A STUDY ON EVAPORATION IN IOANNINA, NW GREECE

Size: px
Start display at page:

Download "A STUDY ON EVAPORATION IN IOANNINA, NW GREECE"

Transcription

1 Proceedings of the 9 th International Conference on Environmental Science and Technology Rhodes island, Greece, 1 3 September 25 A STUDY ON EVAPORATION IN IOANNINA, NW GREECE A. V. KONTOGIANNI and A. BARTZOKAS Laboratory of Meteorology, Department of Physics, University of Ioannina, Greece abartzok@cc.uoi.gr EXTENDED ABSTRACT In this work, evaporation in Ioannina, NW Greece is studied for the 16-year period The data basis comes from the readings of the Wild evaporigraph charts of the meteorological station of Ioannina University. The total number of data consists of 7,8 bi-hourly values. At first, the main characteristics of evaporation in the study area are presented on annual, monthly and daily basis. The intra-annual variation of evaporation resembles to a simple sinusoidal curve with one maximum (July, 153mm) and one minimum (December, 16mm). The maximum inter-monthly evaporation change is found from August to September (-56mm) and the minimum from December to January (+6mm). The diurnal variation is also simple with a maximum at 14:-16: hour (.15mm in winter and.9mm in summer) and a minimum at 4:-6: hour (.3mm in winter and.5mm in summer). The study of frequency distribution reveals that, during winter, daily evaporation, in 9% of the cases, is less than 1.8mm. The maximum frequency appears for daily values less than.2mm, while the maximum values recorded are around 5mm. In summer, the curve is closer to the Gaussian distribution with maximum frequency of daily evaporation at around 4-6mm and maximum values above 1mm. A long-term study (test Mann-Kendal) revealed that there is a statistically significant (.5 level) negative trend during winter and autumn. For spring, summer and the year as a whole, trends were not found statistically significant. Examination of the number of days with evaporation above or below specific thresholds showed that in winter and autumn, the number of days with low evaporation increases while that with high evaporation decreases, in agreement with the general winter trend. The lower winter evaporation values during the recent years are related to the increase of precipitation in Ioannina and NW Greece after 199 due to the increase of cyclonic circulation in Central Mediterranean. Finally, the synoptic patterns over Europe and the Mediterranean, associated with cases of extreme evaporation values in NW Greece, are investigated. Factor Analysis was applied on the pressure space-series of the days of the upper decile for winter and lower decile for summer. The approximately 145 days (pressure patterns) of each category were grouped objectively to 4 factors in winter and 5 factors in summer, explaining around 85% of the total variance. In winter, it appears that the wind plays the major role since in the first 3 factors the main feature of the pressure pattern in the area of NW Greece is a dry and katabatic easterly or north-easterly flow. In summer, in the 4 stronger factors, a cyclonic flow appears over the Ionian sea. Key words: evaporation, Wild evaporigraph, extreme events, NW Greece Β-443

