Vesmírny web. FAKULTA PRÍRODNÝCH VIED Univerzity Mateja Bela v Banskej Bystrici KATEDRA FYZIKY

Size: px
Start display at page:

Download "Vesmírny web. FAKULTA PRÍRODNÝCH VIED Univerzity Mateja Bela v Banskej Bystrici KATEDRA FYZIKY"

Transcription

1 Vesmírny web FAKULTA PRÍRODNÝCH VIED Univerzity Mateja Bela v Banskej Bystrici KATEDRA FYZIKY

2 Metodický list Vesmírny web Úvod V tejto aktivite žiaci vytvárajú webovú stránku, ktorá bude vysvetľovať teóriu Veľkého tresku. Žiaci majú k dispozícii základný text a sú vyzvaní: zabezpečiť ilustrácie korešpondujúce s textom, identifikovať slová a frázy, ktoré potrebujú ďalšie vysvetlenie, a tak jednou z úloh bude tiež vytvoriť glosár (slovník neznámych pojmov) pre danú stránku. Text môže obsahovať ďalšie slová a frázy, ktoré budú vyžadovať vysvetlenie. Žiaci ich majú identifikovať a rozdeliť si medzi sebou úlohy vytvoriť hypertextové prepojenia medzi slovami a stránkami s vysvetlením. Tiež sa musia pozrieť na poskytnutý text a vybrať obrázky, ktoré budú vhodným spôsobom tento text dopĺňať. Výsledkom aktivity by malo byť podrobné vysvetlenie teórie Veľkého tresku, ako aj predstavenie výskumu, ktorý sa v súčasnosti realizuje s cieľom vniesť viac svetla do ďalšieho vývoja vesmíru. Ciele aktivity Žiaci po absolvovaní aktivity získajú hlbšie vedomosti o teórii Veľkého tresku. Pri objasňovaní teórie o vzniku vesmíru žiaci vychádzajú z poznatkov, že: spektrálne čiary svetla prichádzajúceho zo vzdialených galaxií sú posunuté k červenej farbe spektra (t.j. vlnová dĺžka sa zväčšuje), čím ďalej od Zeme sa galaxia nachádza, tým je červený posun výraznejší. Jedno z možných vysvetlení je, že ostatné galaxie sa od nás vzďaľujú veľmi rýchlo a čím je galaxia od nás ďalej, tým je jej rýchlosť vzďaľovania vyššia. Tieto poznatky by mali žiakov viesť k záveru, že vesmír sa neustále rozpína a tento proces začal pred niekoľkými miliardami rokov v okamihu nazvanom Big Bang, čo v preklade znamená Veľký tresk. Žiaci sa naučia: používať vedecké hypotézy a modely na vysvetlenie javov, vytvárať a overovať teórie, používať vhodné metódy a prostriedky, vrátane digitálnych technológií, na komunikáciu vedeckých informácií a prispieť k diskusii o vedeckých otázkach. 1

3 Táto aktivita tiež dáva žiakom príležitosť: skúmať a formulovať argumenty, diskutovať o nich, použiť príklady z bežného života v súvislosti s vedeckými poznatkami. Čo už musia žiaci vedieť Pred začiatkom realizácie tejto aktivity by žiaci mali mať základné vedomosti o hviezdach a galaxiách. Veľkou výhodou sú aj vedomosti o štruktúre atómov, ako aj základné znalosti o tvorbe webových stránok. Ako postupovať pri práci Predstavenie aktivity Vesmírny web Tvorba úvodnej webovej stránky Štruktúra webových stránok Stránka 1 Veľký tresk Stránka 2 Reliktové žiarenie Stránka 3 Na počiatku Stránka 4 Hľadáme dôkaz vo vnútri atómu Stránka 5 Neviditeľná astronómia Realizácia aktivity Stránka 6 Tmavá hmota 1. Žiaci môžu pracovať počas aktivít rôznym spôsobom. Návrh na organizáciu vyučovania s využitím danej aktivity: Úvodné stretnutie Práca celej triedy; učiteľ predstaví tému, ciele a rozdelí úlohy Stránky 1 6 Individuálna práca, dvojice alebo malé skupiny; žiaci riešia čiastkové pridelené úlohy, hľadajú ilustrácie a tvoria hypertextové stránky 2

