A simple gradient wind field model for translating tropical cyclones

Size: px
Start display at page:

Download "A simple gradient wind field model for translating tropical cyclones"

Transcription

1 Nat Hazards manuscript No. (will be inserted by the editor) 1 2 A simple gradient wind field model for translating tropical cyclones 3 4 Cao Wang 1,2 Hao Zhang 2 Kairui Feng 1 Quanwang Li Received: date / Accepted: date Abstract Understanding the spatial structure of wind speed profile of a tropical cyclone (TC) is of critical importance to assess the TC-related damage and map the risk for afflicted areas. The wind field structure of a TC can be regarded as a horizontal primary circulation superimposed by a vertical-radial secondary convection driven by thermal balance. The gradient wind field model has been widely utilized in literature to describe the radial distribution of wind speed with respect to the TC center. In this paper, a new gradient wind field model is developed for translating TCs, based on the vector summation of the rotational wind speed and the translation speed. The accuracy and efficiency of the proposed model are demonstrated through comparing the wind fields generated from model solution and those recorded historically. Keywords Tropical cyclone wind field model gradient wind translation speed Introduction Severe tropical cyclones (TCs) are continuously posing significant threats to social properties and public safety of coastal areas around the world, especially in this era with a potential influence of climate change and an increasing coastal population (Emanuel 05b; Knutson et al. ). The public and regulatory authorities have, as a result, become increasingly concerned with the TC-related damage loss estimation and mitigation. TC simulation techniques provide a means to assess the TC wind magnitude and duration for regions of interest, taking into account the uncertainties associated with the TC occurrence, track and intensity, where the modeling of TC wind field is a key component. The wind field structure of a TC can be regarded as a horizontal primary circulation superimposed by a verticalradial secondary convection driven by thermal balance (Emanuel 05a). To-date studies have widely considered the gradient wind, under a balance of pressure-gradient, Coriolis Q. Li ( ) li quanwang@tsinghua.edu.cn. 1 Department of Civil Engineering, Tsinghua University, Beijing 084, China. 2 School of Civil Engineering, The University of Sydney, Sydney, NSW 06, Australia.

2 2 C. Wang, et al and centrifugal forces, to approximate the slab wind field of TCs at gradient height ( 0 00 m above the surface) (Georgiou 1986; Lee and Rosowsky 07; Cui and Caracoglia 16; Vickery et al. 00b), which can be further converted to surface-level wind speed (Powell 19). Mathematically, in the natural coordinate system with an origin located at the TC center, the force equilibrium gives 1 p ρ r = V r 2 r + fv r (1) where p = p(r) is the pressure at a distance r from the TC center, ρ is air density, f is the Coriolis parameter, and V r is the tangential (rotational) wind speed. Taking into account the translation speed of the TC, V t, Georgiou (1986) adjusted the radius of curvature as in Eq. (1) with Blaton s formula, and Eq. (1) becomes which yields 1 p ρ r = V g 2 r V g = 1 2 (V t sinα f r) + 1 V t sinα V g + fv g (2) 1 4 (V t sinα f r) 2 + r p ρ r where α is the clock-wise relative angle between heading direction and the radial position of interest, and V g is the gradient wind speed incorporating the translation speed. Eq. (3) has been widely used by the scientific community for modelling the TC wind field and further mapping the TC risk for coastal regions (Lee and Rosowsky 07; Vickery et al. 00b; Cui and Caracoglia 16; Salman and Li 17; Ji and Ellingwood 17). However, it is noticed that the first term at the right-hand side of Eq. (2) represents a pseudo-centripetal acceleration with a direction not passing through the origin, implying that the wind field model generated by Eq. (2) may differ significantly from the realistic case. Some other works have considered a slab boundary layer model to describe the wind field portfolio with an improved accuracy (Thompson and Cardone 1996; Vickery et al. 00a; Li and Hong ). However, these improved models are, for the most part, based on a finite-difference method which involves a set of partial difference equations. Thus it is often computationally expensive to find their solutions, especially when these models are adopted in simulation-based studies requiring a significant amount of replications. Therefore, there is a need to develop a simple yet accurate wind field model for use in hurricane simulations. (3) The proposed model This section develops a new gradient wind field model by considering the gradient wind speed as the vector summation of the rotational wind speed, V r, and the translation speed V t, i.e., V g = V r + V t, which gives where V r is the rotational speed satisfying V g = V g = Vt 2 +Vr 2 + 2V r V t sinα (4) 1 p ρ r = V r 2 r + fv g cosθ (5)

3 A simple gradient wind field model for translating tropical cyclones 3 61 in which θ is the angle between V r and V t. With Eqs. (5) and (4), one has Vr 2 r + fv r + fv t sinα = 1 p ρ r (6) which yields ( V r = 1 ) f r + 2 f r + r p ρ r f rv t sinα (7) Further, the gradient wind speed V g is obtained according to Eq. (4) in an explicit form. Eqs. (4) and (7) present the proposed gradient wind field model, which only involves simple algebras for the sake of simulation efficiency. Gradient wind speed (m/s) Georgiou's model, = Proposed model, = Georgiou's model, = Proposed model, = Radius (RMW) Gradient wind speed (m/s) Georgiou's model, = Proposed model, = Georgiou's model, = Proposed model, = Radius (RMW) (a) V t = 2 m/s (b) V t = 12 m/s Fig. 1 Comparison of the radial wind speed profiles associated with Georgiou s model and the proposed one. The key parameters are: minimum sea-level pressure (MSLP) = 9 millibar, radius to maximum wind (RMW) = km, and maximum sustained wind (MSW) at eye wall = m/s Mathematically, Eqs. (3) and (7) are equivalent for the case of V t = 0. However, the discrepancy between the two models becomes more noticeable as the translation speed increases. Fig. 1 presents the radial wind speed profiles obtained from Eqs. (3) and 7 with different translation speeds. The pressure is assumed to be axisymmetric and its radial distribution is described by Holland s parameter B (Holland 19); it is fitted herein by minimizing the difference between the maximum sustained wind (MSW) obtained from the model and the given one. It is seen that when α =, the wind speed associated with Georgiou s model is smaller than that associated with the proposed one, and this observation is reversed if α =. The difference between the two models increases with the radius (outer the RMW) for the case of α = because the maximum wind speed at the RMW are the same for both cases; however, when α =, the difference is the largest at the RMW. Moreover, the difference between the radial wind speeds given by the two models becomes more significant with a greater translation speed Verification of the proposed model To verify the accuracy of Georgiou s model (1986) and the proposed one, we compare the wind field models obtained from Eqs. (3) and (7) with the historically recorded data. As

