A Neural Network Scheme For Earthquake. City University, Centre for Information Engineering(1), Department of Computer Science(2),

Size: px
Start display at page:

Download "A Neural Network Scheme For Earthquake. City University, Centre for Information Engineering(1), Department of Computer Science(2),"

Transcription

1 A Neural Network Scheme For Earthquake Prediction Based On The Seismic Electric Signals Spiros Lakkos 1, Andreas Hadjiprocopis 2, Richard Comley 1, Peter Smith 2 City University, Centre for Information Engineering(1), Department of Computer Science(2), Northampton Square, London, EC1V 0HB, UK Introduction It has been reported that transient variations of the electrotelluric eld - called Seismic Electric Signals (SES) - are observed before an earthquake. The study of the physical properties of these signals is used for the determination of the parameters (epicentre and magnitude) of an impending event[1]. The occurrence of these precursors varies from a few hours to a few days before the earthquake and have a duration of one minute to a few hours. These signals appear as a transient change of the potential dierence measured between two electrodes (up to a few tenths of V/m) (Figure 1) depending on the earthquake magnitude, Ms, the epicentre, local geophysical inhomogeneities, source characteristics and travel path. The components of the electric eld are measured in two perpendicular directions (East-West and North-South) using dipoles with lengths varying from a few tenths of meters to a couple of kilometers. Very often, noise obstructs the clarity of SES. It can be classied into three categories depending on the nature of the cause: electrochemical, magnetotelluric and cultural. By using various techniques[9], [10] to eliminate the noise from the electrotelluric eld measurements and by applying 1

2 certain, well dened, criteria[2], the detection of SES is achieved. The study of the physical properties of SES and their correlation to the impending seismic activity leads to the construction of an empirical selectivity map for a monitoring station. Selectivity is dened as the sensitivity of a station to signals from a restricted number of seismic areas while remaining insensitive to SES from other areas[3]. In this paper a dierent approach is suggested for the construction of the selectivity maps based on the use of Articial Neural Networks. Articial Neural Networks The most basic function of Articial Neural Networks (ANN) is the mapping of an N-Dimensional space to M Dimensions. By adjusting the weights of the internal connections of the network, through training, a transformation function is approximated. The accuracy of the resultant mapping depends on the amount of the output error at the end of the training process, as well as, whether the training set is a representative sample of the domain of the application. The problem was to nd a suitable transformation which would map the two dimensional input data (the relative SES components [mv/m] in the directions East-West and North- South) collected by the monitoring station, into a three dimensional representation (the geographical location - longitude and lattitude - and the magnitude of the impending event), (Figure 2). The XERION software package[16] was used to simulate a feed-forward Network. Several combinations of network architectures and training algorithms were tested. The conguration that gave satisfactory results comprised of: Two input nodes corresponding to the two components of the SES, Fourty ve hidden layer nodes, Three output nodes corresponding to longitude, lattitude and magnitude information. 2

3 The Delta-Bar-Delta[16] training algorithm was employed. The training data was collected by a monitoring station based at Ioannina (western Greece) and presented in [1 to 8]. Due to its small size, expansion of the original set was necessary by addition of a small amount of Gaussian noise to each of the training vectors. The size of the data set has been increased by a factor of ve, (Figure 3). The mapping produced with the expanded data set works better since the network now has a better idea of what the input surface looks like and any misinterpretations due to restricted input data are avoided. Although the overall output error in this case increases, a continuous and smooth output is obtained, moreover, meaningless output values are avoided. After convergence, the network can be used to predict impending earthquakes and construct the selectivity map for a monitoring station. Interpretation of the Results The network has been tested using a small subset of the available data which has not been presented to the network during the training process. The majority of the training vectors was associated with earthquakes from the geographical area 20:0 o E? 21:5 o E; 37:5 o N? 40:0 o N. As a result the network prediction accuracy was higher in that area. The epicentre location can be predicted with an error of less than 0:3 o, and the magnitude with an error of less than 0.5 Ms. The most successful of the methods used so far for the same purpose, based on traditional statistical linear models have approximately twice as much error. Furthermore, by feeding the network with a data set occupying the whole input space, a surface related directly to the sensitivity properties of the station is obtained, thus, approximating its selectivity map, (Figure 4). A possible way of investigating the travel paths of the SES and certain geophysical characteristics of the monitoring area is to present the network with a set of data as above and plot only the epicentre information, discarding the magnitude. The obtained curves or family of curves indicate paths where SES 3

