Enforcing conservation of atmospheric axial angular momentum in CAM FV: Method and results in CESM2 and NorESM2 simulations

Size: px
Start display at page:

Download "Enforcing conservation of atmospheric axial angular momentum in CAM FV: Method and results in CESM2 and NorESM2 simulations"

Transcription

1 Enforcing conservation of atmospheric axial angular momentum in CAM FV: Method and results in CESM2 and NorESM2 simulations Thomas Toniazzo AMWG meeting, Boulder 28 February 2017

2 PH EW! Enforcing conservation of atmospheric axial angular momentum in CAM FV: Method and results in CESM2 and NorESM2 simulations Thomas Toniazzo AMWG meeting, Boulder 28 February 2017

3 An angular momentum fixer for CAM FV Thomas Toniazzo AMWG meeting, Boulder 28 February 2017

4 An angular momentum fixer for CAM FV Thomas Toniazzo with help from Peter Lauritzen, Steve Goldhaber, Christiane Jablonowski, Jim Edwards, Alok Gupta, Cecile Hannay AMWG meeting, Boulder 28 February 2017

5 Persistent CAM/CESM/NorESM biases Double ITCZ, excessive precipitation Hadley circulation too symmetric and too intense Trade winds too strong

6 Persistent CAM/CESM/NorESM biases Double ITCZ, excessive precipitation Hadley circulation too symmetric and too intense Trade winds too strong AND a large numerical sink of axial angular momentum

7 Informational

8 Informational (modifications to the Lin & Rood (1997) FV dynamical core in CAM, plus a global fixer) (Toniazzo et al. 2016, CESM GA, Breckenridge CO, USA)

9 Concepts A. How to stir your tea Einstein (1926) B. What's this got to do with us C. strength of the HC is proportional to AM cycle { { Schneider (1977), Held & Hou (1980)

10 Rivers «meander»

11 Why?

12 The secondary circulation associated with river bends Erosion Sedimentation

13 What you do in your office ''Einstein's tea leaves'' Start with a cup of (X) at rest

14 Stir it: i.e., set the fluid in rotation

15 1. pressure equilibrates

16 2. drag (torque) develops at the boundaries

17 3. drag slows down the fluid

18 4. pressure no longer balances acceleration and drives a secondary circulation (overturning)

19 Schneider (1977) and Held & Hou (1980) model of the Hadley circulation a) momentum conservation b) thermal wind balance c) Ekman balance

20 Schneider (1977) and Held & Hou (1980) model of the Hadley circulation a) momentum conservation b) thermal wind balance c) Ekman balance

21 Schneider (1977) and Held & Hou (1980) model of the Hadley circulation a) momentum conservation ''Equator'' b) thermal wind balance c) Ekman balance ''Pole''

22 Schneider (1977) and Held & Hou (1980) model of the Hadley circulation Increasing viscosity The cycle of axial momentum and the (resolved) overturning circulation are in balance with each other ''Equator'' ''Pole''

23 The FV dycore produces a numerical sink of axial angular momentum (AM) Relative error is Proportional to grid-spacing (blue/green) Insensitive to time-step (blue) Insensitive to explicit diffusion or damping (blue) Circulation dependent (magenta, solid) Insensitive to physics (magenta, broken)

24 Summary #1: CAM-FV errors numerical sink of AM the largest among CMIP5-generation models circulation dependent directly proportional to horizontal resolution when coupled with full moist model physics ~30% at F19 ~15% at F09 expected consequences are excessive Hadley circulation excessive trade winds excessive global water cycle errors get worse in ''wet-get-wetter'' scenario

25 Summary #1: CAM-FV errors numerical sink of AM the largest among CMIP5-generation models circulation dependent directly proportional to horizontal resolution when coupled with full moist model physics ~30% at F19 ~15% at F09 expected consequences are excessive Hadley circulation excessive trade winds excessive global water cycle errors get worse in ''wet-get-wetter'' scenario

26 FV's «vector invariant» formulation on a D grid t u = u u f z u 1 2 t u = u f z u 2 Momentum conservation requires a cancellation of terms e.g. u x y u x. CAM's FV discretisation fails to achieve this.