2 1. INTRODUCTION In meteorology, evaporation is called the change of liquid water or ice to water vapour. In certain usages the term signifies only the liquid to vapour phase change, as distinct from sublimation, which signifies the solid to vapour change. The rate of evaporation is controlled by the water and energy (mainly solar radiation) supplies and by the ability of the air to take up more water. The interpretation of direct measurements of evaporation presents certain problems. It is difficult to reconcile the results obtained from the different forms of evaporimeter or to relate them precisely to evaporation, which occurs from a free natural water surface. Evaporimeters are located either in meteorological enclosures as e.g. the common evaporation tank or inside meteorological screens, as e.g. the Piche evaporimeter, the Wild evaporigraph etc. Indirect measurements often use the relationship, evaporation equals rainfall minus run-off measures. Indirect assessments of evaporation can also be made using a theoretical formula based on incoming and outgoing radiation, wind and humidity conditions. For Greece, although there are various studies on evapotranspiration or soil evaporation [1], [2], evaporation from free water surface has not been studied extensively [3], [4], [5]. Especially for NW Greece, the existing studies are very few [6], [7]. In the present work, a survey of the evaporation regime in Ioannina, NW Greece will be presented based on Wild evaporigraph measurements. 2. DATA AND METHODS The data basis consists of 7,8 bi-hourly evaporation values, taken from the readings of the Wild evaporigraph (evaporigrams) of the meteorological station of Ioannina University for the 16-year period The instrument consists of an inclination balance carrying a metal bowl with an evaporating surface of 25cm 2 area and a recording device coupled with the balance, which records evaporation in mm of water level. The regime of evaporation in Ioannina is studied on daily, 5-day, monthly, seasonal and annual basis. In particular, the diurnal and intra-annual variations are studied by using the method of Harmonic Analysis while the long-term (inter-annual) variability is studied by using the Mann-Kendal test of randomness against trend. Also, the number of days with evaporation above or below specific thresholds is estimated for each year and the longterm changes are investigated [8], [9]. Furthermore, winter days with high evaporation (upper decile) and summer days with low evaporation (lower decile) are selected and studied. For these extreme evaporation days (approximately 145 days in each category), the pressure patterns over Europe (from 1W to 4E and from 3N to 6N - NCEP- NCAR data) are constructed and then, using Factor Analysis, the charts are grouped objectively [1]. Thus, the main pressure patterns associated with extreme evaporation values in NW Greece are revealed. 3. RESULTS AND DISCUSSION 3.1 The diurnal variation of evaporation The diurnal variation of evaporation resembles to a simple sinusoidal curve with a maximum at 14:-16: hour and a minimum at 4:-6: hour (local standard time). Β-444

3 The mean seasonal curves are presented in Figure 1a. They exhibit maximum bi-hourly values of.15mm in winter and.9mm in summer and minimum values of.3mm in winter and.5mm in summer. Fourier Analysis shows that the first harmonic term presents its maximum approximately at 15: explaining 77% of the total variance in winter and 84% in summer. This difference must be due to the very small and almost constant evaporation values during winter nights. The results of the analysis for the first harmonic are presented in Table 1. In Figure 1b the mean bi-hourly evaporation changes during a day are presented for each season. It is seen that the maximum evaporation increase appears from 11: to 13: [(1-12)-(12-14)] (.5mm in winter and.29mm in summer) and the maximum decrease from 17: to 19: (-.5mm in winter and -.27mm in summer). 1,,4 EVAPORATION,9,8,7,6,5,4,3,2,1 WINTER SPRING SUMMER AUTUMN EVAPORATION CHANGE,3,2,1, -,1 -,2 (2-4)-(-2) (4-6)-(2-4) (6-8)-(4-6) (8-1)-(6-8) (1-12)-(8-1) (12-14)-(1-12) (14-16)-(12-14) (16-18)-(14-16) (18-2)-(16-18) (2-22)-(18-2) (22-)-(2-22) (-2)-(22-), ,3 TIME DIFFRENCE Figure 1: (a) The diurnal variation of evaporation in Ioannina, for each season (1988-3), (b) Mean bi-hourly evaporation changes during a day. Table 1. The first harmonic term of the diurnal variation of evaporation in Ioannina Mean value Amplitude Time of maximum Variance explained (%) Winter :38' 77.3 Spring :9' 81.9 Summer :1' 84.6 Autumn :9' The intra-annual variation of evaporation The intra-annual variation of evaporation also resembles to a simple sinusoidal curve with one maximum (July, 153mm) and one minimum (December, 16mm) (Figure 2a). High EVAPORATION JAN FEB MAR APR MAY JUN JUL AUG SEP OKT NOV DEC EVAPORATION CHANGE JAN-FEB FEB-MAR MAR-APR APR-MAY MAY-JUN JUN-JUL JUL-AUG AUG-SEP SEP-OKT OKT-NOV NOV-DEC DEC-JAN TIME DIFFERENCE Figure 2: (a) The intra-annual variation of evaporation in Ioannina ( ), (b) Mean inter-monthly evaporation changes during a year. Β-445