4 4 C. Wang, et al. Fig. 2 Wind field of Hurricane Emily 05 at 0929 UTC, 19 July. Figure reproduced from the RMS H* wind legacy archive at Key parameters in relation to the wind field can be determined from the figure and the associated data archive online. The wind speed values are in kts (1 kts = m/s). The center is located at ( E, N), and the MSW is observed at (93. E, N) the practical focus is on the surface-level wind speed, which can be obtained approximately by adjusting the gradient wind filed model with a conversion factor (Powell 19), the historically recorded surface wind fields are considered and compared. First, Hurricane Emily from the 05 season is considered, which formed on July and dissipated 11 days later, with a MSW of 72 m/s and a minimum sea-level pressure (MSLP) of 939 millibar in its entire life. The real-time wind field data (H* data) are available from Risk Management Solutions (RMS) Inc. The radial distribution of wind field at 0929 UTC, 19 July, 05, as shown in Fig. 2, is considered. The key hurricane parameters such as the center location, radius to maximum wind (RMW), MSW, MSLP and heading direction can be read from Fig. 2. Provided these parameters, the wind fields associated with Eqs. (3) and (7) are obtained and presented in Fig. 3. It is seen that the model in Fig. 3(b) agrees better with the realistic one (Fig. 2). For instance, we consider the wind speeds at the locations with a distance of RMW from the TC center and a clock-wise relative angle (α) from the heading direction of 0,, 1 and 2 respectively. Table 1 presents the wind speeds for the four locations from the model solutions and the historically recorded data. The wind speed errors (i.e., (model speed recorded speed)/recorded speed %) are also p- resented for the purpose of comparison. For the case of α =, the speed error is 0 for both models since the considered location is at the MSW. For other values of α, the wind

5 A simple gradient wind field model for translating tropical cyclones speed error associated with the proposed model (Eq. (7)) is significantly reduced compared with that associated with Georgiou s model (Eq. (3)). When α = 2, the overestimation of wind speed associated with Georgiou s model (1986) is consistent with the observation from Fig. 1. Moreover, the wind speed at the outer kidney shape isoline is kts (.9 m/s) according to Fig. 3(b), which is the same as that found in Fig. 2. However, the Georgiou s model (Fig. 3(a)) gives an estimate of kts (36.0m/s), which indeed provides a significant overestimate by 17%. The improved accuracy of Eq. (7) is also demonstrated by considering the wind field of Hurricane Wilma 05 at 07 UTC, 24 October and comparing the wind fields generated by Georgiou s model, the proposed model and the historical data, as shown in Figs. 4 and 5. It is seen that the wind field associated with the proposed method agrees better with the historically recorded one. With Fig. 5(b), the wind speed at the outer kidney shape isoline is kts according to the proposed method (b), which is the same as that found from Fig. 4. However, the Georgiou s model (a) gives an estimate of kts (c.f.fig. 5(a)), which indeed provides a significant overestimate by 28% (a) Georgiou s model (b) The proposed model Fig. 3 Wind field models for Hurricane Emily 05 at 0929 UTC, 19 July generated by (a) Georgiou s model and (b) the proposed one. The wind speed values are in kts consistent with Fig. 2. Table 1 Wind speeds at the four selected locations for Hurricane Emily 05 (Fig. 2) (wind filed unit: kts). Value of α Recorded wind speed Georgiou s Proposed Speed Error.53% 0.00% 2.91% 16.% Speed Error 8.51% 0.00% -3.34% -2.99%

6 6 C. Wang, et al. Fig. 4 Wind field for Hurricane Wilma 05 at 07 UTC, 24 October. Figure reproduced from RMS H* wind legacy archive at Key parameters in relation to the wind field can be read from the figure and the associated data archive online. The wind speed values are in kts (1 kts = m/s). The center is located at ( E,.226 N), and the MSW is observed at ( E, N) Conclusions A new gradient wind filed model, based on the vector summation of the rotational wind speed and the translation speed, has been developed in this paper. The proposed model only involves simple algebra, which is beneficial for practical applications, especially in simulation-based studies of TC wind field modeling. Comparisons with two historical TC wind fields (Hurricane Emily and Hurricane Wilma) demonstrates that the new model can better describe the realistic wind field than the existing Georgiou s model incorporating Blaton s adjusted curvature Acknowledgements This research has been jointly supported by the National Key Research and Development Program of China (Grant No. 16YFC014), the National Natural Science Foundation of China (Grant No. 5783) and the Faculty of Engineering and IT PhD Research Scholarship from the University of Sydney. These supports are gratefully acknowledged. The RMS Inc. is also acknowledged for the open access to the hurricane H* data.