27 Impact of correction on Held-Suarez simulations -7.5% 0.1%

28 Impact of correction on AMIP simulations (F2000)

29 Impact of correction on AMIP simulations (F2000)

30 Summary #2: AM correction corrects non-conservation in FV advection consistent with the FV discretisation stable under all conditions costs virtually nothing imperfect (by construction, to preserve stability) corrects only about 20% of global error in fullphysics cases better (~50%) where error largest

31 Summary #2: AM correction corrects non-conservation in FV advection consistent with the FV discretisation stable under all conditions costs virtually nothing imperfect (by construction, to preserve stability) corrects only about 20% of global error in fullphysics cases better (~50%) where error largest

32 The case for an AM fixer FV19 T42

33 The case for an AM fixer FV19 FV19 + fixer T42

34 The case for an AM fixer FV19 T42 - fixer FV19 + fixer T42

35 The case for an AM fixer F19 - T42

36 The case for an AM fixer F19 - T42 F19+fixer - T42

37 The case for an AM fixer F19 - T42 F19 - T42-fixer F19+fixer - T42

38 The case for an AM fixer F19 - T42 F19 - T42-fixer F19+fixer - T42

39 Impact on zonal-mean zonal wind wrt F19 wrt T42

40 N.B.: impact of fixer WITHOUT correction is much larger wrt F19 wrt T42

41 Dynamic compensation of fixer increments δu [m/s] -6 δdu/dt [10 m/s²]

42 Dynamic compensation of fixer increments direct impact of fixer Consistent with correction and with tea-leaves mechanism direct impact of fixer Consistent with correction and with tea-leaves mechanism

43 Summary #3: AM fixer artificial acceleration of zonal winds that matches global AM sink by numerical advection knows nothing about dycore discretisation intended to correct secondary circulation not zonal winds successful in correcting HC and surface stress in line with tea-cup mechanism some direct impacts on zonal wind on the Equator needs correction must not be applied above tropopause

44 Summary #3: AM fixer artificial acceleration of zonal winds that matches global AM sink by numerical advection knows nothing about dycore discretisation intended to correct secondary circulation not zonal winds successful in correcting HC and surface stress in line with tea-cup mechanism some direct impacts on zonal wind on the Equator needs correction must not be applied above tropopause

45 Impacts of enforcing AM conservation in FV19 simulations Meridional streamfunction (Hadley cells) weakens

46 Impacts of enforcing AM conservation in FV19 simulations Control FV Trade winds weaken Modified FV - Control

47 Impacts of enforcing AM conservation in FV19 simulations Control FV Evaporation and precipitation (water cycle) weaken Modified FV - Control

48 Results from CAM6 development runs AMIP : run TT11 Coupled: run 121

49 Results from CAM6 development runs

50 Impacts on AMIP simulations Reduced evaporation precipitation cycle reduced wet bias

51 Impacts on coupled simulations Reduced evaporation precipitation cycle warmer SSTs reduced cold bias

52 CESM 1.5 (CAM-CLUBB POP, mini-breck; NorESM2 devel) Red = Green= x

53 Summary #4: impacts of combined AM mods (correction + fixer) AMIP: drier surface easterlies weaker sub-polar westerlies stronger UT meridional temperature contrast larger Coupled: warmer winds and T gradients as in AMIP weaker trades impact ENSO Generally reduce model biases Require tuning in coupled mode Sub-polar westerlies too strong

54 Summary #4: impact of combined AM mods (correction + fixer) AMIP: drier surface easterlies weaker sub-polar westerlies stronger UT meridional temperature contrast larger Coupled: warmer winds and T gradients as in AMIP weaker trades impact ENSO Generally improve model climatology Require tuning in coupled mode Sub-polar westerlies too strong

55 Zonal winds in FAMIP simulations

56 Zonal winds in FAMIP simulations Not Not OK OK OK

57 Zonal winds in FAMIP simulations Not Not OK OK OK

58 Zonal winds in FAMIP simulations Not Not OK OK OK

59 Zonal winds in FAMIP simulations ~1.5 m/s

60 Uncontrolled dissipation from numerics at model top level First-order upwind on two-grid vectorinvariant flux formulation Sensitive to: resolution vertical levels physics circulation Unpredictable and undiagnosable

61 Uncontrolled dissipation from numerics at model top level -5% ~1.5 m/s

62 Uncontrolled dissipation from numerics at model top level What is actually needed? Dissipation? ~1.5 m/s Sink of momentum?