4 B. Časová náročnosť Očakáva sa, že celá aktivita zaberie približne 3 vyučovacie hodiny v triede. Záleží to od nadšenia a zručností daných žiakov. Poznámka: Podľa predchádzajúcich skúsenosti je potrebné upozorniť na to, že 3 vyučovacie hodiny budú postačovať len na oboznámenie žiakov s problematikou, návrhu štruktúry webu a na následné určenie úloh žiakov v tejto aktivite. Vzhľadom na to, že žiaci nemajú takmer žiadne alebo len veľmi stručné informácie o danej problematike je dôležité venovať predstaveniu tému dostatočný pozornosť a dostatočný čas. Vytvorenie samotn0ho webu ako aj vyhľadávanie a spracovanie informácií si vyžaduje podstatne viac času. C. Aktivity Učiteľ rozdá žiakom pracovné listy, ktoré obsahujú základné informácie o cieľoch danej aktivity, resp. informácie o tom, čo majú žiaci dosiahnuť, aké výstupy sú požadované a pod. Pracovné listy môžu tiež slúžiť ako kontrola správnosti postupu, ktorým budú žiaci realizovať jednotlivé výskumné činnosti. Aktivita poskytuje žiakom určitý rámec/zoznam tém, na ktoré sa majú počas svojej činnosti zamerať (tzv. Štartovací balíček). Zoznam úloh, ktoré by mali žiaci splniť, závisí od času, ktorý je na celú aktivitu vyčlenený. Žiaci by však mali minimálne vytvoriť hypertextové stránky s nasledovnými témami: Galaxie Informácie, ktoré by žiaci mali spracovať, sú: typická veľkosť galaxie, počet hviezd v galaxii, podrobnosti o Hubblovej klasifikácii galaxií a skupín galaxií, priemerná hmotnosť galaxie. Červený posun Hubble meral posun absorpčných čiar v spektre žiarenia galaxie. Ak biele svetlo z hviezdy prechádza z vnútornejších častí hviezdy cez chladnejšie prostredie s nižším tlakom plynov hviezdnej atmosféry, objavia sa v spektre tmavé čiary. Keď sa hviezdy galaxie vzďaľujú vzhľadom k inému objektu, všetky čiary jej žiarenia sa posúvajú smerom k červenej časti spektra (k dlhším vlnovým dĺžkam). Teleskop Hubble Táto stránka môže obsahovať všeobecné informácie o ďalekohľadoch, teleskopoch, ako aj niektoré podrobnosti o objavoch, ktoré boli urobené vďaka týmto zariadeniam. Tiež by mala obsahovať nové správy a objavy zverejnené do začiatku realizácie tejto aktivity. Albert Einstein Informácie o Einsteinovi a jeho diele by mohli byť rozdelené do dvoch častí (stránok): 3

5 1. príspevky k pochopeniu kozmológie, 2. podrobnejšie informácie o živote, úspechoch a ostatných dielach A. Einsteina. Miesta, kde vznikajú hviezdy Stránka môže poskytnúť informácie o tom, ako vznikajú hviezdy, a tiež o tom, ako ich rozdeľujeme (Hertzsprungov-Russellov diagram). Podrobne môže byť tiež opísaný proces jadrovej syntézy, ktorý prebieha vo vnútri hviezd. CERN Žiaci môžu vytvoriť stránku o vedeckej práci v CERN-e a niektorých jej výsledkoch, objavoch a podobne. Elektromagnetické spektrum Elektromagnetické spektrum je ďalšou témou pre samostatnú stránku, na ktorej by žiaci mohli spracovať známe poznatky z tejto oblasti, vysvetliť základné vlastnosti (vlnová dĺžka, frekvencia a pod.) a použitie jednotlivých typov elektromagnetických vĺn. Rádioteleskopy Žiaci môžu zhrnúť objavy urobené použitím rádioteleskopov. Do svojich informácií by mohli zaradiť aj poznatky o výnimočných teleskopoch, akými sú teleskopy v Jodrell Bank, Arecibo a Pole teleskopov s veľmi dlhou základňou (VLBA Very Long Baseline Array). Kvazary Kvázihviezdne rádiové zdroje boli objavené v roku Patria k najvzdialenejším objektom v známom vesmíre. Astronómovia vedú polemiky o tom, ako ďaleko sa tieto objekty nachádzajú, pričom vychádzajú z poznatkov o červenom posune ich žiarenia. Pulzary Jocelyn Bell Burnell bola študentkou univerzity v Cambridge, keď v roku 1967 objavila pulzary. Spolu s profesorom Anthonym Hewishom sa najprv domnievali, že tieto pravidelné pulzy sú signálom od mimozemšťanov, čo je dôvod, prečo boli nazvaní LGM (Malí zelení muži z angl. Little Green Men)! Dnes sú tieto pulzy známe ako rotujúce neutrónové hviezdy. Čierne diery Žiaci by mohli vysvetliť, že pomenovanie čierne diery vzniklo kvôli tomu, že tieto objekty neumožňujú svetlu uniknúť z ich priestoru. Môžu tiež uviesť informácie o tom, 4

