NCEP Global Forecast System The Development of Hyperspectral Infrared Water Vapor Radiance Assimilation Techniques in the NCEP Global Forecast System James A. Jung 1, John F. Le Marshall 2, Lars Peter Riishojgaard 3, and John C.

More information

Performance of the AIRS/AMSU And MODIS Soundings over Natal/Brazil Using Collocated Sondes: Shadoz Campaign

Performance of the AIRS/AMSU And MODIS Soundings over Natal/Brazil Using Collocated Sondes: Shadoz Campaign Performance of the AIRS/AMSU And MODIS Soundings over Natal/Brazil Using Collocated Sondes: Shadoz Campaign 2004-2005 Rodrigo Augusto Ferreira de Souza, Jurandir Rodrigues Ventura, Juan Carlos Ceballos

More information

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery L. Garand 1 Y. Rochon 1, S. Heilliette 1, J. Feng 1, A.P. Trishchenko 2 1 Environment Canada, 2 Canada Center for

More information

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT Why satellite data for climate monitoring? Global coverage Global consistency, sometimes also temporal consistency High spatial

More information

Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data

Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data Fuzhong Weng NOAA Center for Satellite Applications and Research and Xiaolei Zou University of University November

More information

Satellite data assimilation for Numerical Weather Prediction II

Satellite data assimilation for Numerical Weather Prediction II Satellite data assimilation for Numerical Weather Prediction II Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF) (with contributions from Tony McNally, Jean-Noël Thépaut, Slide

More information

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom Abstract

More information

GPS RO Retrieval Improvements in Ice Clouds

GPS RO Retrieval Improvements in Ice Clouds Joint COSMIC Tenth Data Users Workshop and IROWG-6 Meeting GPS RO Retrieval Improvements in Ice Clouds Xiaolei Zou Earth System Science Interdisciplinary Center (ESSIC) University of Maryland, USA September

More information

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT P2.32 GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT Jun Li, Fengying Sun, Suzanne Seemann, Elisabeth Weisz, and Hung-Lung Huang Cooperative Institute for Meteorological Satellite Studies (CIMSS) University

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1 Stephen English, Una O Keeffe and Martin Sharpe Met Office, FitzRoy Road, Exeter, EX1 3PB Abstract The assimilation of cloud-affected satellite

More information

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean Chun-Chieh Chao, 1 Chien-Ben Chou 2 and Huei-Ping Huang 3 1Meteorological Informatics Business Division,

More information

CONCORDIASI Antarctica Overview of the measurement campaign

CONCORDIASI Antarctica Overview of the measurement campaign Antarctica Overview of the measurement campaign Atmospheric Science Long duration stratospheric balloon experiment Sept 2010 January 2011 CONCORDIA-IASI IASI Sounder A French-US initiative for climate

More information

Specifications for a Reference Radiosonde for the GCOS Reference. Upper-Air Network (GRUAN)

Specifications for a Reference Radiosonde for the GCOS Reference. Upper-Air Network (GRUAN) Specifications for a Reference Radiosonde for the GCOS Reference Upper-Air Network (GRUAN) By the Working Group on Atmospheric Reference Observations (WG-ARO) Final Version, October 2008 1. Introduction

More information

A Microwave Snow Emissivity Model

A Microwave Snow Emissivity Model A Microwave Snow Emissivity Model Fuzhong Weng Joint Center for Satellite Data Assimilation NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland and Banghua Yan Decision Systems Technologies

More information

An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF

An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF Heather Lawrence, final-year EUMETSAT fellow, ECMWF Supervised by: Niels Bormann & Stephen English Slide 1 China s

More information

The FORMOSAT-3/COSMIC Five Year Mission Achievements: Atmospheric and Climate. Bill Kuo UCAR COSMIC