63 An alternative to dissipative numerics

64 An alternative to dissipative numerics

65 An alternative to dissipative numerics Dirk Jan Leo Olivier

66 Conclusions The strength of the Hadley circulation and associated tropical water cycle is sensitive to numerical sources/sinks of momentum NASA's FV dycore performs worse than most in this regard A fix has been made available that produces impacts on CAMFV simulations as expected from fundamental physical reasoning, with limited side effects such impacts generally bring the simulations to better agreement with observations, especially at lower resolution no free parameters and virtually no processing time involved There remains a question on the consistent treatment of the top model level

A numerical sink of axial angular momentum in CAM-FV

A numerical sink of axial angular momentum in CAM-FV A numerical sink of axial angular momentum in CAM-FV Thomas Toniazzo, Peter Lauritzen, Christiane Jablonowski, Mats Bentsen, Helge Drange, Trond Iversen AMWG meeting, Boulder 9 Februrary 2016 CAM-FV likes

More information

Recent, current & future work with NorESM-L in Bergen

Recent, current & future work with NorESM-L in Bergen Recent, current & future work with NorESM-L in Bergen Thomas Toniazzo, Ingo Bethke, Mats Bentsen, Francois Counillon, Noel Keenlyside, and others... AMWG meeting Boulder, 10/2/2014 Low-resolution Norwegian

More information

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0 References Held, Isaac M., and Hou, A. Y., 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515-533. Held, Isaac M., and Suarez, M. J., 1994: A proposal

More information

CAM-SE: Lecture I. Peter Hjort Lauritzen

CAM-SE: Lecture I. Peter Hjort Lauritzen CAM-SE: Lecture I Peter Hjort Lauritzen Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research 2nd WCRP Summer School on Climate

More information

Aquaplanet warming experiments with CAM: a tale of the subtropics

Aquaplanet warming experiments with CAM: a tale of the subtropics Aquaplanet warming experiments with CAM: a tale of the subtropics AMWG meeting, 12 February 2018, NCAR Thomas Toniazzo Uni Research (?) & Bjerknes Centre Bergen, Norway Plan of this talk A) Intro B) Slab

More information

Sensitivity of zonal-mean circulation to air-sea roughness in climate models

Sensitivity of zonal-mean circulation to air-sea roughness in climate models Sensitivity of zonal-mean circulation to air-sea roughness in climate models Inna Polichtchouk & Ted Shepherd Royal Meteorological Society National Meeting 16.11.2016 MOTIVATION Question: How sensitive

More information

The Circulation of the Atmosphere:

The Circulation of the Atmosphere: The Circulation of the Atmosphere: Laboratory Experiments (see next slide) Fluid held in an annular container is at rest and is subjected to a temperature gradient. The less dense fluid near the warm wall

More information

CESM1.5 simulations since Mini-Breck

CESM1.5 simulations since Mini-Breck CESM1.5 simulations since Mini-Breck Cécile Hannay (AMP) Breckenridge, Colorado Mini-Breck, Colorado CESM1.5 simulations at mini-breck h"p://www.cesm.ucar.edu/working_groups/atmosphere/development/cesm1_5/

More information

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR In this chapter, comparisons between the model-produced and analyzed streamlines,

More information

Grand Challenges in Global Circulation Dynamics

Grand Challenges in Global Circulation Dynamics Grand Challenges in Global Circulation Dynamics Tapio Schneider ETH Zurich, Caltech (Source: CLAUS, http://badc.nerc.ac.uk/data/claus/) Grand Challenges in Global Circulation Dynamics Tapio Schneider ETH

More information

ATS 421/521. Climate Modeling. Spring 2015

ATS 421/521. Climate Modeling. Spring 2015 ATS 421/521 Climate Modeling Spring 2015 Lecture 9 Hadley Circulation (Held and Hou, 1980) General Circulation Models (tetbook chapter 3.2.3; course notes chapter 5.3) The Primitive Equations (tetbook

More information

Results from CAM-SE AMIP and coupled simulations

Results from CAM-SE AMIP and coupled simulations Results from CAM-SE AMIP and coupled simulations Cécile Hannay (AMP) Rich Neale, Peter Lauritzen, Mark Taylor, Julio Bacmeister, Joe Tribbia, Sungsu Park, Andy Mai, Gokhan Danabasoglu, and many others.