4 sensitive to that station possibly propagate, (Figure 5). Similarly, by discarding the epicentre information and plotting only the earthquake magnitude versus one component of the input vectors, while the other is kept constant, the relationship between the magnitude of the earthquake and the SES could be obtained, (Figure 6). Comments and Conclusions The method presented here is superior to the classical statistical method for the prediction of earthquakes based on the SES. The construction of the selectivity map has become a relatively easy and accurate task. Once the network is trained with a large data set, the results can be considered suciently accurate for practical purposes. Furthermore the trained network can be used as a model for geophysical research. More work can be done to further investigate the behaviour of the Neural Net under unconventional conditions. Other network topologies, such as Self Organised Maps, could be employed. It is also worth considering the idea of a network with inputs from more than one monitoring stations. Despite the fact that so far a single network was employed assuming a strong correlation between the magnitude and epicentre of the earthquake, it could be possible to use two separate networks. We would like to acknowlegde the help and advice of Mr. J.Makris, University of Athens. 4

5 Figure 1: Typical forms of Seismic Electric Signals. Earthquake Prediction [Ms] Eq. Mag. [o] Longitude [o] Latitude Artificial Neural Network E NS Seismic Electric Signals EEW Figure 2: Input to Output Space transformation by means of ANN. 5

6 noisy.examples basic.examples Ens [mv/m] Eew [mv/m] Figure 3: The input training vectors. Sensitivity_Area High_Sensitivity_Area Longitude E[o] Latitude N[o] Figure 4: Sensitivity map of a monitoring station. 6

7 IOA Station Coord. vs Ens Experimental_Data IOA_Station x Latitude N[o] Ens = 0 mv/m - Ens=+0.018mV/m 38 Ens=-0.026mV/m Longitude E[o] Figure 5: Epicentral location as a function of E N S constant. E EW with 7 Ms Ex.Data Eq. Magnitude [Ms] Ens [mv/m] Figure 6: Earthquake magnitude as a function of E N S with E EW constant. 7

8 References [1] Varotsos P. and Alexopoulos K.: Physical Properties of the Variation of the Electric Field of the Earth Preceding Earthquakes I and II, Techtonophysics, vol 110, (1984). [2] Varotsos P. and Lazaridou M.: Latest Aspects of Earthquake Prediction in Greece based on Seismic Electric Signals, Techtonophysics, vol.188 (1991). [3] Varotsos P., Alexopoulos K. and Lazaridou M.: Latest Aspects of Earthquake Prediction in Greece based on Seismic Electric Signals II, Techtonophysics (1993). [4] Varotsos P., Alexopoulos K., Lazaridou M., Nagao T.: Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990, Techtonophysics (1993). [5] Varotsos P., Alexopoulos K., Lazaridou M.: Recent earthquake predictions issued by the VAN-network in Greece. Period: Feb. 6, May 31, 1991, submitted in Techtonophysics. [6] Shnirman M., Schreider S., Dmitrieva O.: Statistical evaluation of the VAN predictions issued during the period , Techtonophysics (1993). [7] Dologlou E.: A three year continuous sample of ocially documented predictions issued in Greece using the VAN method: Techtonophysics (1993). [8] Eftaxias K., Hadjicontis: Information material on earthquake prediction in Greece by means of seismic electric signals, Int. Conf. Measurement and Theoretical Models of the earth's electric eld variations related to earthquakes, Feb. 6-8 Athens). [9] Chouliaras G. and Rasmussen T.M.: The Application of the Magnetotelluric Impedance Tensors to Earthquake Prediction Research in Greece, Techtonophysics, vol. 152 (1988). 8