The FORMOSAT-3/COSMIC Five Year Mission Achievements: Atmospheric and Climate. Bill Kuo UCAR COSMIC The FORMOSAT-3/COSMIC Five Year Mission Achievements: Atmospheric and Climate Bill Kuo UCAR COSMIC Outline FORMOSAT-3/COSMIC: The world s first GPSRO constellation system with open-loop tracking FORMOSAT-3/COSMIC

More information

AIRS observations of Dome Concordia in Antarctica and comparison with Automated Weather Stations during 2005

AIRS observations of Dome Concordia in Antarctica and comparison with Automated Weather Stations during 2005 AIRS observations of Dome Concordia in Antarctica and comparison with Automated Weather Stations during 2005, Dave Gregorich and Steve Broberg Jet Propulsion Laboratory California Institute of Technology

More information

EUMETSAT STATUS AND PLANS

EUMETSAT STATUS AND PLANS 1 EUM/TSS/VWG/15/826793 07/10/2015 EUMETSAT STATUS AND PLANS François Montagner, Marine Applications Manager, EUMETSAT WMO Polar Space Task Group 5 5-7 October 2015, DLR, Oberpfaffenhofen PSTG Strategic

More information

esa ACE+ An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Occultation Per Høeg (AIR/DMI) Gottfried Kirchengast (IGAM/UG)

esa ACE+ An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Occultation Per Høeg (AIR/DMI) Gottfried Kirchengast (IGAM/UG) ACE+ An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Occultation Per Høeg (AIR/DMI) Gottfried Kirchengast (IGAM/UG) OPAC-1, September, 2002 1 Objectives Climate Monitoring global

More information

Atmospheric Profiles Over Land and Ocean from AMSU

Atmospheric Profiles Over Land and Ocean from AMSU P1.18 Atmospheric Profiles Over Land and Ocean from AMSU John M. Forsythe, Kevin M. Donofrio, Ron W. Kessler, Andrew S. Jones, Cynthia L. Combs, Phil Shott and Thomas H. Vonder Haar DoD Center for Geosciences

More information

A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data

A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L15701, doi:10.1029/2007gl030202, 2007 A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data

More information

Élisabeth Gérard, Fatima Karbou, Florence Rabier, Jean-Philippe Lafore, Jean-Luc Redelsperger

Élisabeth Gérard, Fatima Karbou, Florence Rabier, Jean-Philippe Lafore, Jean-Luc Redelsperger Land surface emissivity at microwave frequencies: operational implementation in the French global 4DVar system and impact of using surface sensitive channels on the African Monsoon during AMMA Élisabeth

More information

The role of GPS-RO at ECMWF" ! COSMIC Data Users Workshop!! 30 September 2014! !!! ECMWF

The role of GPS-RO at ECMWF ! COSMIC Data Users Workshop!! 30 September 2014! !!! ECMWF The role of GPS-RO at ECMWF"!!!! COSMIC Data Users Workshop!! 30 September 2014! ECMWF WE ARE Intergovernmental organisation! 34 Member and Cooperating European states! 270 staff at ECMWF, in Reading,

More information

Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series

Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series Lei Shi and John J. Bates National Climatic Data Center, National Oceanic and Atmospheric Administration

More information

Observational Needs for Polar Atmospheric Science

Observational Needs for Polar Atmospheric Science Observational Needs for Polar Atmospheric Science John J. Cassano University of Colorado with contributions from: Ed Eloranta, Matthew Lazzara, Julien Nicolas, Ola Persson, Matthew Shupe, and Von Walden

More information

GRUAN and Satellite Collocation Xavier Calbet - EUMETSAT

GRUAN and Satellite Collocation Xavier Calbet - EUMETSAT GRUAN and Satellite Collocation Xavier Calbet - EUMETSAT Why GRUAN? 1. GRUAN stand for GCOS Reference Upper-Air Network 2. Are providing uncertainties with the measurements 3. But, most importantly, they

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

Satellite Sounding Characteristic Performance Versus Radiosonde, Impact of Local Overpass Time and Uncertainty