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Tropical Cyclone Simulations in CAM5: The Impact of the Dynamical Core

Tropical Cyclone Simulations in CAM5: The Impact of the Dynamical Core Tropical Cyclone Simulations in CAM5: The Impact of the Dynamical Core Kevin A. Reed National Center for Atmospheric Research Julio Bacmeister, Cecile Hannay, Peter Lauritzen & John Truesdale NCAR Michael

More information

Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR

Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR Multivariate ENSO Index + QBO shear index based on Singapore wind U50-U25 CESM Chemistry WG Meeting Boulder, CO February 10,

More information

New filtering options in CAM

New filtering options in CAM AMWG, February, 2010 New filtering options in CAM Peter Hjort Lauritzen (NCAR) Art Mirin (LLNL) John Truesdale (NCAR) Kevin Raeder (NCAR) Jeff Anderson (NCAR) Why new filtering options in CAM4? 1. Excessive

More information

NCAR(CESM) Center Report

NCAR(CESM) Center Report NCAR(CESM) Center Report Contributions from Richard Neale, Bette Otto-Bliesner, Cecile Hannay, Sungsu Park, Andrew Gettelman, Peter Lauritzen Vincent Larson (U. Wisconsin) Kevin Reed (SUNY Stonybrook)

More information

Rich Neale, Peter Caldwell, Christiane Jablonowski and Cecile Hannay

Rich Neale, Peter Caldwell, Christiane Jablonowski and Cecile Hannay Rich Neale, Peter Caldwell, Christiane Jablonowski and Cecile Hannay and many, many others! AMP/CGD National Center for Atmospheric Research Boulder, Colorado 1 Rich Neale 2010 Julio Bacmeister 2 AIM:

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

Tropical Meridional Circulations: The Hadley Cell

Tropical Meridional Circulations: The Hadley Cell Tropical Meridional Circulations: The Hadley Cell Introduction Throughout much of the previous sections, we have alluded to but not fully described the mean meridional overturning circulation of the tropics

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations Dan Marsh, Mike Mills, Natalia Calvo, Marika Holland, Cécile Hannay WAWG meeting, Boulder, February 2011 NCAR is sponsored by the National Science

More information

Conservation and boundary fluxes in CAM

Conservation and boundary fluxes in CAM Conservation and boundary fluxes in CAM Thomas Toniazzo Uni Research Climate Bjerknes Centre for Climate Research Bergen, Norway AMWRG meeting NCAR, 18 February 2015 Part I Energy Ensuring energy conservation

More information

The linear additivity of the forcings' responses in the energy and water cycles. Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild

The linear additivity of the forcings' responses in the energy and water cycles. Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild The linear additivity of the forcings' responses in the energy and water cycles Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild WCRP OSP, Denver, 27th October 2011 1 Motivation How will precipitation

More information

The Art of Tuning and Coupling: A peek behind the scenes of CESM development. Cécile Hannay CAM science liaison AMP-CGD

The Art of Tuning and Coupling: A peek behind the scenes of CESM development. Cécile Hannay CAM science liaison AMP-CGD The Art of Tuning and Coupling: A peek behind the scenes of CESM development Cécile Hannay CAM science liaison AMP-CGD CESM2: Development of the individual components Phase 1: Let s build it Individual

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

Winds and Currents in the Oceans

Winds and Currents in the Oceans Winds and Currents in the Oceans Atmospheric Processes Density of air is controlled by temperature, pressure, and moisture content. 1. Warm air is less dense than cold air and moist air is less dense than

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

Quiz 2 Review Questions

Quiz 2 Review Questions Quiz 2 Review Questions Chapter 7 Lectures: Winds and Global Winds and Global Winds cont 1) What is the thermal circulation (thermal wind) and how does it form? When we have this type of circulation, how

More information

General Circulation of the Atmosphere. René Garreaud

General Circulation of the Atmosphere. René Garreaud General Circulation of the Atmosphere René Garreaud www.dgf.uchile.cl/rene General circulation of the Atmosphere Low latitude areas receive more solar energy than high latitudes (because of earth sphericity).