9 [10] Lakkos S. and Comley R.A.: An Adaptive System for the Estimation of the Magnetotelluric Impedance Tensor and its Application in Earthquake Prediction, International Proceedings of the International Symposium of Information Theory and Applications, ISITA '92, Singapore (1992). [11] McCullough W.S. and Pitts W.: A Logical Calculus of the Ideas Immanent in Nervous Activity, Bull. Math. Biophys. 5, (1943). [12] Rosenblatt F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan Books, New York (1962). [13] Widrow B. and Ho M.E.: Adaptive Switching Networks, IRE Wescon Convention Record (1961). [14] Freeman J.: Neural Networks: Theory and Practice, Addison-Wesley (1991). [15] Hecht-Nielsen R.: Neurocomputing, Addison{Wesley (1990). [16] Drew Van Camp: The XERION Neural Network Simulator Users Guide, University of Toronto (1993). 9

What happened before the last five strong earthquakes in Greece: Facts and open questions

What happened before the last five strong earthquakes in Greece: Facts and open questions 86 Proc. Jpn. Acad., Ser. B 82 (2006) [Vol. 82, What happened before the last five strong earthquakes in Greece: Facts and open questions By Panayiotis A. VAROTSOS ) Solid State Section and Solid Earth

More information

ADDITIONAL EVIDENCE ON SOME RELATIONSHIP BETWEEN SEISMIC ELECTRIC SIGNALS AND EARTHQUAKE SOURCE PARAMETERS

ADDITIONAL EVIDENCE ON SOME RELATIONSHIP BETWEEN SEISMIC ELECTRIC SIGNALS AND EARTHQUAKE SOURCE PARAMETERS A C T A G E O P H Y S I C A P O L O N I C A Vol. 53, no. 3, pp. 293-298 2005 ADDITIONAL EVIDENCE ON SOME RELATIONSHIP BETWEEN SEISMIC ELECTRIC SIGNALS AND EARTHQUAKE SOURCE PARAMETERS Panayiotis VAROTSOS

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Short-term earthquake (EQ) prediction is one of the most

Short-term earthquake (EQ) prediction is one of the most Geoelectric potential changes: Possible precursors to earthquakes in Japan S. Uyeda*, T. Nagao, Y. Orihara, T. Yamaguchi, and I. Takahashi Riken International Frontier Research Group on Earthquakes at

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Using artificial neural network for solar energy level predicting

Using artificial neural network for solar energy level predicting ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 13, No. 3, 2018, pp.163-167 Using artificial neural network for solar energy level predicting A.G. Mustafaev Dagestan state

More information

Supplementary information on: Electric pulses some minutes before earthquake occurrences. Abstract

Supplementary information on: Electric pulses some minutes before earthquake occurrences. Abstract Supplementary information on: Electric pulses some minutes before earthquake occurrences P. A. Varotsos, 1, N. V. Sarlis, 1 E. S. Skordas, 1 and M. S. Lazaridou 1 1 Solid State Section and Solid Earth

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Neural Networks: Introduction

Neural Networks: Introduction Neural Networks: Introduction Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others 1

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Fundamentals of Neural Network

Fundamentals of Neural Network Chapter 3 Fundamentals of Neural Network One of the main challenge in actual times researching, is the construction of AI (Articial Intelligence) systems. These systems could be understood as any physical

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Forecasting of Rain Fall in Mirzapur District, Uttar Pradesh, India Using Feed-Forward Artificial Neural Network

Forecasting of Rain Fall in Mirzapur District, Uttar Pradesh, India Using Feed-Forward Artificial Neural Network International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 8ǁ August. 2013 ǁ PP.87-93 Forecasting of Rain Fall in Mirzapur District, Uttar Pradesh,