7 0 A simple gradient wind field model for translating tropical cyclones (a) Georgiou s model (b) The proposed model Fig. 5 Wind fields associated with Hurricane Wilma 05 at 07 UTC, 24 October generated by (a) Georgiou s model and (b) the proposed one. The wind speed values are in kts consistent with Fig References Wei Cui and Luca Caracoglia. Exploring hurricane wind speed along us atlantic coast in warming climate and effects on predictions of structural damage and intervention costs. Engineering Structures, 122:9 2, 16. K A Emanuel. Divine wind: the history and science of hurricanes. Oxford University Press. New York, USA, 05a. K A Emanuel. Increasing destructiveness of tropical cyclones over the past years. Nature, 436(51): , 05b. Peter Nicholas Georgiou. Design wind speeds in tropical cyclone-prone regions. PhD thesis, Dept. of Civil Engineering, Univ. of Western Ontario, Cadada, Greg J Holland. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 8(8): , 19. Yun Lee Ji and Bruce R. Ellingwood. A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change. Reliability Engineering & System Safety, 9: 7, 17. Thomas R Knutson, John L McBride, Johnny Chan, Kerry Emanuel, Greg Holland, Chris Landsea, Isaac Held, James P Kossin, AK Srivastava, and Masato Sugi. Tropical cyclones and climate change. Nature Geoscience, 3(3):7 163,. Kyung Ho Lee and David V Rosowsky. Synthetic hurricane wind speed records: development of a database for hazard analyses and risk studies. Natural Hazards Review, 8(2): 23 34, 07. SH Li and HP Hong. Observations on a hurricane wind hazard model used to map extreme hurricane wind speed. Journal of Structural Engineering, ASCE, 141():014238,. Mark D Powell. Boundary layer structure and dynamics in outer hurricane rainbands. part ii: Downdraft modification and mixed layer recovery. Monthly Weather Review, 118(4): , 19.

8 8 C. Wang, et al Abdullahi M. Salman and Yue Li. Assessing climate change impact on system reliability of power distribution systems subjected to hurricanes. Journal of Infrastructure Systems, 23:0124, 17. Edward F Thompson and Vincent J Cardone. Practical modeling of hurricane surface wind fields. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 122(4):1 5, Peter J Vickery, PF Skerlj, AC Steckley, and LA Twisdale. Hurricane wind field model for use in hurricane simulations. Journal of Structural Engineering, ASCE, 126(): , 00a. Peter J Vickery, PF Skerlj, and LA Twisdale. Simulation of hurricane risk in the us using empirical track model. Journal of Structural Engineering, ASCE, 126(): , 00b.

SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES

SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES WMO/CAS/WWW SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES Topic 4a : Updated Statement on the Possible Effects of Climate Change on Tropical Cyclone Activity/Intensity Rapporteur: E-mail: John McBride

More information

b Department of Civil Engineering, Indian Institute of Technology Delhi, India,

b Department of Civil Engineering, Indian Institute of Technology Delhi, India, 29 Probability Distributions for Cyclone Key Parameters and Cyclonic Wind Speed for the East Coast of Indian Region Pradeep K. Goyal a, T.K. Datta b a Govt. Engineering College, Ajmer,Rajasthan,India,351

More information

Development of Design Wind Speed Maps for the Caribbean for Application with the Wind Load Provisions of ASCE 7

Development of Design Wind Speed Maps for the Caribbean for Application with the Wind Load Provisions of ASCE 7 Development of Design Wind Speed Maps for the Caribbean for Application with the Wind Load Provisions of ASCE 7 Area on Emergency Preparedness and Disaster Relief Coordination 525 23 rd Street, N.W. Washington,

More information

Simulation Methods to Assess Long-Term Hurricane Impacts to U.S. Power Systems

Simulation Methods to Assess Long-Term Hurricane Impacts to U.S. Power Systems Simulation Methods to Assess Long-Term Hurricane Impacts to U.S. Power Systems Andrea Staid a*, Seth D. Guikema a, Roshanak Nateghi a,b, Steven M. Quiring c, and Michael Z. Gao a a Johns Hopkins University,

More information

Initialization of Tropical Cyclone Structure for Operational Application

Initialization of Tropical Cyclone Structure for Operational Application DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Initialization of Tropical Cyclone Structure for Operational Application PI: Tim Li IPRC/SOEST, University of Hawaii at

More information

Footprinting Global Tropical Cyclones

Footprinting Global Tropical Cyclones Footprinting Global Tropical Cyclones James Done, Greg Holland and Ming Ge: NCAR, Willis Research Network Ioana Dima-West, Geoffrey Saville and Sam Phibbs: Willis Towers Watson Yuqing Wang: U. Hawaii WRN

More information

Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles?

Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles? Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles? Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre City University of Hong Kong Tropical Cyclones Affecting the

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance. Andrew Cox and Vincent Cardone Oceanweather Inc.

Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance. Andrew Cox and Vincent Cardone Oceanweather Inc. Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance Andrew Cox and Vincent Cardone Oceanweather Inc. Cos Cob, CT, USA Motivation This paper is part of on-going work to improve the

More information

Some figures courtesy of: Chris Landsea National Hurricane Center, Miami. Intergovernmental Panel on Climate Change

Some figures courtesy of: Chris Landsea National Hurricane Center, Miami. Intergovernmental Panel on Climate Change Hurricanes and Global Warming Pat Fitzpatrick Mississippi State University, GeoSystems Research Institute Some figures courtesy of: Chris Landsea National Hurricane Center, Miami Intergovernmental Panel

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

PUBLICATIONS. Journal of Geophysical Research: Oceans. Tropical cyclone wind field asymmetry Development and evaluation of a new parametric model

PUBLICATIONS. Journal of Geophysical Research: Oceans. Tropical cyclone wind field asymmetry Development and evaluation of a new parametric model PUBLICATIONS RESEARCH ARTICLE Key Points: A new parametric model for tropical cyclone wind fields is proposed to enable the modeling of wind field asymmetries The new asymmetric model improves estimations

More information

RMS Medium Term Perspective on Hurricane Activity

RMS Medium Term Perspective on Hurricane Activity RMS Medium Term Perspective on Hurricane Activity Dr. Manuel Lonfat Florida Commission on Hurricane Loss Projection Methodology Workshop Tallahassee, July 27 2006 Agenda Multiyear autocorrelation of Atlantic,

More information

Tropical Cyclones and Climate Change: Historical Trends and Future Projections

Tropical Cyclones and Climate Change: Historical Trends and Future Projections Tropical Cyclones and Climate Change: Historical Trends and Future Projections Thomas R. Knutson Geophysical Fluid Dynamics Laboratory / NOAA, Princeton, NJ U.S.A. IOGP/JCOMM/WCRP Workshop September 25-27,

More information

SUPPLEMENTAL MATERIALS FOR:

SUPPLEMENTAL MATERIALS FOR: SUPPLEMENTAL MATERIALS FOR: Simulated reduction in Atlantic hurricane frequency under 21 st century warming conditions Thomas R. Knutson, Joseph J. Sirutis, Stephen T. Garner, Gabriel A. Vecchi, and Isaac

More information

STORM SURGE SIMULATION IN NAGASAKI DURING THE PASSAGE OF 2012 TYPHOON SANBA

STORM SURGE SIMULATION IN NAGASAKI DURING THE PASSAGE OF 2012 TYPHOON SANBA STORM SURGE SIMULATION IN NAGASAKI DURING THE PASSAGE OF 2012 TYPHOON SANBA D. P. C. Laknath 1, Kazunori Ito 1, Takahide Honda 1 and Tomoyuki Takabatake 1 As a result of global warming effect, storm surges

More information

DEVELOPMENT AND CALIBRATION OF CENTRAL PRESSURE FILLING RATE MODELS FOR HURRICANE SIMULATION

DEVELOPMENT AND CALIBRATION OF CENTRAL PRESSURE FILLING RATE MODELS FOR HURRICANE SIMULATION Clemson University TigerPrints All Theses Theses 5-22 DEVELOPMENT AND CALIBRATION OF CENTRAL PRESSURE FILLING RATE MODELS FOR HURRICANE SIMULATION Fangqian Liu Clemson University, fangqil@clemson.edu Follow

More information

A Climatology of Landfalling Hurricane Central Pressures Along the Gulf of Mexico Coast

A Climatology of Landfalling Hurricane Central Pressures Along the Gulf of Mexico Coast A Climatology of Landfalling Hurricane Central Pressures Along the Gulf of Mexico Coast David H. Levinson NOAA National Climatic Data Center Asheville, NC Peter J. Vickery Applied Research Associates,

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. INITIALIZATION OF TROPICAL CYCLONE STRUCTURE FOR OPERTAIONAL APPLICATION PI: Tim Li IPRC/SOEST, University

More information

Reply to Hurricanes and Global Warming Potential Linkages and Consequences

Reply to Hurricanes and Global Warming Potential Linkages and Consequences Reply to Hurricanes and Global Warming Potential Linkages and Consequences ROGER PIELKE JR. Center for Science and Technology Policy Research University of Colorado Boulder, Colorado CHRISTOPHER LANDSEA

More information

Lectures on Tropical Cyclones

Lectures on Tropical Cyclones Lectures on Tropical Cyclones Chapter 1 Observations of Tropical Cyclones Outline of course Introduction, Observed Structure Dynamics of Mature Tropical Cyclones Equations of motion Primary circulation

More information

Contents of this file

Contents of this file Geophysical Research Letters Supporting Information for Future changes in tropical cyclone activity in high-resolution large-ensemble simulations Kohei Yoshida 1, Masato Sugi 1, Ryo Mizuta 1, Hiroyuki

More information

On the Impact Angle of Hurricane Sandy s New Jersey Landfall

On the Impact Angle of Hurricane Sandy s New Jersey Landfall On the Impact Angle of Hurricane Sandy s New Jersey Landfall Timothy M. Hall NASA Goddard Institute for Space Studies New York, NY Adam H. Sobel Department of Applied Physics and Applied Mathematics, Columbia

More information

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17 Chapter 24 Tropical Cyclones Tropical Cyclones Most destructive storms on the planet Originate over tropical waters, but their paths often take them over land and into midlatitudes Names Hurricane (Atlantic

More information

Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012

Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012 Introduction Data & Methodology Results Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012 SARAH DITCHEK ATM 741 02.01.16 Introduction Data &

More information

An Objective Algorithm for the Identification of Convective Tropical Cloud Clusters in Geostationary Infrared Imagery. Why?

An Objective Algorithm for the Identification of Convective Tropical Cloud Clusters in Geostationary Infrared Imagery. Why? An Objective Algorithm for the Identification of Convective Tropical Cloud Clusters in Geostationary Infrared Imagery By Chip Helms Faculty Advisor: Dr. Chris Hennon Why? Create a database for the tropical

More information

Climate Change and Hurricane Loss: Perspectives for Investors. June By Karen Clark and John Lummis

Climate Change and Hurricane Loss: Perspectives for Investors. June By Karen Clark and John Lummis Climate Change and Hurricane Loss: Perspectives for Investors By Karen Clark and John Lummis June 2015 2 COPLEY PLACE BOSTON, MA 02116 T: 617.423.2800 F: 617.423.2808 The Big Picture Climate change gets

More information

Comments on: Increasing destructiveness of tropical cyclones over the past 30 years by Kerry Emanuel, Nature, 31 July 2005, Vol. 436, pp.

Comments on: Increasing destructiveness of tropical cyclones over the past 30 years by Kerry Emanuel, Nature, 31 July 2005, Vol. 436, pp. Comments on: Increasing destructiveness of tropical cyclones over the past 30 years by Kerry Emanuel, Nature, 31 July 2005, Vol. 436, pp. 686-688 William M. Gray Department of Atmospheric Science Colorado

More information

LAND USE PLANNING AND RISK: LESSONS FROM THREE AUSTRALIAN PORT CITIES

LAND USE PLANNING AND RISK: LESSONS FROM THREE AUSTRALIAN PORT CITIES LAND USE PLANNING AND RISK: LESSONS FROM THREE AUSTRALIAN PORT CITIES Ken Granger Disaster Risk Scientist Slide No. 1 Land use planning is the single most important mitigation measure for limiting future

More information

TROPICAL CYCLONES IN A WARMER WORLD

TROPICAL CYCLONES IN A WARMER WORLD TROPICAL CYCLONES IN A WARMER WORLD Dr Mark Saunders Benfield Hazard Research Centre Department of Space and Climate Physics University College London Workshop for Under 35s Reinsurance Group 14th October

More information

Improved Tropical Cyclone Boundary Layer Wind Retrievals. From Airborne Doppler Radar