6 kde môžu čierne diery vznikať. Vhodným zdrojom môžu byť knihy a práce profesora Stephena Hawkinga. Osud vesmíru Tri možné scenáre týkajúce sa budúcnosti vesmíru sa odvíjajú od toho, koľko hmoty vesmír obsahuje. Ak je jej menej, ako je isté kritické množstvo, bude vesmír navždy expandovať. Kritická hmotnosť by viedla k postupnému zastaveniu expanzie v dôsledku vplyvu gravitačnej sily. Ak je hmotnosť väčšia ako kritická hodnota, malo by nastať postupné stláčanie vesmíru; približovanie galaxií a nakoniec návrat hmoty do jediného bodu, tento proces sa označuje pojmom Veľký kolaps (Big Crunch). Žiaci by mali byť vyzvaní k spracovaniu týchto troch možných scenárov. Mali by sa pritom oboznámiť aj s aktuálnymi poznatkami podloženými meraniami Hubblovej konštanty, ktoré vedú ku konceptu tmavej energie a zrýchľujúcej sa expanzie vesmíru. Možné scenáre vývoja vesmíru treba posúdiť vo svetle týchto nových poznatkov. Štartovací balíček, ktorý budú mať žiaci k dispozícii, obsahuje základné informácie k daným témam. Text bude pravdepodobne obsahovať aj ďalšie slová a pojmy, ktoré by mohli byť uvedené ako samostatné stránky, alebo by mali byť súčasťou registra pojmov spolu s ich krátkou definíciou. Odporúčaná literatúra PAĽUŠ, Pavel a i.: Dotyky s vesmírom. Vybrané kapitoly. Bratislava : Fakulta matematiky, fyziky a informatiky UK v Bratislave, ISBN LIVIO, M. RIESS, A. G.: Measuring the Hubble constant. In: Physics Today, Október 2013, s Poznámky: 1. Jeden z možných zdrojov základných informácií k hľadaným termínom je stránka - konkrétne položka Astronomický heslár. 2. Dokumentárne filmy vesmíre 3. Ďalšia stránka so základnými informáciami o Veľkom tresku Žiacky pracovný list 5