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Address for Correspondence

Address for Correspondence Research Article APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR INTERFERENCE STUDIES OF LOW-RISE BUILDINGS 1 Narayan K*, 2 Gairola A Address for Correspondence 1 Associate Professor, Department of Civil

More information

An artificial neural networks (ANNs) model is a functional abstraction of the

An artificial neural networks (ANNs) model is a functional abstraction of the CHAPER 3 3. Introduction An artificial neural networs (ANNs) model is a functional abstraction of the biological neural structures of the central nervous system. hey are composed of many simple and highly

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Multilayer Perceptron Tutorial

Multilayer Perceptron Tutorial Multilayer Perceptron Tutorial Leonardo Noriega School of Computing Staffordshire University Beaconside Staffordshire ST18 0DG email: l.a.noriega@staffs.ac.uk November 17, 2005 1 Introduction to Neural

More information

Multilayer Perceptron Learning Utilizing Singular Regions and Search Pruning

Multilayer Perceptron Learning Utilizing Singular Regions and Search Pruning Multilayer Perceptron Learning Utilizing Singular Regions and Search Pruning Seiya Satoh and Ryohei Nakano Abstract In a search space of a multilayer perceptron having hidden units, MLP(), there exist

More information

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Historical Perspective A first wave of interest

More information

MODELING OF A HOT AIR DRYING PROCESS BY USING ARTIFICIAL NEURAL NETWORK METHOD

MODELING OF A HOT AIR DRYING PROCESS BY USING ARTIFICIAL NEURAL NETWORK METHOD MODELING OF A HOT AIR DRYING PROCESS BY USING ARTIFICIAL NEURAL NETWORK METHOD Ahmet DURAK +, Ugur AKYOL ++ + NAMIK KEMAL UNIVERSITY, Hayrabolu, Tekirdag, Turkey. + NAMIK KEMAL UNIVERSITY, Çorlu, Tekirdag,

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

On the convergence speed of artificial neural networks in the solving of linear systems

On the convergence speed of artificial neural networks in the solving of linear systems Available online at http://ijimsrbiauacir/ Int J Industrial Mathematics (ISSN 8-56) Vol 7, No, 5 Article ID IJIM-479, 9 pages Research Article On the convergence speed of artificial neural networks in

More information

ELECTRICAL CONDUCTIVITY INHOMOGENEITIES IN GREECE ON THE WEST MARGIN OF THE ANATOLIAN FAULT

ELECTRICAL CONDUCTIVITY INHOMOGENEITIES IN GREECE ON THE WEST MARGIN OF THE ANATOLIAN FAULT A C T A G E O P H Y S I C A P O L O N I C A Vol. 53, No. 1 2005 ELECTRICAL CONDUCTIVITY INHOMOGENEITIES IN GREECE ON THE WEST MARGIN OF THE ANATOLIAN FAULT Tomasz ERNST Institute of Geophysics, Polish

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

The a~~~icati~n of the ~a~netute~~u~ic impedance tensor to earthquake prediction research in Greece

The a~~~icati~n of the ~a~netute~~u~ic impedance tensor to earthquake prediction research in Greece Tectonophysics, 152 (1988) 119-135 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 119 The a~~~icati~n of the ~a~netute~~u~ic impedance tensor to earthquake prediction research

More information

Power law relationship between parameters of earthquakes and precursory electrical phenomena revisited

Power law relationship between parameters of earthquakes and precursory electrical phenomena revisited Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Natural Hazards and Earth System Sciences Power law relationship between parameters of earthquakes and precursory

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Research Article NEURAL NETWORK TECHNIQUE IN DATA MINING FOR PREDICTION OF EARTH QUAKE K.Karthikeyan, Sayantani Basu