4 inter-monthly evaporation increase appears from May to June (35mm) and from June to July (33mm), while the maximum decrease appears from August to September (-6mm) (Figure 2b). The intra-annual variation is analysed by using Fourier analysis twice. First, on the 12 monthly evaporation totals and then on the 73 5-day interval totals (Figure not shown). As was expected, the first harmonic term explains most of the variance (Table 2), and it is stronger in the latter case. Table 2. The first harmonic term of the intra-annual variation of evaporation in Ioannina Mean value Amplitude Time of maximum Variance explained (%) 12 monthly values July day values July Frequency distribution The study of frequency distribution reveals that, during winter, daily evaporation, in 9% of the cases, is less than 1.8mm. The maximum frequency appears for daily values less than.2mm, while the maximum values recorded are around 5mm (Figure 3a). In summer, the curve is closer to the Gaussian distribution with maximum frequency of daily evaporation at around 4-6mm and maximum values above 1mm (Figure 3b). Spring resembles more to summer while autumn resembles more to winter (figures not shown) FREQUENCY FREQUENCY ,2,6 1 1,4 1,8 2,2 2,6 3 3,4 3,8 4,2 4,6 5 EVAPORATION,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 1,5 11,5 12,5 EVAPORATION Figure 3: Frequency distribution of daily evaporation values in Ioannina ( ) (a) in winter and (b) in summer (.2 means -.2mm,.5 means -.5mm). 3.4 Extreme daily evaporation events Examination of the number of days with evaporation above or below specific thresholds showed that during the study period, in winter, the number of days with low evaporation increases while that with high evaporation decreases (Figures 4a, b). These findings are in agreement with the increase of precipitation in Ioannina and NW Greece after 199 due to the increase of cyclonic circulation in Central Mediterranean. The results were further enhanced by the Mann-Kendal test, which was applied on the daily winter evaporation values and revealed that there is a statistically significant (.5 level) negative trend. A statistically significant negative trend was also found for autumn. In summer, the two diagrams of high and low thresholds appear supplementary. For example, in 1995 and 22, which are summers with low temperature and high precipitation, there appear maxima in Figure 5a (low evaporation thresholds), while in 1998, a high temperature and low precipitation summer, there appears a maximum, in Figure 5b (high evaporation thresholds). Β-446

5 <,9 >3, <,8 >3,2 <,7 <,6 <,5 <,4 <,3 <,2 <,1 >3,4 >3,6 >3,8 >4, >4,2 >4,4 >4, >4, Figure 4: (a) Number of days with evaporation below specific thresholds in winter, (b) number of days with evaporation above specific thresholds in winter. <1,6 >7 <1,4 >7, <1,2 <1 <,9 <,8 <,7 <,6 <,5 23 <, >8 >8,5 >9 >9,5 >1 >1,5 >11 >11,5 > Figure 5: As in Figure 4 but for summer. 3.5 Pressure patterns associated with extreme evaporation events In order to reveal pressure patterns related to extreme evaporation events in NW Greece, Factor Analysis was applied on the pressure space-series of the days of the upper decile for winter (high evaporation) and lower decile for summer (low evaporation). The approximately 145 days (pressure patterns) of each category were grouped objectively to 4 factors in winter and 5 factors in summer, explaining around 85% of the total variance. In winter, it appears that the wind plays the major role since in the first 3 factors the main feature of the pressure pattern in the area of NW Greece is a dry and katabatic easterly or north-easterly flow (Figure 6a). The relationship between evaporation and wind speed was further examined by correlating the daily evaporation values with the daily wind speed values taken from the anemometer of the classical evaporation pan. It was found that the correlation is high enough, r=.7. Factor 4, exhibits an extended anticyclonic circulation over the whole Mediterranean, associated with sunshine (Figure 6b). In summer, in the 4 strongest factors, a cyclonic flow appears over the Ionian Sea, either due to an extension of the SW Asia thermal low or due to central European depressions or due to Mediterranean cut-off lows (Figures 6c, d). Β-447