Improved Tropical Cyclone Boundary Layer Wind Retrievals. From Airborne Doppler Radar Improved Tropical Cyclone Boundary Layer Wind Retrievals From Airborne Doppler Radar Shannon L. McElhinney and Michael M. Bell University of Hawaii at Manoa Recent studies have highlighted the importance

More information

Emergence time scales for detection of anthropogenic climate change in US tropical cyclone loss data

Emergence time scales for detection of anthropogenic climate change in US tropical cyclone loss data Emergence time scales for detection of anthropogenic climate change in US tropical cyclone loss data Ryan P Crompton 1, Roger A Pielke Jr 2 and K John McAneney 1 1 Risk Frontiers, Macquarie University,

More information

Tropical Cyclone Atmospheric Forcing 1 for Ocean Response Models: Approaches and Issues

Tropical Cyclone Atmospheric Forcing 1 for Ocean Response Models: Approaches and Issues Tropical Cyclone Atmospheric Forcing 1 for Ocean Response Models: Approaches and Issues Vincent Cardone and Andrew Cox Oceanweather Inc. Cos Cob, CT, USA DEFINITION: 1 Specification of time and space evolution

More information

Queensland Storm Surge Forecasting Model Design Using Sensitivity Analysis

Queensland Storm Surge Forecasting Model Design Using Sensitivity Analysis 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 215 www.mssanz.org.au/modsim215 Queensland Storm Surge Forecasting Model Design Using Sensitivity Analysis

More information

Dynamically Derived Tropical Cyclone Intensity Changes over the Western North Pacific

Dynamically Derived Tropical Cyclone Intensity Changes over the Western North Pacific 1JANUARY 2012 W U A N D Z H A O 89 Dynamically Derived Tropical Cyclone Intensity Changes over the Western North Pacific LIGUANG WU AND HAIKUN ZHAO Key Laboratory of Meteorological Disaster of Ministry

More information

Tropical Cyclone Intensification

Tropical Cyclone Intensification Tropical Cyclone Intensification Theories for tropical cyclone intensification and structure CISK (Charney and Eliassen 1964) Cooperative Intensification Theory (Ooyama 1969). WISHE (Emanuel 1986, Holton

More information

Hurricane Intensity: Governing Factors and Forecasting Challenges. EAS 470 Final Paper Allison Wing

Hurricane Intensity: Governing Factors and Forecasting Challenges. EAS 470 Final Paper Allison Wing Hurricane Intensity: Governing Factors and Forecasting Challenges EAS 470 Final Paper Allison Wing Tropical cyclones are undoubtedly among the mostly deadly and destructive natural phenomena found on Earth

More information

4. Climatic changes. Past variability Future evolution

4. Climatic changes. Past variability Future evolution 4. Climatic changes Past variability Future evolution TROPICAL CYCLONES and CLIMATE How TCs have varied during recent and distant past? How will TC activity vary in the future? 2 CURRENT CLIMATE : how

More information

Windborne debris risk analysis - Part II. Application to structural vulnerability modeling

Windborne debris risk analysis - Part II. Application to structural vulnerability modeling Wind and Structures, Vol. 13, No. 2 (2010) 207-220 207 Windborne debris risk analysis - Part II. Application to structural vulnerability modeling Ning Lin*, Erik Vanmarcke and Siu-Chung Yau Department

More information

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract PREDICTING TROPICAL CYCLONE FORERUNNER SURGE Yi Liu 1 and Jennifer L. Irish 1 Abstract In 2008 during Hurricane Ike, a 2-m forerunner surge, early surge arrival before tropical cyclone landfall, flooded

More information

Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System

Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System J. Churchill, D. Taylor, J. Burston, J. Dent September 14, 2017, Presenter Jim Churchill

More information

Overview of the Tropical Cyclone Guidance Project

Overview of the Tropical Cyclone Guidance Project Overview of the Tropical Cyclone Guidance Project Dr. Jonathan L. Vigh With thanks to Mahsa Mirzargar (Univ. of Miami) Shanghai Typhoon Institute 09 July 2018 NCAR is sponsored by the National Science

More information

The Use of Synthetic Hurricane Tracks in Risk Analysis and Climate Change Damage Assessment

The Use of Synthetic Hurricane Tracks in Risk Analysis and Climate Change Damage Assessment 1956 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 46 The Use of Synthetic Hurricane Tracks in Risk Analysis and Climate Change Damage Assessment STÉPHANE HALLEGATTE

More information

PERSPECTIVES ON FOCUSED WORKSHOP QUESTIONS

PERSPECTIVES ON FOCUSED WORKSHOP QUESTIONS PERSPECTIVES ON FOCUSED WORKSHOP QUESTIONS REGARDING PAST ECONOMIC IMPACTS OF STORMS OR FLOODS Tom Knutson Geophysical Fluid Dynamics Laboratory National Oceanic and Atmospheric Administration 1. According

More information

7B.1 An Overview of the International Best Track Archive for Climate Stewardship (IBTrACS) Michael C. Kruk* STG Inc., Asheville, North Carolina

7B.1 An Overview of the International Best Track Archive for Climate Stewardship (IBTrACS) Michael C. Kruk* STG Inc., Asheville, North Carolina 7B.1 An Overview of the International Best Track Archive for Climate Stewardship (IBTrACS) Michael C. Kruk* STG Inc., Asheville, North Carolina Kenneth R. Knapp, David H. Levinson, Howard J. Diamond NOAA

More information

Exploring the Use of Dynamical Weather and Climate Models for Risk Assessment

Exploring the Use of Dynamical Weather and Climate Models for Risk Assessment Exploring the Use of Dynamical Weather and Climate Models for Risk Assessment James Done Willis Research Network Fellow National Center for Atmospheric Research Boulder CO, US Leverages resources in the

More information

Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles?

Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles? Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles? Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre City University of Hong Kong Outline The common perception and

More information

A Hurricane Outlook for the 21st Century.