Research Article   NEURAL NETWORK TECHNIQUE IN DATA MINING FOR PREDICTION OF EARTH QUAKE K.Karthikeyan, Sayantani Basu ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com NEURAL NETWORK TECHNIQUE IN DATA MINING FOR PREDICTION OF EARTH QUAKE K.Karthikeyan, Sayantani Basu 1 Associate

More information

Neural Networks. Nethra Sambamoorthi, Ph.D. Jan CRMportals Inc., Nethra Sambamoorthi, Ph.D. Phone:

Neural Networks. Nethra Sambamoorthi, Ph.D. Jan CRMportals Inc., Nethra Sambamoorthi, Ph.D. Phone: Neural Networks Nethra Sambamoorthi, Ph.D Jan 2003 CRMportals Inc., Nethra Sambamoorthi, Ph.D Phone: 732-972-8969 Nethra@crmportals.com What? Saying it Again in Different ways Artificial neural network

More information

Real Time wave forecasting using artificial neural network with varying input parameter

Real Time wave forecasting using artificial neural network with varying input parameter 82 Indian Journal of Geo-Marine SciencesINDIAN J MAR SCI VOL. 43(1), JANUARY 2014 Vol. 43(1), January 2014, pp. 82-87 Real Time wave forecasting using artificial neural network with varying input parameter

More information

Feature Selection Optimization Solar Insolation Prediction Using Artificial Neural Network: Perspective Bangladesh

Feature Selection Optimization Solar Insolation Prediction Using Artificial Neural Network: Perspective Bangladesh American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-8, pp-261-265 www.ajer.org Research Paper Open

More information

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Neural Networks Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Brains as Computational Devices Brains advantages with respect to digital computers: Massively parallel Fault-tolerant Reliable

More information

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2 Neural Nets in PR NM P F Outline Motivation: Pattern Recognition XII human brain study complex cognitive tasks Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Fall, 2018 Outline Introduction A Brief History ANN Architecture Terminology

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

Thanassoulas 1, C., Klentos 2, V., Verveniotis, G. 3, Zymaris, N. 4. Abstract

Thanassoulas 1, C., Klentos 2, V., Verveniotis, G. 3, Zymaris, N. 4. Abstract The Andravida, Greece EQ (8/06/2008, Ms=7.0R). An a posteriori analysis for the determination of its location, occurrence time and magnitude parameters in terms of short-term predictability. Thanassoulas

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir Supervised (BPL) verses Hybrid (RBF) Learning By: Shahed Shahir 1 Outline I. Introduction II. Supervised Learning III. Hybrid Learning IV. BPL Verses RBF V. Supervised verses Hybrid learning VI. Conclusion

More information

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, 2012 Sasidharan Sreedharan www.sasidharan.webs.com 3/1/2012 1 Syllabus Artificial Intelligence Systems- Neural Networks, fuzzy logic,

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Confidence Estimation Methods for Neural Networks: A Practical Comparison

Confidence Estimation Methods for Neural Networks: A Practical Comparison , 6-8 000, Confidence Estimation Methods for : A Practical Comparison G. Papadopoulos, P.J. Edwards, A.F. Murray Department of Electronics and Electrical Engineering, University of Edinburgh Abstract.

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 2. Perceptrons COMP9444 17s2 Perceptrons 1 Outline Neurons Biological and Artificial Perceptron Learning Linear Separability Multi-Layer Networks COMP9444 17s2

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result

Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result J. Barahona da Fonseca Department of Electrical Engineering, Faculty

More information

Application of Artificial Neural Networks to Predict Daily Solar Radiation in Sokoto

Application of Artificial Neural Networks to Predict Daily Solar Radiation in Sokoto Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Application of Artificial

More information

2. Athens Water Supply & Sewerage Company (EYDAP), - URL:

2. Athens Water Supply & Sewerage Company (EYDAP),   - URL: Seismic electric precursors observed prior to the 6.3R EQ of July 1 st 2009, Greece and their use in short-term earthquake prediction. Thanassoulas 1, C., Klentos 2, V., Verveniotis, G. 3, Zymaris, N.