6 (a) (b) (c) (d) Figure 6: Pressure patterns (standardized factor scores) for extreme evaporation days in Ioannina. (a) winter-factor 1, (b) winter-factor 4, (c) summer-factor 1, (d) summer-factor CONCLUSIONS This work, deals with the meteorological phenomenon of evaporation in NW Greece, for the 16-year period It is shown that evaporation presents simple sinusoidal diurnal and intra-annual variation. The first harmonic terms, derived from Fourier Analysis, explains approximately 8% of the total variance. Frequency distributions in winter and in summer appear different. In winter, there is a peak in low evaporation values while in summer the curve resembles to the Gaussian distribution. The number of days with high evaporation in winter decreases in recent years while that of low evaporation increases. Finally, it was found that the synoptic situations associated with days of high evaporation, in winter, are characterized by strong easterly katabatic winds while days with low evaporation, in summer, are characterized by cyclonic conditions in the Ionian Sea. REFERENCES 1. Dalezios N.R., Loukas A. and Bamzelis D. (22) Spatial variability of reference evapotranspiration in Greece, Physics and Chemistry of the Earth, 27 (23-24), Kosmas C., Marathianou M., Gerontidis S., Detsis V., Tsara M. and Poesen J. (21) Parameters affecting water vapor adsorption by soil under semi-arid climatic conditions Agricultural Water Management, 48 (1), Livadas G.C. and Machairas P.C. (1972) Evaporation in Thessaloniki-Greece, Meteorologika, 18, Machairas P.C. (1973) Evaporation and weather types, Meteorologika, 3, Metaxas D.A. and Repapis C.C. (1977) Evaporation in the Mediterranean Rivista di Meteorologia Aeronautica, XXXVII, Romero J.R., Kagalou I., Imberger J., Hela D., Kotti M., Bartzokas A., Albanis T., Evmirides N., Karkabounas S., Pappigannis J., Bithava A. (22) Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration, Hydrobiologia, 474, Μαλδογιάννης Θ. (1971) Το Κλίµα των Ιωαννίνων, ιδακτορική ιατριβή, Παν/µιο Ιωαννίνων. 8. Domonkos P. (1998) Statistical Characteristics of Extreme Temperature Anomaly Groups I Hungary, Theoretical and Applied Climatology, 59, Domonkos P. (21) Temporal accumulations of extreme daily mean temperature anomalies, Theoretical and Applied Climatology, 68, Bartzokas A. and Metaxas, D.A. (1996) Nοrthern hemisphere gross circulation types. Climatic change and temperature distribution, Meteorologische Zeitschrift, 5 (3), Β-448

Atmospheric circulation patterns associated with extreme precipitation amounts in Greece

Atmospheric circulation patterns associated with extreme precipitation amounts in Greece Adv. Geosci., 17, 5 11, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Advances in Geosciences Atmospheric circulation patterns associated with extreme

More information

2003 Water Year Wrap-Up and Look Ahead

2003 Water Year Wrap-Up and Look Ahead 2003 Water Year Wrap-Up and Look Ahead Nolan Doesken Colorado Climate Center Prepared by Odie Bliss http://ccc.atmos.colostate.edu Colorado Average Annual Precipitation Map South Platte Average Precipitation

More information

Climate Variability in South Asia

Climate Variability in South Asia Climate Variability in South Asia V. Niranjan, M. Dinesh Kumar, and Nitin Bassi Institute for Resource Analysis and Policy Contents Introduction Rainfall variability in South Asia Temporal variability

More information

Colorado s 2003 Moisture Outlook

Colorado s 2003 Moisture Outlook Colorado s 2003 Moisture Outlook Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu How we got into this drought! Fort

More information

The Climate of Bryan County

The Climate of Bryan County The Climate of Bryan County Bryan County is part of the Crosstimbers throughout most of the county. The extreme eastern portions of Bryan County are part of the Cypress Swamp and Forest. Average annual

More information

Drought in Southeast Colorado

Drought in Southeast Colorado Drought in Southeast Colorado Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu 1 Historical Perspective on Drought Tourism

More information

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC This threat overview relies on projections of future climate change in the Mekong Basin for the period 2045-2069 compared to a baseline of 1980-2005.