A Hurricane Outlook for the 21st Century. A Hurricane Outlook for the 21st Century. Hugh Willoughby Florida International University Cat Winds Effects One 74-95 mph No real damage to building structures. Two Three Four Five 96-110 mph 111-130

More information

Using Flight Level Data to Improve Historical Tropical Cyclone Databases

Using Flight Level Data to Improve Historical Tropical Cyclone Databases Using Flight Level Data to Improve Historical Tropical Cyclone Databases Dr. Jonathan L. Vigh Shanghai Typhoon Institute 12 July 2018 NCAR is sponsored by the National Science Foundation On the Need for

More information

Hurricane Science Tutorial. Kerry Emanuel Lorenz Center, MIT

Hurricane Science Tutorial. Kerry Emanuel Lorenz Center, MIT Hurricane Science Tutorial Kerry Emanuel Lorenz Center, MIT Why Should You Care? Forecasting Much progress in social science of response to warnings, requests to evacuate, etc. Forecasters are ambassadors

More information

Tropical cyclones in ERA-40: A detection and tracking method

Tropical cyclones in ERA-40: A detection and tracking method GEOPHYSICAL RESEARCH LETTERS, VOL. 35,, doi:10.1029/2008gl033880, 2008 Tropical cyclones in ERA-40: A detection and tracking method S. Kleppek, 1,2 V. Muccione, 3 C. C. Raible, 1,2 D. N. Bresch, 3 P. Koellner-Heck,

More information

Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al

Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al., titled Changes in tropical cyclone number, duration, and intensity in a warming environment

More information

HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION By Robert Wang, Michael Manausa And Jenny Cheng Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems

More information

AN EMPIRICAL MODEL FOR AERODROME WIND FORECASTING DURING THE PASSAGE OF TROPICAL CYCLONES

AN EMPIRICAL MODEL FOR AERODROME WIND FORECASTING DURING THE PASSAGE OF TROPICAL CYCLONES P1.1 AN EMPIRICAL MODEL FOR AERODROME WIND FORECASTING DURING THE PASSAGE OF TROPICAL CYCLONES T. C. Cheung The Chinese University of Hong Kong Hong Kong China P. Cheung C. C. Lam * Hong Kong Observatory

More information

Inner core dynamics: Eyewall Replacement and hot towers

Inner core dynamics: Eyewall Replacement and hot towers Inner core dynamics: Eyewall Replacement and hot towers FIU Undergraduate Hurricane Internship Lecture 4 8/13/2012 Why inner core dynamics is important? Current TC intensity and structure forecasts contain

More information

NOTES AND CORRESPONDENCE. What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years?

NOTES AND CORRESPONDENCE. What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years? 1432 J O U R N A L O F C L I M A T E VOLUME 21 NOTES AND CORRESPONDENCE What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years? LIGUANG WU Laboratory for Atmospheres, NASA Goddard Space

More information

Hurricanes and Climate Change: Expectations versus Observations

Hurricanes and Climate Change: Expectations versus Observations Hurricanes and Climate Change: Expectations versus Observations 15 June, 2010 Lloyd s Market Academy Chris Landsea, National Hurricane Center, Miami, USA Chris.Landsea@noaa.gov How is global warming affecting:

More information

On Estimating Hurricane Return Periods

On Estimating Hurricane Return Periods VOLUME 49 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y MAY 2010 On Estimating Hurricane Return Periods KERRY EMANUEL Program in Atmospheres, Oceans, and Climate, Massachusetts

More information

STUDIES ON HAZARD CHARACTERIZATION FOR PERFORMANCE-BASED STRUCTURAL DESIGN. A Dissertation YUE WANG DOCTOR OF PHILOSOPHY

STUDIES ON HAZARD CHARACTERIZATION FOR PERFORMANCE-BASED STRUCTURAL DESIGN. A Dissertation YUE WANG DOCTOR OF PHILOSOPHY STUDIES ON HAZARD CHARACTERIZATION FOR PERFORMANCE-BASED STRUCTURAL DESIGN A Dissertation by YUE WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Global Climate Change and Human Health Cycloning out of Control: Climate Change Impacts on Natural Disasters; Cyclones

Global Climate Change and Human Health Cycloning out of Control: Climate Change Impacts on Natural Disasters; Cyclones INSTRUCTOR BACKGROUND Cyclones are one of the world s most devastating natural disasters causing billions of dollars in damages to homes, building and infrastructure annually. The United Nations estimates

More information

A NEW SAR RETRIEVAL METHOD FOR HURRICANE WIND PARAMETERS

A NEW SAR RETRIEVAL METHOD FOR HURRICANE WIND PARAMETERS A NEW SAR RETRIEVAL METHOD FOR HURRICANE WIND PARAMETERS Antonio Reppucci, Susanne lehner, Johannes Schulz-Stellenfleth German Aerospace Center (DLR) Oberpfaffenhofen 82234 Wessling, Germany. Hurricane

More information

Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations

Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053360, 2012 Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations Masato Sugi 1,2 and Jun Yoshimura 2 Received

More information

P4.1 CONSENSUS ESTIMATES OF TROPICAL CYCLONE INTENSITY USING MULTISPECTRAL (IR AND MW) SATELLITE OBSERVATIONS

P4.1 CONSENSUS ESTIMATES OF TROPICAL CYCLONE INTENSITY USING MULTISPECTRAL (IR AND MW) SATELLITE OBSERVATIONS P4.1 CONSENSUS ESTIMATES OF TROPICAL CYCLONE INTENSITY USING MULTISPECTRAL (IR AND MW) SATELLITE OBSERVATIONS Christopher Velden* Derrick C. Herndon and James Kossin University of Wisconsin Cooperative

More information

Hurricanes: Their physics and relationship to climate. Kerry Emanuel Massachusetts Institute of Technology

Hurricanes: Their physics and relationship to climate. Kerry Emanuel Massachusetts Institute of Technology Hurricanes: Their physics and relationship to climate Kerry Emanuel Massachusetts Institute of Technology Topics Overview of Tropical Cyclones Tropical Cyclone Physics What have TCs been like in the past,

More information

The Atlantic Hurricane Database Reanalysis Project

The Atlantic Hurricane Database Reanalysis Project The Atlantic Hurricane Database Reanalysis Project 9 November, 2015 14 th International Workshop on Wave Hindcasting and Forecasting Chris Landsea, National Hurricane Center, Miami, USA Chris.Landsea@noaa.gov