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Cloud Fraction Dice Results from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

Fast and Slow Response of Sea ice and the Southern Ocean to Ozone Depletion

Fast and Slow Response of Sea ice and the Southern Ocean to Ozone Depletion Fast and Slow Response of Sea ice and the Southern Ocean to Ozone Depletion Annual Minimum Sea ice extent 1979-2013 10 6 km 2 Arctic September Antarctic February Data from in passive microwave satellite

More information

Climate sensitivity of coupled models with differing ocean components

Climate sensitivity of coupled models with differing ocean components Climate sensitivity of coupled models with differing ocean components Alex Megann, Adam Blaker and Adrian New National Oceanography Centre, Southampton, UK LOM Workshop, Miami, February 2011 Overview Introduction

More information

7 The General Circulation

7 The General Circulation 7 The General Circulation 7.1 The axisymmetric state At the beginning of the class, we discussed the nonlinear, inviscid, axisymmetric theory of the meridional structure of the atmosphere. The important

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

(c) (a) (d) (b) JJA DJF. V850 Hulu Cave. V850 Hulu Cave V1000 V1000. Dongge Cave. Dongge Cave. Lake Huguang Maar.

(c) (a) (d) (b) JJA DJF. V850 Hulu Cave. V850 Hulu Cave V1000 V1000. Dongge Cave. Dongge Cave. Lake Huguang Maar. NCEP-DOE (1981-2010) TraCE21ka (a) (c) JJA Dongge Cave V850 Hulu Cave Dongge Cave V850 Hulu Cave (b) (d) DJF Lake Huguang Maar V1000 Lake Huguang Maar V1000 Supplementary Figure 1 Climatology of EASM and

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

Link between Hurricanes and Climate Change: SST

Link between Hurricanes and Climate Change: SST Link between Hurricanes and Climate Change: SST FRIDAY: PROJECT 2 Proposals due! Bring laptops on weds (at least one per group)! Discuss assessment on Weds. Roger Francois will talk on Friday about the

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

Tropical Cyclones and precipitation in 25 Km CAM4 and CAM5

Tropical Cyclones and precipitation in 25 Km CAM4 and CAM5 Tropical Cyclones and precipitation in 25 Km CAM4 and CAM5 Julio Bacmeister, Cecile Hannay, Richard Neale, Peter Lauritzen, Andrew Gettelman, John Truesdale, Julie Caron Michael Wehner (DoE/LBNL), Mark

More information

Lecture 5: Atmospheric General Circulation and Climate

Lecture 5: Atmospheric General Circulation and Climate Lecture 5: Atmospheric General Circulation and Climate Geostrophic balance Zonal-mean circulation Transients and eddies Meridional energy transport Moist static energy Angular momentum balance Atmosphere

More information

Goal: Understand the dynamics and thermodynamics of the Hadley circulation

Goal: Understand the dynamics and thermodynamics of the Hadley circulation Description of the zonal mean tropical overturning (or Hadley) circulation Some simple dynamical and thermodynamic models of the Hadley circulation* The Hadley circulation in a global circulation context

More information

! An Update on CAM-CLUBB Coupled Simulations

! An Update on CAM-CLUBB Coupled Simulations ! An Update on CAM- Coupled Simulations! Peter Bogenschutz, Andrew Gettelman, Vincent Larson, Cheryl Craig, Hugh Morrison, Jack Chen, Katherine Thayer- Calder, Sean Santos, David Schannen, and Rachel Storer

More information

The influence of fixing the Southern Ocean shortwave radiation model bias on global energy budgets and circulation patterns

The influence of fixing the Southern Ocean shortwave radiation model bias on global energy budgets and circulation patterns The influence of fixing the Southern Ocean shortwave radiation model bias on global energy budgets and circulation patterns Jennifer Kay, Vineel Yettella (CU-Boulder) Brian Medeiros, Cecile Hannay (NCAR)

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation

Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation 8 March, 2011 Jonathon Wright Department of Applied Mathematics & Theoretical Physics University of Cambridge