More information

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region Yale-NUIST Center on Atmospheric Environment Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region ZhangZhen 2015.07.10 1 Outline Introduction Data

More information

Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia

Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia Jaak Jaagus Dept. of Geography, University of Tartu Agrita Briede Dept.

More information

Variability of Reference Evapotranspiration Across Nebraska

Variability of Reference Evapotranspiration Across Nebraska Know how. Know now. EC733 Variability of Reference Evapotranspiration Across Nebraska Suat Irmak, Extension Soil and Water Resources and Irrigation Specialist Kari E. Skaggs, Research Associate, Biological

More information

The Climate of Payne County

The Climate of Payne County The Climate of Payne County Payne County is part of the Central Great Plains in the west, encompassing some of the best agricultural land in Oklahoma. Payne County is also part of the Crosstimbers in the

More information

The Climate of Seminole County

The Climate of Seminole County The Climate of Seminole County Seminole County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeastern Oklahoma. Average

More information

The Climate of Haskell County

The Climate of Haskell County The Climate of Haskell County Haskell County is part of the Hardwood Forest. The Hardwood Forest is characterized by its irregular landscape and the largest lake in Oklahoma, Lake Eufaula. Average annual

More information

The Climate of Kiowa County

The Climate of Kiowa County The Climate of Kiowa County Kiowa County is part of the Central Great Plains, encompassing some of the best agricultural land in Oklahoma. Average annual precipitation ranges from about 24 inches in northwestern

More information

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson Agricultural Science Climatology Semester 2, 2006 Anne Green / Richard Thompson http://www.physics.usyd.edu.au/ag/agschome.htm Course Coordinator: Mike Wheatland Course Goals Evaluate & interpret information,

More information

The Climate of Marshall County

The Climate of Marshall County The Climate of Marshall County Marshall County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeastern Oklahoma. Average

More information

The Climate of Pontotoc County

The Climate of Pontotoc County The Climate of Pontotoc County Pontotoc County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeast Oklahoma. Average

More information

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound 8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound Cockburn Sound is 20km south of the Perth-Fremantle area and has two features that are unique along Perth s metropolitan coast

More information

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( ) International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.706.295

More information

The Climate of Grady County

The Climate of Grady County The Climate of Grady County Grady County is part of the Central Great Plains, encompassing some of the best agricultural land in Oklahoma. Average annual precipitation ranges from about 33 inches in northern

More information

Global Climates. Name Date

Global Climates. Name Date Global Climates Name Date No investigation of the atmosphere is complete without examining the global distribution of the major atmospheric elements and the impact that humans have on weather and climate.

More information

Climatography of the United States No

Climatography of the United States No Climate Division: AK 5 NWS Call Sign: ANC Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 90 Number of s (3) Jan 22.2 9.3 15.8

More information

Presentation Overview. Southwestern Climate: Past, present and future. Global Energy Balance. What is climate?

Presentation Overview. Southwestern Climate: Past, present and future. Global Energy Balance. What is climate? Southwestern Climate: Past, present and future Mike Crimmins Climate Science Extension Specialist Dept. of Soil, Water, & Env. Science & Arizona Cooperative Extension The University of Arizona Presentation

More information

A STUDY ON THE INTRA-ANNUAL VARIATION AND THE SPATIAL DISTRIBUTION OF PRECIPITATION AMOUNT AND DURATION OVER GREECE ON A 10 DAY BASIS

A STUDY ON THE INTRA-ANNUAL VARIATION AND THE SPATIAL DISTRIBUTION OF PRECIPITATION AMOUNT AND DURATION OVER GREECE ON A 10 DAY BASIS INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 23: 207 222 (2003) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.874 A STUDY ON THE INTRA-ANNUAL VARIATION

More information

The Climate of Murray County

The Climate of Murray County The Climate of Murray County Murray County is part of the Crosstimbers. This region is a transition between prairies and the mountains of southeastern Oklahoma. Average annual precipitation ranges from