More information

Design Wind Speeds for the Caribbean for use with the Wind Load Provisions of ASCE 7

Design Wind Speeds for the Caribbean for use with the Wind Load Provisions of ASCE 7 Design Wind Speeds for the Caribbean for use with the Wind Load Provisions of ASCE 7 Prepared by Peter J Vickery and Dhiraj Wadhera Applied Research Associates 854 Colonnade Center Drive, Suite 37 Raleigh,

More information

Can CMIP5 models replicate long-term variability of storm characteristics in the WNP? James Bramante

Can CMIP5 models replicate long-term variability of storm characteristics in the WNP? James Bramante Can CMIP5 models replicate long-term variability of storm characteristics in the WNP? James Bramante The Western North Pacific Figure taken from Laing and Evans (2011). Introduction to Tropical Meteorology.

More information

A pragmatic view of rates and clustering

A pragmatic view of rates and clustering North Building Atlantic the Chaucer Hurricane Brand A pragmatic view of rates and clustering North Atlantic Hurricane What we re going to talk about 1. Introduction; some assumptions and a basic view of

More information

Relationship between the potential and actual intensities of tropical cyclones on interannual time scales

Relationship between the potential and actual intensities of tropical cyclones on interannual time scales Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L08810, doi:10.1029/2006gl028581, 2007 Relationship between the potential and actual intensities of tropical cyclones on interannual time

More information

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2017

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2017 COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2017 We expect that the next two weeks will be characterized by above-normal hurricane activity. (as of 13

More information

The Wind Speeds in Selected Islands During Hurricanes Irma and Maria in 2017 compiled by Tony Gibbs FREng

The Wind Speeds in Selected Islands During Hurricanes Irma and Maria in 2017 compiled by Tony Gibbs FREng The Wind Speeds in Selected Islands During Hurricanes Irma and Maria in 2017 compiled by Tony Gibbs FREng Structural failures leading to serious damage or collapse, or those severely affecting the use

More information

ARW/EnKF performance for the 2009 Hurricane Season

ARW/EnKF performance for the 2009 Hurricane Season ARW/EnKF performance for the 2009 Hurricane Season Ryan D. Torn, Univ. at Albany, SUNY Chris Davis, Steven Cavallo, Chris Snyder, Wei Wang, James Done, NCAR/MMM 4 th EnKF Workshop 8 April 2010, Rensselaerville,

More information

North Carolina Coastal Flood Analysis System Hurricane Parameter Development. Submittal Number 1, Section 5

North Carolina Coastal Flood Analysis System Hurricane Parameter Development. Submittal Number 1, Section 5 North Carolina Coastal Flood Analysis System Hurricane Parameter Development Submittal Number 1, Section 5 A Draft Report for the State of North Carolina Floodplain Mapping Project Technical Report TR-08-06

More information

Prediction of Tropical Cyclone Landfall Numbers Using a Regional Climate Model

Prediction of Tropical Cyclone Landfall Numbers Using a Regional Climate Model Prediction of Tropical Cyclone Landfall Numbers Using a Regional Climate Model Johnny Chan and Judy Huang* Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University

More information

Lecture 18 Hurricanes

Lecture 18 Hurricanes Lecture 18 Hurricanes Part I Structure and Climatology What is a hurricane? What is the structure or anatomy of a hurricane? How to build a hurricane - hurricane energy Hurricane climatology - when and

More information

Surface Wind/Stress Structure under Hurricane

Surface Wind/Stress Structure under Hurricane Surface Wind/Stress Structure under Hurricane W. Timothy Liu and Wenqing Tang, JPL Asymmetry Relating wind to stress 2008 NASA Ocean Vector Wind Science Team Meeting, 19-21 November 2008, Seattle, WA Asymmetry

More information

Simulating and Visualizing Hurricane-Ocean Interactions using High-Resolution CESM

Simulating and Visualizing Hurricane-Ocean Interactions using High-Resolution CESM Simulating and Visualizing Hurricane-Ocean Interactions using High-Resolution CESM Ryan Sriver, Dept. of Atmospheric Sciences, University of Illinois Hui Li, Dept. of Atmospheric Sciences, University of

More information

Homework 8: Hurricane Damage (adapted from Pipkin et al.)

Homework 8: Hurricane Damage (adapted from Pipkin et al.) 1 Homework 8: Hurricane Damage (adapted from Pipkin et al.) Tropical cyclones have a significant impact on coastal areas of the world. In the Atlantic and Eastern Pacific Oceans they are called hurricanes

More information

Tropical Cyclones. Objectives

Tropical Cyclones. Objectives Tropical Cyclones FIU Undergraduate Hurricane Internship Lecture 2 8/8/2012 Objectives From this lecture you should understand: Global tracks of TCs and the seasons when they are most common General circulation

More information

Huracan: evil Taino & Mayan god of winds & destruction

Huracan: evil Taino & Mayan god of winds & destruction Huracan: evil Taino & Mayan god of winds & destruction Profile of a Tropical Cyclone! Hurricane = typhoon = cyclone! All different words for the same thing Eye: clear area in the center Eyewall: clouds

More information

Annual Number of Peer Reviewed Articles with Hurricane or Tropical Cyclone in their Titles, according to Meteorological and Geoastrophysical

Annual Number of Peer Reviewed Articles with Hurricane or Tropical Cyclone in their Titles, according to Meteorological and Geoastrophysical Hurricanes and Climate Kerry Emanuel Program in Atmospheres, Oceans, and Climate MIT Program Potential Intensity Role of potential ti li intensity it in storm intensity it Role of potential intensity in

More information

Possible Effects of Global Warming on Tropical Cyclone Activity

Possible Effects of Global Warming on Tropical Cyclone Activity Possible Effects of Global Warming on Tropical Cyclone Activity Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong Outline Background

More information

HURRICANES AND CLIMATE

HURRICANES AND CLIMATE HURRICANES AND CLIMATE CURRENT CHALLENGES Gabriel A. Vecchi NOAA/GFDL, Princeton, NJ Image: NASA. GOALS Document changes in hurricane statistics, with as little inhomogeneity as possible and quantified

More information

Tropical Cyclone Genesis: What we know, and what we don t!