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Imperial College London

Imperial College London Solar Influence on Stratosphere-Troposphere Dynamical Coupling Isla Simpson, Joanna D. Haigh, Space and Atmospheric Physics, Imperial College London Mike Blackburn, Department of Meteorology, University

More information

K32: The Structure of the Earth s Atmosphere

K32: The Structure of the Earth s Atmosphere K32: The Structure of the Earth s Atmosphere Chemical composition Vertical Layers Temperature structure Coriolis Force and horizontal structure Hadley Cells and Heat sources Current Molecular Composition

More information

The meteorology of monsoons

The meteorology of monsoons 978--521-84799-5 - The Asian Monsoon: Causes, History and Effects 1 The meteorology of monsoons 1.1 Introduction Monsoon circulations are major features of the tropical atmosphere, which, primarily through

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Susan Bates Ocean Model Working Group Science Liaison

Susan Bates Ocean Model Working Group Science Liaison Susan Bates Ocean Model Working Group Science Liaison Climate Simulation Laboratory (CSL) Accelerated Scientific Discovery (ASD) NCAR Strategic Capability (NSC) Climate Process Teams (CPTs) NSF Earth System

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

CAM6/CESM2 development simulations Cécile Hannay, Rich Neale, Pete Bogenschutz, Julio Bacmeister, Andrew Gettelman, and Joe Tribbia

CAM6/CESM2 development simulations Cécile Hannay, Rich Neale, Pete Bogenschutz, Julio Bacmeister, Andrew Gettelman, and Joe Tribbia CAM6/CESM2 development simulations Cécile Hannay, Rich Neale, Pete Bogenschutz, Julio Bacmeister, Andrew Gettelman, and Joe Tribbia Thanks to: David Bailey, Cheryl Craig, Gokhan Danabasoglu, Brian Eaton,

More information

Steven Feldstein. The link between tropical convection and the Arctic warming on intraseaonal and interdecadal time scales

Steven Feldstein. The link between tropical convection and the Arctic warming on intraseaonal and interdecadal time scales The link between tropical convection and the Arctic warming on intraseaonal and interdecadal time scales Steven Feldstein The Pennsylvania State University Collaborators: Sukyoung Lee, Hyoseok Park, Tingting

More information

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it ATMO 436a The General Circulation Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it Scales of Atmospheric Motion vs. Lifespan The general circulation Atmospheric oscillations

More information

Water Vapor and the Dynamics of Climate Changes

Water Vapor and the Dynamics of Climate Changes Water Vapor and the Dynamics of Climate Changes Tapio Schneider California Institute of Technology (based on Rev. Geophys. article with Xavier Levine and Paul O Gorman) Water vapor dynamics in warming

More information

Lecture 12: Angular Momentum and the Hadley Circulation

Lecture 12: Angular Momentum and the Hadley Circulation Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE1857 Figure S1a shows significant inter-annual variability in seasonal SPA data with multi-decadal periods exhibiting positive and negative SPAs. A similar

More information

Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model

Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model S.-J. Lin and GFDL model development teams NOAA/Geophysical Fluid Dynamics Laboratory Workshop on High-Resolution

More information

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency ENSO Outlook by JMA Hiroyuki Sugimoto El Niño Monitoring and Prediction Group Climate Prediction Division Outline 1. ENSO impacts on the climate 2. Current Conditions 3. Prediction by JMA/MRI-CGCM 4. Summary

More information

Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation

Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation Modeling the General Circulation of the Atmosphere. Topic 2: Tropical General Circulation DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES 1-28-16 Today What determines

More information

Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models

Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models GEOPHYSICAL RESEARCH LETTERS Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models Ori Adam 1, Tapio Schneider 1,2, Florent Brient 1, and Tobias

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

Decadal shifts of East Asian summer monsoon in a climate. model free of explicit GHGs and aerosols

Decadal shifts of East Asian summer monsoon in a climate. model free of explicit GHGs and aerosols Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols Renping Lin, Jiang Zhu* and Fei Zheng International Center for Climate and Environment Sciences, Institute

More information

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1 Climate Modeling Lecture 8 Radiative-Convective Models Manabe and Strickler (1964) Course Notes chapter 5.1 The Hydrological Cycle Hadley Circulation Prepare for Mid-Term (Friday 9 am) Review Course Notes

More information

University of Reading, Reading, United Kingdom. 2 Hadley Centre for Climate Prediction and Research, Meteorological Office, Exeter, United Kingdom.