More information

Relationship between atmospheric circulation indices and climate variability in Estonia

Relationship between atmospheric circulation indices and climate variability in Estonia BOREAL ENVIRONMENT RESEARCH 7: 463 469 ISSN 1239-695 Helsinki 23 December 22 22 Relationship between atmospheric circulation indices and climate variability in Estonia Oliver Tomingas Department of Geography,

More information

The Climate of Texas County

The Climate of Texas County The Climate of Texas County Texas County is part of the Western High Plains in the north and west and the Southwestern Tablelands in the east. The Western High Plains are characterized by abundant cropland

More information

2003 Moisture Outlook

2003 Moisture Outlook 2003 Moisture Outlook Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu Through 1999 Through 1999 Fort Collins Total Water

More information

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed Changing Hydrology under a Changing Climate for a Coastal Plain Watershed David Bosch USDA-ARS, Tifton, GA Jeff Arnold ARS Temple, TX and Peter Allen Baylor University, TX SEWRU Objectives 1. Project changes

More information

Climatography of the United States No

Climatography of the United States No Climate Division: ND 8 NWS Call Sign: BIS Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 21.1 -.6 10.2

More information

Dust storm variability over EGYPT By Fathy M ELashmawy Egyptian Meteorological Authority

Dust storm variability over EGYPT By Fathy M ELashmawy Egyptian Meteorological Authority WMO WORKSHOP ON CLIMATE MONITORING INCLUDING THE IMPLEMENTATION OF CLIMATE WATCH SYSTEMS FOR ARAB COUNTRIES IN WEST ASIA, AMMAN, JORDAN, 27-29 MAY 2013 Dust storm variability over EGYPT By Fathy M ELashmawy

More information

INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT

INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT Hristomir Branzov 1, Valentina Pencheva 2 1 National Institute of Meteorology and Hydrology, Sofia, Bulgaria, Hristomir.Branzov@meteo.bg

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

WIND DATA REPORT FOR THE YAKUTAT JULY 2004 APRIL 2005

WIND DATA REPORT FOR THE YAKUTAT JULY 2004 APRIL 2005 WIND DATA REPORT FOR THE YAKUTAT JULY 2004 APRIL 2005 Prepared on July 12, 2005 For Bob Lynette 212 Jamestown Beach Lane Sequim WA 98382 By John Wade Wind Consultant LLC 2575 NE 32 nd Ave Portland OR 97212

More information

Phenomenological features of precipitation series in agricultural regions

Phenomenological features of precipitation series in agricultural regions Extreme Hydroloeical Events: Precipitation, Floods and Droughts (Proceedings of the Yokohama Symposium, July 1993). IAHS Publ. no. 213, 1993. 51 Phenomenological features of precipitation series in agricultural

More information

1.0 Implications of using daily climatological wind speed prior to 1948

1.0 Implications of using daily climatological wind speed prior to 1948 Supplemental Material 1.0 Implications of using daily climatological wind speed prior to 1948 As detailed in the manuscript, NCEP-NCAR reanalysis wind data were used for the period 1948/01/01-2011/12/31.

More information

Temporal change of some statistical characteristics of wind speed over the Great Hungarian Plain

Temporal change of some statistical characteristics of wind speed over the Great Hungarian Plain Theor. Appl. Climatol. 69, 69±79 (2001) 1 Department of Meteorology, University of Debrecen, Hungary 2 Department of Climatology and Landscape Ecology, University of Szeged, Hungary Temporal change of

More information

Northern New England Climate: Past, Present, and Future. Basic Concepts

Northern New England Climate: Past, Present, and Future. Basic Concepts Northern New England Climate: Past, Present, and Future Basic Concepts Weather instantaneous or synoptic measurements Climate time / space average Weather - the state of the air and atmosphere at a particular

More information

Changes in Observed Air Temperature in Kuwait from 2001 to 2016

Changes in Observed Air Temperature in Kuwait from 2001 to 2016 The International Journal of Engineering and Science (IJES) Volume 6 Issue 10 Pages PP 67-74 2017 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Changes in Observed Air Temperature in Kuwait from 2001 to 2016

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 39.3 47.5 77

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 56.6 36.5 46.6 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 57.9 38.9 48.4 85

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 44.8 25.4 35.1 72

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 49.4 37.5 43.5 73

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 69.4 46.6 58.0 92

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 58.5 38.8 48.7 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 67.5 42. 54.8 92 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 57.8 39.5 48.7 85 1962

More information

Will a warmer world change Queensland s rainfall?