Tropical Cyclone Genesis: What we know, and what we don t! Tropical Cyclone Genesis: What we know, and what we don t! Allison Wing! NSF Postdoctoral Research Fellow! Lamont-Doherty Earth Observatory! Columbia University! Overview! Climatology! What We Know! Theories!

More information

Topic 3.2: Tropical Cyclone Variability on Seasonal Time Scales (Observations and Forecasting)

Topic 3.2: Tropical Cyclone Variability on Seasonal Time Scales (Observations and Forecasting) Topic 3.2: Tropical Cyclone Variability on Seasonal Time Scales (Observations and Forecasting) Phil Klotzbach 7 th International Workshop on Tropical Cyclones November 18, 2010 Working Group: Maritza Ballester

More information

1. Introduction. In following sections, a more detailed description of the methodology is provided, along with an overview of initial results.

1. Introduction. In following sections, a more detailed description of the methodology is provided, along with an overview of initial results. 7B.2 MODEL SIMULATED CHANGES IN TC INTENSITY DUE TO GLOBAL WARMING Kevin A. Hill*, Gary M. Lackmann, and A. Aiyyer North Carolina State University, Raleigh, North Carolina 1. Introduction The impact of

More information

A Preliminary Exploration of the Upper Bound of Tropical Cyclone Intensification

A Preliminary Exploration of the Upper Bound of Tropical Cyclone Intensification A Preliminary Exploration of the Upper Bound of Tropical Cyclone Intensification Jonathan L. Vigh (NCAR/RAL) Kerry Emanuel (MIT) Mrinal K. Biswas (NCAR/RAL) Eric A. Hendricks (Naval Postgraduate School)

More information

The Pressure s On: Increased. Introduction. By Jason Butke Edited by Meagan Phelan

The Pressure s On: Increased. Introduction. By Jason Butke Edited by Meagan Phelan The Pressure s On: Increased Realism in Tropical Cyclone Wind Speeds through Attention to Environmental Pressure 01.2012 By Jason Butke Introduction Because the Earth has a tilted axis and rotates, the

More information

The 2009 Hurricane Season Overview

The 2009 Hurricane Season Overview The 2009 Hurricane Season Overview Jae-Kyung Schemm Gerry Bell Climate Prediction Center NOAA/ NWS/ NCEP 1 Overview outline 1. Current status for the Atlantic, Eastern Pacific and Western Pacific basins

More information

ESCI 241 Meteorology Lesson 19 Tropical Cyclones Dr. DeCaria

ESCI 241 Meteorology Lesson 19 Tropical Cyclones Dr. DeCaria ESCI 241 Meteorology Lesson 19 Tropical Cyclones Dr. DeCaria READING: Chapter 16 GENERAL A tropical cyclone is a large, low-pressure system that forms over the tropical oceans. Tropical cyclones are classified

More information

CURRENT AND FUTURE TROPICAL CYCLONE RISK IN THE SOUTH PACIFIC

CURRENT AND FUTURE TROPICAL CYCLONE RISK IN THE SOUTH PACIFIC CURRENT AND FUTURE TROPICAL CYCLONE RISK IN THE SOUTH PACIFIC COUNTRY RISK PROFILE: SAMOA JUNE 2013 Samoa has been affected by devastating cyclones on multiple occasions, e.g. tropical cyclones Ofa and

More information

Tropical Cyclones in a regional climate change projections with RegCM4 over Central America CORDEX domain

Tropical Cyclones in a regional climate change projections with RegCM4 over Central America CORDEX domain Tropical Cyclones in a regional climate change projections with RegCM4 over Central America CORDEX domain Gulilat Tefera Diro diro@sca.uqam.ca Centre ESCER, University of Quebec at Montreal (UQAM), Montreal,

More information

Convective downbursts are known to produce potentially hazardous weather

Convective downbursts are known to produce potentially hazardous weather Investigation of Convective Downburst Hazards to Marine Transportation Mason, Derek Thomas Jefferson High School for Science and Technology Alexandria, VA Abstract Convective downbursts are known to produce

More information

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Impacts of Climate Change on Autumn North Atlantic Wave Climate Impacts of Climate Change on Autumn North Atlantic Wave Climate Will Perrie, Lanli Guo, Zhenxia Long, Bash Toulany Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS Abstract

More information

Chapter 24 Tropical Cyclones

Chapter 24 Tropical Cyclones Chapter 24 Tropical Cyclones Tropical Weather Systems Tropical disturbance a cluster of thunderstorms about 250 to 600 km in diameter, originating in the tropics or sub-tropics Tropical depression a cluster

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Activities and Outlook related to Disaster Reduction in CMA

Activities and Outlook related to Disaster Reduction in CMA Activities and Outlook related to Disaster Reduction in CMA WANG Bangzhong China Meteorological Administration March 15-17 2006 ADENDA Situation about MD and related disasters in CHINA Guidance for MD/RD

More information

DIRECTION INTERREGIONALE ANTILLES-GUYANE

DIRECTION INTERREGIONALE ANTILLES-GUYANE DIRECTION INTERREGIONALE ANTILLES-GUYANE SUMMARY OF THE 2010 HURRICANE SEASON IN THE FRENCH WEST INDIES ( Martinique, Guadeloupe, St Barthelemy and St Martin ) Among the nineteen named tropical cyclones

More information

Impacts of the Diurnal Radiation Cycle on the Formation, Intensity and Structure of Hurricane Edouard (2014)

Impacts of the Diurnal Radiation Cycle on the Formation, Intensity and Structure of Hurricane Edouard (2014) Impacts of the Diurnal Radiation Cycle on the Formation, Intensity and Structure of Hurricane Edouard (2014) Xiaodong Tang 1,2 and Fuqing Zhang 2 Contributors: Erin B. Munsell 2, Christopher Melhauser

More information