University of Reading, Reading, United Kingdom. 2 Hadley Centre for Climate Prediction and Research, Meteorological Office, Exeter, United Kingdom. 9.1 RUNNING A CLIMATE MODEL IN FORECAST MODE TO IDENTIFY THE SOURCE OF TROPICAL CLIMATE ERRORS: WITH SPECIFIC REFERENCE TO THE DRY BIAS OVER THE MARITIME CONTINENT IN AN ATMOSPHERE ONLY GCM 1 Jane Strachan,

More information

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing Thomas Krismer, Marco Giorgetta Max Planck Institute for Meteorology Hamburg Introduction 1) The Quasi Biennial Oscillation is driven

More information

TROPICAL-EXTRATROPICAL INTERACTIONS

TROPICAL-EXTRATROPICAL INTERACTIONS Notes of the tutorial lectures for the Natural Sciences part by Alice Grimm Fourth lecture TROPICAL-EXTRATROPICAL INTERACTIONS Anomalous tropical SST Anomalous convection Anomalous latent heat source Anomalous

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

An Introduction to Climate Modeling

An Introduction to Climate Modeling An Introduction to Climate Modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline What is Climate & why do we care Hierarchy of atmospheric modeling strategies

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

The General Circulation of the Atmosphere: A Numerical Experiment

The General Circulation of the Atmosphere: A Numerical Experiment The General Circulation of the Atmosphere: A Numerical Experiment Norman A. Phillips (1956) Presentation by Lukas Strebel and Fabian Thüring Goal of the Model Numerically predict the mean state of the

More information

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q. 1 Q. 9 carry one mark each & Q. 10 Q. 22 carry two marks each. Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q.2 The pair of variables that

More information

The final push to extreme El Ninõ

The final push to extreme El Ninõ The final push to extreme El Ninõ Why is ENSO asymmetry underestimated in climate model simulations? WonMoo Kim* and Wenju Cai CSIRO Marine and Atmospheric Research *Current Affiliation: CCCPR, Ewha Womans

More information

Rotating and non-rotating global radiativeconvective

Rotating and non-rotating global radiativeconvective Rotating and non-rotating global radiativeconvective equilibrium in CAM Kevin A. Reed National Center for Atmospheric Research Brian Medeiros, Julio Bacmeister, Peter Lauritzen, John Truesdale, Andrew

More information

Global Circulation. Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern

Global Circulation. Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern Global Circulation Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern Wind rose shows % frequency of winds around the compass 1 Global Circulation

More information

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies)

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) 1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) We saw that the middle atmospheric temperature structure (which, through thermal wind balance, determines the mean

More information

Hadley Circulation as a Modulator of the Extratropical Climate

Hadley Circulation as a Modulator of the Extratropical Climate 2437 Hadley Circulation as a Modulator of the Extratropical Climate ARTHUR Y. HOU Data Assimilation Office, Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland (Manuscript

More information

Forecasting. Theory Types Examples

Forecasting. Theory Types Examples Forecasting Theory Types Examples How Good Are Week Out Weather Forecasts? For forecasts greater than nine days out, weather forecasters do WORSE than the climate average forecast. Why is there predictability

More information

Update on CAM and the AMWG. Recent activities and near-term priorities. by the AMWG

Update on CAM and the AMWG. Recent activities and near-term priorities. by the AMWG Update on CAM and the AMWG. Recent activities and near-term priorities. by the AMWG The CAM family Model CAM3 CCSM3 CAM4 CCSM4 CAM5 (CAM5.1) CESM1.0 (CESM1.0.3) CAM5.2 CESM1.1 Release Jun 2004 Apr 2010

More information

Asymptotic Solutions of the Axisymmetric Moist Hadley Circulation in a Model with Two Vertical Modes

Asymptotic Solutions of the Axisymmetric Moist Hadley Circulation in a Model with Two Vertical Modes Theoretical and Computational Fluid Dynamics manuscript No. (will be inserted by the editor) Samuel P. Burns Adam H. Sobel Lorenzo M. Polvani Asymptotic Solutions of the Axisymmetric Moist Hadley Circulation