Satellite Sounding Characteristic Performance Versus Radiosonde, Impact of Local Overpass Time and Uncertainty Satellite Sounding Characteristic Performance Versus Radiosonde, Impact of Local Overpass Time and Uncertainty Tony Reale, Bomin Sun, Mike Pettey and Ryan Smith (Lihang Zhou JPSS) 12/04/2017 International

More information

Bias correction of satellite data at the Met Office

Bias correction of satellite data at the Met Office Bias correction of satellite data at the Met Office Nigel Atkinson, James Cameron, Brett Candy and Stephen English Met Office, Fitzroy Road, Exeter, EX1 3PB, United Kingdom 1. Introduction At the Met Office,

More information

Aerosol impact and correction on temperature profile retrieval from MODIS

Aerosol impact and correction on temperature profile retrieval from MODIS GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L13818, doi:10.1029/2008gl034419, 2008 Aerosol impact and correction on temperature profile retrieval from MODIS Jie Zhang 1,2 and Qiang Zhang 1,2 Received 24 April

More information

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM Niels Bormann 1, Graeme Kelly 1, Peter Bauer 1, and Bill Bell 2 1 ECMWF,

More information

Correction for Dry Bias in Vaisala Radiosonde RH Data

Correction for Dry Bias in Vaisala Radiosonde RH Data Correction for Dry Bias in Vaisala Radiosonde RH Data E. R. Miller, J. Wang, and H. L. Cole National Center for Atmospheric Research Atmospheric Technology Division Boulder, Colorado Abstract Extensive

More information

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2 JP1.10 On the Satellite Determination of Multilayered Multiphase Cloud Properties Fu-Lung Chang 1 *, Patrick Minnis 2, Sunny Sun-Mack 1, Louis Nguyen 1, Yan Chen 2 1 Science Systems and Applications, Inc.,

More information

The NOAA/NESDIS/STAR IASI Near Real-Time Product Processing and Distribution System

The NOAA/NESDIS/STAR IASI Near Real-Time Product Processing and Distribution System The NOAA/NESDIS/STAR Near Real-Time Product Processing and Distribution System W. Wolf 2, T. King 1, Z. Cheng 1, W. Zhou 1, H. Sun 1, P. Keehn 1, L. Zhou 1, C. Barnet 2, and M. Goldberg 2 1 QSS Group Inc,

More information

Forecast of hurricane track and intensity with advanced IR soundings

Forecast of hurricane track and intensity with advanced IR soundings Forecast of hurricane track and intensity with advanced IR soundings Jun Li @, Hui Liu #, Jinlong Li @, and Tim Schmit & @CIMSS/SSEC, University of Wisconsin-Madison #National Center for Atmospheric Research

More information

Validation of water vapour profiles from GPS radio occultations in the Arctic

Validation of water vapour profiles from GPS radio occultations in the Arctic Validation of water vapour profiles from GPS radio occultations in the Arctic M. Gerding and A. Weisheimer Alfred Wegener Institute for Polar and Marine Research, Research Division Potsdam, Potsdam, Germany

More information

Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond

Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond 1 Timothy J. Schmit, 2 Jun Li, 3 James Gurka 1 NOAA/NESDIS, Office of Research and Applications, Advanced Satellite Products

More information

An Assessment of Contemporary Global Reanalyses in the Polar Regions

An Assessment of Contemporary Global Reanalyses in the Polar Regions An Assessment of Contemporary Global Reanalyses in the Polar Regions David H. Bromwich Polar Meteorology Group, Byrd Polar Research Center and Atmospheric Sciences Program, Department of Geography The

More information

Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in 2002 and 2003

Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in 2002 and 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005421, 2005 Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in

More information

Climate Applications from High Spectral Resolution Infrared Sounders

Climate Applications from High Spectral Resolution Infrared Sounders Climate Applications from High Spectral Resolution Infrared Sounders Mitchell D. Goldberg, Lihang Zhou, and Xingpin Liu National Oceanic and Atmospheric Administration, National Environmental Satellite,