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

AN ARTIFICIAL NEURAL NETWORK MODEL FOR ROAD ACCIDENT PREDICTION: A CASE STUDY OF KHULNA METROPOLITAN CITY

AN ARTIFICIAL NEURAL NETWORK MODEL FOR ROAD ACCIDENT PREDICTION: A CASE STUDY OF KHULNA METROPOLITAN CITY Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) AN ARTIFICIAL NEURAL

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 4, April 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Application of

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara VELOCITY STRUCTURE INVERSIONS FROM HORIZONTAL TO VERTICAL

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

a subset of these N input variables. A naive method is to train a new neural network on this subset to determine this performance. Instead of the comp

a subset of these N input variables. A naive method is to train a new neural network on this subset to determine this performance. Instead of the comp Input Selection with Partial Retraining Pierre van de Laar, Stan Gielen, and Tom Heskes RWCP? Novel Functions SNN?? Laboratory, Dept. of Medical Physics and Biophysics, University of Nijmegen, The Netherlands.

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

2 F. PASIAN ET AL. ology, both for ordinary spectra (Gulati et al., 1994; Vieira & Ponz, 1995) and for high-resolution objective prism data (von Hippe

2 F. PASIAN ET AL. ology, both for ordinary spectra (Gulati et al., 1994; Vieira & Ponz, 1995) and for high-resolution objective prism data (von Hippe AUTOMATED OBJECTIVE PRISM SPECTRAL CLASSIFICATION USING NEURAL NETWORKS F. PASIAN AND R. SMAREGLIA Osservatorio Astronomico di Trieste Via G.B.Tiepolo 11, 34131 Trieste, Italy AND P. HANZIOS, A. DAPERGOLAS

More information

EFFECT OF ANCILLARY DATA ON THE PERFORMANCE OF LAND COVER CLASSIFICATION USING A NEURAL NETWORK MODEL. Duong Dang KHOI.

EFFECT OF ANCILLARY DATA ON THE PERFORMANCE OF LAND COVER CLASSIFICATION USING A NEURAL NETWORK MODEL. Duong Dang KHOI. EFFECT OF ANCILLARY DATA ON THE PERFORMANCE OF LAND COVER CLASSIFICATION USING A NEURAL NETWORK MODEL Duong Dang KHOI 1 10 Feb, 2011 Presentation contents 1. Introduction 2. Methods 3. Results 4. Discussion

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

ROTARY INVERTED PENDULUM AND CONTROL OF ROTARY INVERTED PENDULUM BY ARTIFICIAL NEURAL NETWORK

ROTARY INVERTED PENDULUM AND CONTROL OF ROTARY INVERTED PENDULUM BY ARTIFICIAL NEURAL NETWORK Proc. Natl. Conf. Theor. Phys. 37 (2012, pp. 243-249 ROTARY INVERTED PENDULUM AND CONTROL OF ROTARY INVERTED PENDULUM BY ARTIFICIAL NEURAL NETWORK NGUYEN DUC QUYEN (1, NGO VAN THUYEN (1 (1 University of

More information

Silicon wafer characterisation by laser ultrasonics and neural networks

Silicon wafer characterisation by laser ultrasonics and neural networks Journal of Physics: Conference Series Silicon wafer characterisation by laser ultrasonics and neural networks To cite this article: F Lefèvre et al 2010 J. Phys.: Conf. Ser. 214 012042 Related content

More information

A Feature Based Neural Network Model for Weather Forecasting

A Feature Based Neural Network Model for Weather Forecasting World Academy of Science, Engineering and Technology 4 2 A Feature Based Neural Network Model for Weather Forecasting Paras, Sanjay Mathur, Avinash Kumar, and Mahesh Chandra Abstract Weather forecasting

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

JOINT ACCURATE TIME-FREQUENCY AND HIGH-RESOLUTION ARRAY ANALYSIS, A TOOL FOR SITE EFFECTS ESTIMATION?