More information

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Hsi-Yen Ma In collaboration with Shaocheng Xie, James Boyle, Stephen Klein, and Yuying Zhang Program

More information

The stratospheric response to extratropical torques and its relationship with the annular mode

The stratospheric response to extratropical torques and its relationship with the annular mode The stratospheric response to extratropical torques and its relationship with the annular mode Peter Watson 1, Lesley Gray 1,2 1. Atmospheric, Oceanic and Planetary Physics, Oxford University 2. National

More information

Zonal Momentum Balance in the Tropical Atmospheric Circulation during the Global Monsoon Mature Months

Zonal Momentum Balance in the Tropical Atmospheric Circulation during the Global Monsoon Mature Months FEBRUARY 2013 Y A N G E T A L. 583 Zonal Momentum Balance in the Tropical Atmospheric Circulation during the Global Monsoon Mature Months WENCHANG YANG, RICHARD SEAGER, AND MARK A. CANE Lamont-Doherty

More information

Examination of Isentropic Circulation Response to a Doubling of Carbon Dioxide Using Statistical Transformed Eulerian Mean*

Examination of Isentropic Circulation Response to a Doubling of Carbon Dioxide Using Statistical Transformed Eulerian Mean* JUNE 2013 W U A N D P A U L U I S 1649 Examination of Isentropic Circulation Response to a Doubling of Carbon Dioxide Using Statistical Transformed Eulerian Mean* YUTIAN WU AND OLIVIER PAULUIS Courant

More information

Carbon dioxide s direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory

Carbon dioxide s direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory Carbon dioxide s direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory Timothy M. Merlis McGill University Key point The spatial structure of

More information

Development and Validation of WACCM-X Thermosphere and Ionosphere

Development and Validation of WACCM-X Thermosphere and Ionosphere Development and Validation of WACCM-X Thermosphere and Ionosphere Han-Li Liu and WACCM-X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney, Nick Pedatella, Liying Qian, Art Richmond,

More information

NCAR Global Atmospheric Core Workshop, Boulder, June 2008

NCAR Global Atmospheric Core Workshop, Boulder, June 2008 NCAR Global Atmospheric Core Workshop, Boulder, June 2008 D. Majewski based on Christiane Jablonowski (email: cjablono@umich.edu) University of Michigan Goals of the Test Suite NASA/GFDL Test cases should

More information

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems GFDL, NCEP, & SODA Upper Ocean Assimilation Systems Jim Carton (UMD) With help from Gennady Chepurin, Ben Giese (TAMU), David Behringer (NCEP), Matt Harrison & Tony Rosati (GFDL) Description Goals Products

More information

the 2 past three decades

the 2 past three decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2840 Atlantic-induced 1 pan-tropical climate change over the 2 past three decades 3 4 5 6 7 8 9 10 POP simulation forced by the Atlantic-induced atmospheric

More information

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell 1522 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 60 NOTES AND CORRESPONDENCE On the Seasonality of the Hadley Cell IOANA M. DIMA AND JOHN M. WALLACE Department of Atmospheric Sciences, University of Washington,

More information

Radiative Convective Equilibrium in Single Column CAM. I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop

Radiative Convective Equilibrium in Single Column CAM. I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop Radiative Convective Equilibrium in Single Column CAM I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop Motivation The Earth s atmosphere is an extremely thin sheet of air

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

CESM2 release of CAM-SE (& CAM-SE-CSLAM)

CESM2 release of CAM-SE (& CAM-SE-CSLAM) CESM2 release of CAM-SE (& CAM-SE-CSLAM) Peter Hjort Lauritzen National Center for Atmospheric Research Boulder, Colorado, USA Collaborators: S. Goldhaber (NCAR), J. Bacmeister (NCAR), R.D.Nair (NCAR),

More information

Chapter 1. Introduction: What drives the ocean currents?

Chapter 1. Introduction: What drives the ocean currents? Chapter 1 Introduction: What drives the ocean currents? Sixty years ago, this textbook would have been titled "Introductory Geography of the Oceans". Physical oceanography then was a close relative of

More information