More information

J2.11 PROPERTIES OF WATER-ONLY, MIXED-PHASE, AND ICE-ONLY CLOUDS OVER THE SOUTH POLE: PRELIMINARY RESULTS

J2.11 PROPERTIES OF WATER-ONLY, MIXED-PHASE, AND ICE-ONLY CLOUDS OVER THE SOUTH POLE: PRELIMINARY RESULTS J2.11 PROPERTIES OF WATER-ONLY, MIXED-PHASE, AND ICE-ONLY CLOUDS OVER THE SOUTH POLE: PRELIMINARY RESULTS Mark E. Ellison 1, Von P. Walden 1 *, James R. Campbell 2, and James D. Spinhirne 3 1 University

More information

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis 4636 JOURNAL OF CLIMATE Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis QIANG FU ANDCELESTE M. JOHANSON Department of Atmospheric Sciences, University of

More information

Climate Monitoring with GPS RO Achievements and Challenges

Climate Monitoring with GPS RO Achievements and Challenges Climate Monitoring with GPS RO Achievements and Challenges A.K. Steiner Wegener Center for Climate and Global Change (WEGC) and IGAM/Inst. of Physics, University of Graz, Austria andi.steiner@uni-graz.at

More information

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions E. R. Westwater 1, D. Cimini 2, V. Mattioli 3, M. Klein 1, V. Leuski 1, A. J. Gasiewski 1 1 Center for Environmental

More information

Satellite data assimilation for NWP: II

Satellite data assimilation for NWP: II Satellite data assimilation for NWP: II Jean-Noël Thépaut European Centre for Medium-range Weather Forecasts (ECMWF) with contributions from many ECMWF colleagues Slide 1 Special thanks to: Tony McNally,

More information

Comparison of AIRS and AMSU-B monthly mean estimates of upper tropospheric humidity

Comparison of AIRS and AMSU-B monthly mean estimates of upper tropospheric humidity GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, Comparison of AIRS and AMSU-B monthly mean estimates of upper tropospheric humidity M. Milz Department of Space Science, Luleå University of Technology,

More information

Assimilation of IASI data at the Met Office. Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08

Assimilation of IASI data at the Met Office. Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08 Assimilation of IASI data at the Met Office Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08 Thanks to my other colleagues! Andrew Collard (ECMWF) Brett Candy, Steve English, James

More information

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC Daisaku Uesawa Meteorological Satellite Center, Japan Meteorological Agency Abstract MTSAT-1R is the current operational Japanese

More information

ASSIMILATION OF AIRS VERSION 6 DATA IN AMPS

ASSIMILATION OF AIRS VERSION 6 DATA IN AMPS ASSIMILATION OF AIRS VERSION 6 DATA IN AMPS Jordan G. Powers, Priscilla A. Mooney, and Kevin W. Manning Mesoscale and Microscale Meteorology Laboratory National Center for Atmospheric Research Boulder,

More information

IMPACT EXPERIMENTS ON GMAO DATA ASSIMILATION AND FORECAST SYSTEMS WITH MODIS WINDS DURING MOWSAP. Lars Peter Riishojgaard and Yanqiu Zhu

IMPACT EXPERIMENTS ON GMAO DATA ASSIMILATION AND FORECAST SYSTEMS WITH MODIS WINDS DURING MOWSAP. Lars Peter Riishojgaard and Yanqiu Zhu IMPACT EXPERIMENTS ON GMAO DATA ASSIMILATION AND FORECAST SYSTEMS WITH MODIS WINDS DURING MOWSAP Lars Peter Riishojgaard and Yanqiu Zhu Global Modeling and Assimilation Office, NASA/GSFC, Greenbelt, Maryland

More information

Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts

Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jd006116, 2006 Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts

More information

ERA5 and the use of ERA data

ERA5 and the use of ERA data ERA5 and the use of ERA data Hans Hersbach, and many colleagues European Centre for Medium-Range Weather Forecasts Overview Overview of Reanalysis products at ECMWF ERA5, the follow up of ERA-Interim,

More information

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Award Number: NA10NES4400010 Award Period: 06/01/2010-05/31/2014 Program Office: NESDIS

More information

Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data A Method to Optimize Sounding Spatial and Temporal Resolution

Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data A Method to Optimize Sounding Spatial and Temporal Resolution Combining Polar Hyper-spectral and Geostationary Multi-spectral Sounding Data A Method to Optimize Sounding Spatial and Temporal Resolution W. L. Smith 1,2, E. Weisz 1, and J. McNabb 2 1 University of

More information

Antarctic atmospheric temperature trend patterns from satellite observations

Antarctic atmospheric temperature trend patterns from satellite observations Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L12703, doi:10.1029/2006gl029108, 2007 Antarctic atmospheric temperature trend patterns from satellite observations Celeste M. Johanson

More information

Outcomes of a workshop aimed at improved understanding of biases found in analysis of 183 GHz observations

Outcomes of a workshop aimed at improved understanding of biases found in analysis of 183 GHz observations Outcomes of a workshop aimed at improved understanding of biases found in analysis of 183 GHz observations She did all the hard work! Many thanks to all the participants from: LATMOS, Institute Pierre

More information

NOAA Products Validation System (NPROVS / NPROVS+)

NOAA Products Validation System (NPROVS / NPROVS+) NOAA Products Validation System (NPROVS / NPROVS+) Tony Reale (STAR) Michael Pettey, Bomin Sun Frank Tilley, Charles Brown (IMSG) NOAA / JPSS funded OUTLINE NPROVS / NPROVS+ Overview Timeliness of GRUAN

More information

Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit

Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit 1014 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 30 Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding

More information

Comparisons of IR Sounder and COSMIC Radio Occultation Temperatures: Guidance for CrIS NUCAPS Validation

Comparisons of IR Sounder and COSMIC Radio Occultation Temperatures: Guidance for CrIS NUCAPS Validation Comparisons of IR Sounder and COSMIC Radio Occultation Temperatures: Guidance for CrIS NUCAPS Validation Michelle Feltz, Robert Knuteson, Lori Borg, Steve Ackerman, Dave Tobin UW Madison SSEC / CIMSS 02Nov2015

More information

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES S. Noël, H. Bovensmann, J. P. Burrows Institute of Environmental Physics, University of Bremen, FB 1, P. O. Box 33 4 4, D 28334 Bremen, Germany

More information

Report of CoreTemp2017: Intercomparison of dual thermistor radiosonde (DTR) with RS41, RS92 and DFM09 radiosondes

Report of CoreTemp2017: Intercomparison of dual thermistor radiosonde (DTR) with RS41, RS92 and DFM09 radiosondes Report of CoreTemp2017: Intercomparison of dual thermistor radiosonde (DTR) with RS41, RS92 and DFM09 radiosondes Yong-Gyoo Kim *, Ph.D and GRUAN Lead center *Upper-air measurement team Center for Thermometry

More information

EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA

EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA Roger Huckle, Marie Doutriaux-Boucher, Rob Roebeling, and Jörg Schulz EUMETSAT, Eumetsat-Allee 1, Darmstadt,

More information

Bias correction of satellite data at Météo-France

Bias correction of satellite data at Météo-France Bias correction of satellite data at Météo-France É. Gérard, F. Rabier, D. Lacroix, P. Moll, T. Montmerle, P. Poli CNRM/GMAP 42 Avenue Coriolis, 31057 Toulouse, France 1. Introduction Bias correction at

More information

Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer

Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L19701, doi:10.1029/2006gl028547, 2007 Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer Hengchun Ye, 1

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information