Will a warmer world change Queensland s rainfall? Will a warmer world change Queensland s rainfall? Nicholas P. Klingaman National Centre for Atmospheric Science-Climate Walker Institute for Climate System Research University of Reading The Walker-QCCCE

More information

Climatography of the United States No

Climatography of the United States No Climate Division: TN 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 47.6 24.9 36.3 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: FAT Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 53.6 38.4 46. 78

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: 1L2 N Lon: 118 3W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 63.7

More information

South Eastern Australian Rainfall in relation to the Mean Meridional Circulation

South Eastern Australian Rainfall in relation to the Mean Meridional Circulation South Eastern Australian Rainfall in relation to the Mean Meridional Circulation Bertrand Timbal, Hanh Nguyen, Robert Fawcett, Wasyl Drosdowsky and Chris Lucas CAWCR / Bureau of Meteorology Long-term SEA

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: BFL Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.3 39.3 47.8

More information

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh Open Journal of Geology, 2012, 2, 294-300 http://dx.doi.org/10.4236/ojg.2012.24028 Published Online October 2012 (http://www.scirp.org/journal/ojg) Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist

More information

Champaign-Urbana 2001 Annual Weather Summary

Champaign-Urbana 2001 Annual Weather Summary Champaign-Urbana 2001 Annual Weather Summary ILLINOIS STATE WATER SURVEY 2204 Griffith Dr. Champaign, IL 61820 wxobsrvr@sws.uiuc.edu Maria Peters, Weather Observer January: After a cold and snowy December,

More information

PYROGEOGRAPHY OF THE IBERIAN PENINSULA

PYROGEOGRAPHY OF THE IBERIAN PENINSULA PYROGEOGRAPHY OF THE IBERIAN PENINSULA Teresa J. Calado (1), Carlos C. DaCamara (1), Sílvia A. Nunes (1), Sofia L. Ermida (1) and Isabel F. Trigo (1,2) (1) Instituto Dom Luiz, Universidade de Lisboa, Lisboa,

More information

Champaign-Urbana 2000 Annual Weather Summary

Champaign-Urbana 2000 Annual Weather Summary Champaign-Urbana 2000 Annual Weather Summary ILLINOIS STATE WATER SURVEY 2204 Griffith Dr. Champaign, IL 61820 wxobsrvr@sws.uiuc.edu Maria Peters, Weather Observer January: January started on a mild note,

More information

Climatography of the United States No

Climatography of the United States No Climate Division: TN 3 NWS Call Sign: BNA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 45.6 27.9 36.8

More information

Summary report for Ruamāhanga Whaitua Committee The climate of the Ruamāhanga catchment

Summary report for Ruamāhanga Whaitua Committee The climate of the Ruamāhanga catchment Summary report for Ruamāhanga Whaitua Committee The climate of the Ruamāhanga catchment The Tararua and Rimutaka ranges have a large influence on the climate of the Ruamāhanga catchment. The ranges shelter

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Elevation: 2 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Elevation: 6 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Elevation: 13 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Elevation: 1,14 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of

More information

Extreme precipitation events in NW Greece

Extreme precipitation events in NW Greece Advances in Geosciences, 7, 91 96, 2006 SRef-ID: 1680-7359/adgeo/2006-7-91 European Geosciences Union 2006 Author(s). This work is licensed under a Creative Commons License. Advances in Geosciences Extreme

More information

LECTURE ONE The Astronomy of Climate

LECTURE ONE The Astronomy of Climate LECTURE ONE The Astronomy of Climate Agricultural Science Climatology Semester 2, 2006 Richard Thompson http://www.physics.usyd.edu.au/ag/agschome.htm Course Coordinator: Mike Wheatland AMMENDED TIMETABLE