JOINT ACCURATE TIME-FREQUENCY AND HIGH-RESOLUTION ARRAY ANALYSIS, A TOOL FOR SITE EFFECTS ESTIMATION? Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 152 JOINT ACCURATE TIME-FREQUENCY AND HIGH-RESOLUTION ARRAY

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche April Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche BIOLOGICAL NEURAL NETWORKS The brain can be seen as a highly

More information

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 Define the problem: Suppose we have a 5-layer feed-forward neural network. (I intentionally

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

G. Chouliaras. National Observatory of Athens, Institute of Geodynamics. P.O Box 20048, Athens, Greece.

G. Chouliaras. National Observatory of Athens, Institute of Geodynamics. P.O Box 20048, Athens, Greece. 1 Seismicity anomalies prior to the June 8 th 2008, Mw = 6.4 earthquake in Western Greece G. Chouliaras. National Observatory of Athens, Institute of Geodynamics. P.O Box 20048, 11810 Athens, Greece. E-mail:

More information

Artificial Neural Network Based Approach for Design of RCC Columns

Artificial Neural Network Based Approach for Design of RCC Columns Artificial Neural Network Based Approach for Design of RCC Columns Dr T illai, ember I Karthekeyan, Non-member Recent developments in artificial neural network have opened up new possibilities in the field

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Exploring Site Response in the Taipei Basin with 2D and 3D Numerical Simulations

Exploring Site Response in the Taipei Basin with 2D and 3D Numerical Simulations Exploring Site Response in the Taipei Basin with 2D and 3D Numerical Simulations J. Miksat1, K.-L. Wen2, Ch.-T. Chen.2, V. Sokolov1 and F. Wenzel1 1 Geophysical Institute, Karlsruhe University, Hertzstr.

More information

EE-588 ADVANCED TOPICS IN NEURAL NETWORK

EE-588 ADVANCED TOPICS IN NEURAL NETWORK CUKUROVA UNIVERSITY DEPARTMENT OF ELECTRICAL&ELECTRONICS ENGINEERING EE-588 ADVANCED TOPICS IN NEURAL NETWORK THE PROJECT PROPOSAL AN APPLICATION OF NEURAL NETWORKS FOR WEATHER TEMPERATURE FORECASTING

More information

Neural Inversion Technology for reservoir property prediction from seismic data

Neural Inversion Technology for reservoir property prediction from seismic data Original article published in Russian in Nefteservice, March 2009 Neural Inversion Technology for reservoir property prediction from seismic data Malyarova Tatyana, Kopenkin Roman, Paradigm At the software

More information

Design Collocation Neural Network to Solve Singular Perturbed Problems with Initial Conditions

Design Collocation Neural Network to Solve Singular Perturbed Problems with Initial Conditions Article International Journal of Modern Engineering Sciences, 204, 3(): 29-38 International Journal of Modern Engineering Sciences Journal homepage:www.modernscientificpress.com/journals/ijmes.aspx ISSN:

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks Facultés Universitaires Notre-Dame de la Paix 27 March 2007 Outline 1 Introduction 2 Fundamentals Biological neuron Artificial neuron Artificial Neural Network Outline 3 Single-layer ANN Perceptron Adaline

More information

COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS

COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS Proceedings of the First Southern Symposium on Computing The University of Southern Mississippi, December 4-5, 1998 COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS SEAN

More information

Mr. Harshit K. Dave 1, Dr. Keyur P. Desai 2, Dr. Harit K. Raval 3

Mr. Harshit K. Dave 1, Dr. Keyur P. Desai 2, Dr. Harit K. Raval 3 Investigations on Prediction of MRR and Surface Roughness on Electro Discharge Machine Using Regression Analysis and Artificial Neural Network Programming Mr. Harshit K. Dave 1, Dr. Keyur P. Desai 2, Dr.