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: LAX Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: TOA Elevation: 11 Feet Lat: 33 2W Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number

More information

Seasonal Hydrometeorological Ensemble Prediction System: Forecast of Irrigation Potentials in Denmark

Seasonal Hydrometeorological Ensemble Prediction System: Forecast of Irrigation Potentials in Denmark Seasonal Hydrometeorological Ensemble Prediction System: Forecast of Irrigation Potentials in Denmark Diana Lucatero 1*, Henrik Madsen 2, Karsten H. Jensen 1, Jens C. Refsgaard 3, Jacob Kidmose 3 1 University

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 46646 Climate Division: CA 4 NWS Call Sign: 8W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 4792 Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65

More information

4. THE HBV MODEL APPLICATION TO THE KASARI CATCHMENT

4. THE HBV MODEL APPLICATION TO THE KASARI CATCHMENT Application of HBV model to the Kasari River, 1994 Page 1 of 6 Application of the HBV model to the Kasari river for flow modulation of catchments characterised by specific underlying features by R. Vedom,

More information

Climatography of the United States No

Climatography of the United States No Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 32.8 21.7 27.3 62 1918 1 35.8 1983-24 1950 29 10.5 1979

More information

Climatography of the United States No

Climatography of the United States No Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 63.9 39.3 51.6 86 1976 16 56.6 1986 20 1976 2 47.5 1973

More information

CLIMATE OVERVIEW. Thunder Bay Climate Overview Page 1 of 5

CLIMATE OVERVIEW. Thunder Bay Climate Overview Page 1 of 5 CLIMATE OVERVIEW The climate in the Thunder Bay area is typical of a mid-latitude inland location with a Great Lake Moderating influence. The moderating effect of Lake Superior results in cooler summer

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 43417 Climate Division: CA 4 NWS Call Sign: N Lon: 121 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 51.5 35.0 43.3 80

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 59.3 31.5 45.4 80 1976

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 44.5 29.3 36.9 69 1951

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.7 32.7 43.2 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 68.5 45.7 57.1 90 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.3 37.1 45.2 77 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 56.0 35.7 45.9 83 1975

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.3 31.8 42.6 74+ 1975

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) 64.8 45.4 55.1 85 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) 65.5 38.7 52.1 87 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 58.8 34.3 46.6 81+ 1948

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 70.4 44.2 57.3 95 1971

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 4795 Climate Division: CA 6 NWS Call Sign: SBA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.9 42.0 52.0 89

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 38.8 47.2 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 52.4 35.4 43.9 69

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 53.5 37.6 45.6 78

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 66.1 38.3 52.2 91

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.2 4.7 48.5 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 50.2 31.2 40.7 65+

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.4 33.1 47.3 82+

More information

Climatic study of the surface wind field and extreme winds over the Greek seas

Climatic study of the surface wind field and extreme winds over the Greek seas C O M E C A P 2 0 1 4 e - b o o k o f p r o c e e d i n g s v o l. 3 P a g e 283 Climatic study of the surface wind field and extreme winds over the Greek seas Vagenas C., Anagnostopoulou C., Tolika K.

More information

Verification of the Seasonal Forecast for the 2005/06 Winter

Verification of the Seasonal Forecast for the 2005/06 Winter Verification of the Seasonal Forecast for the 2005/06 Winter Shingo Yamada Tokyo Climate Center Japan Meteorological Agency 2006/11/02 7 th Joint Meeting on EAWM Contents 1. Verification of the Seasonal

More information

GAMINGRE 8/1/ of 7

GAMINGRE 8/1/ of 7 FYE 09/30/92 JULY 92 0.00 254,550.00 0.00 0 0 0 0 0 0 0 0 0 254,550.00 0.00 0.00 0.00 0.00 254,550.00 AUG 10,616,710.31 5,299.95 845,656.83 84,565.68 61,084.86 23,480.82 339,734.73 135,893.89 67,946.95

More information