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information

Artificial Neural Network : Training

Artificial Neural Network : Training Artificial Neural Networ : Training Debasis Samanta IIT Kharagpur debasis.samanta.iitgp@gmail.com 06.04.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.04.2018 1 / 49 Learning of neural

More information

Power flow analysis by Artificial Neural Network

Power flow analysis by Artificial Neural Network nternational Journal of Energy and Power Engineering 2013; 2(6): 204-208 Published online November 30, 2013 (http://wwwsciencepublishinggroupcom/j/ijepe) doi: 1011648/jijepe2013020611 Power flow analysis

More information

Potential Cases, Methodologies, and Strategies of Synthesis of. Solutions in Distributed Expert Systems. Minjie Zhang

Potential Cases, Methodologies, and Strategies of Synthesis of. Solutions in Distributed Expert Systems. Minjie Zhang Potential Cases, Methodologies, and Strategies of Synthesis of Solutions in Distributed Expert Systems Minjie Zhang School of Computer, and Information Sciences Edith Cowan University, WA 6027, Australia

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Neural dynamic modelling on earthquake magnitude series

Neural dynamic modelling on earthquake magnitude series Geophys. J. Int. (997) 28,547-556 Neural dynamic modelling on earthquake magnitude series Xia-ting Feng, M. Seto2 and K. Katsuyama2 'Department of Mining Engineering, College of Resources and Civil Engineering,

More information

Application of Fully Recurrent (FRNN) and Radial Basis Function (RBFNN) Neural Networks for Simulating Solar Radiation

Application of Fully Recurrent (FRNN) and Radial Basis Function (RBFNN) Neural Networks for Simulating Solar Radiation Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 3 () January 04: 3-39 04 Academy for Environment and Life Sciences, India Online ISSN 77-808 Journal s URL:http://www.bepls.com

More information

Accuracy improvement program for VMap1 to Multinational Geospatial Co-production Program (MGCP) using artificial neural networks

Accuracy improvement program for VMap1 to Multinational Geospatial Co-production Program (MGCP) using artificial neural networks 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Edited by M. Caetano and M. Painho. Accuracy improvement program for VMap1 to Multinational Geospatial

More information

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR Annemarie CHRISTOPHERSEN 1 And Euan G C SMITH 2 SUMMARY This paper considers the distribution of aftershocks in space, abundance, magnitude and time. Investigations

More information

APPENDIX A: Magnetotelluric Data in Relation to San Pedro Mesa Structural. The San Pedro Mesa structural high (discussed in main text of paper) was

APPENDIX A: Magnetotelluric Data in Relation to San Pedro Mesa Structural. The San Pedro Mesa structural high (discussed in main text of paper) was Page of DR for GSA Special Paper 9, Chapter, Geophysical constraints APPENDIX A: Magnetotelluric Data in Relation to San Pedro Mesa Structural High The San Pedro Mesa structural high (discussed in main

More information

PRECURSORS TO EARTHQUAKES: SEISMOELECTROMAGNETIC SIGNALS

PRECURSORS TO EARTHQUAKES: SEISMOELECTROMAGNETIC SIGNALS PRECURSORS TO EARTHQUAKES: SEISMOELECTROMAGNETIC SIGNALS STEPHEN K. PARK Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521, USA Abstract. Field measurements

More information

Forecasting Drought in Tel River Basin using Feed-forward Recursive Neural Network

Forecasting Drought in Tel River Basin using Feed-forward Recursive Neural Network 2012 International Conference on Environmental, Biomedical and Biotechnology IPCBEE vol.41 (2012) (2012) IACSIT Press, Singapore Forecasting Drought in Tel River Basin using Feed-forward Recursive Neural

More information

Neural Networks (Part 1) Goals for the lecture

Neural Networks (Part 1) Goals for the lecture Neural Networks (Part ) Mark Craven and David Page Computer Sciences 760 Spring 208 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed

More information