7 Vesmírny web Vašou úlohou je vytvoriť webové stránky, ktoré budú vysvetľovať teóriu Veľkého tresku teóriu o vzniku vesmíru. Začnite súborom pripravených stránok s označením Štartovací balíček, prostredníctvom ktorých získate prvotné informácie potrebné k tvorbe spomínaných stránok. Na začiatku je potrebné overiť aktuálnosť týchto informácií a v prípade novších zistení tieto uviesť na vytvorených webových stránkach. Dizajn ako aj samotnú štruktúru webu navrhnete vy sami. Pri objasňovaní teórie o pôvode vesmíru sa naučíte, že: vlnová dĺžka svetla prichádzajúceho zo vzdialených galaxií je posunutá k červenej farbe spektra (t.j. zväčšuje sa), čím ďalej sa galaxia nachádza, tým je červený posun výraznejší. Jedno z možných vysvetlení je, že ostatné galaxie sa od nás vzďaľujú veľmi rýchlo a čím je galaxia od nás ďalej, tým je jej rýchlosť vzďaľovania vyššia. Tieto zistenia vedú k predpokladom, že: (1) vesmír sa neustále rozpína a (2) tento proces začal pred niekoľkými miliardami rokov v momente nazvanom Big Bang, čo v preklade znamená Veľký tresk. Očakávané výstupy Výstupom vašej činnosti budú webové stránky, ktoré budú obsahovať informácie o teórii vzniku vesmíru známej ako Veľký tresk s hypertextovými odkazmi pri neznámych pojmoch, ktoré je potrebné bližšie vysvetliť. Pri vysvetľovaní neznámych pojmov môžete použiť dve možnosti. Prvou je možnosť vytvoriť samostatnú stránku objasňujúcu daný pojem. V prípade, ak k objasneniu daného pojmu postačuje krátka definícia, umiestnite pojem spolu s jeho definíciou do registra pojmov. K textu by ste mali doplniť aj ilustrácie, ktoré súvisia s textom, aby bola vaša stránka názornejšia, zaujímavejšia a prehľadnejšia. Presvedčte sa, že počas vašej práce sa budete venovať nižšie uvedeným bodom. Štartovací balíček: stránky 1 6: hlavná stránka s hypertextovými odkazmi na ďalšie stránky vytvorené s cieľom vysvetliť vybrané pojmy a výrazy, register pojmov, ktorý bude obsahovať zoznam nových pojmov spolu s ich krátkou definíciou, prípadne s odkazom na samostatnú webovú stránku obsahujúcu bližšie informácie k danému pojmu. 6

8 Vesmírny web Úvod George F. Smoot (zdroj: gov/publications/nobel/) 23. apríla v roku 1992 americký vedec George Smoot hovoril pred americkou fyzikálnou spoločnosťou o výsledkoch výskumného programu COBE (z angl. Cosmic background Explorer). Pri jednej z jeho odpovedí na otázky zaznelo: "Ak ste veriaci, je to ako uvidieť Boha. Čo z jeho práce a práce ostatných vedcov podieľajúcich sa na výskume COBE ho mohlo priviesť k takémuto vyjadreniu? Podľa vlastných slov Georga Smoota mohli ako prví "pozorovať najstaršie a najväčšie štruktúry raného vesmíru. Jednalo sa o prvotné zárodky novodobých štruktúr, ako sú galaxie, zhluky galaxií, a tak ďalej. Zárodky, ktoré mali obrovský vplyv na formovanie časopriestoru v čase jeho zrodenia". V rámci programu COBE vedci objavili existenciu niečoho, čo považovali za kľúčové pri vysvetľovaní teórie vzniku vesmíru s označením teória Veľkého tresku. Astronómov, ktorí skúmajú najväčšie štruktúry vesmíru, a časticových fyzikov, ktorí skúmajú najmenšie častice hmoty, spája spoločný predmet záujmu vysvetliť pôvod vesmíru (vedný odbor má názov kozmológia). Hľadanie ďalších faktov potvrdzujúcich teóriu Veľkého tresku patrí k najvzrušujúcejším vedeckým projektom prebiehajúcim v súčasnosti. V rámci tejto aktivity máte možnosť zažiť podobné nadšenie a pretaviť ho do podoby webových stránok pre vašu školu, ktorých cieľom bude sprostredkovať všetkým návštevníkom stránok bližšie informácie o teórii Veľkého tresku. Počas vašej práce sa naučíte viac o najnovších vedeckých poznatkoch, ale tiež sa budete podieľať na tom, aby sa tieto dôležité a stále rastúce vedecké poznatky dostávali k verejnosti. 7

9 Vesmírny web Tvorba webovej stránky World Wide Web sa zrodil v roku 1989 a bol nápadom Tima Bernersa Leeho, vedca pracujúceho v tom čase v CERN-e (Európske laboratórium časticovej fyziky v Ženeve vo Švajčiarsku). Cieľom bolo poskytnúť efektívny prostriedok komunikácie medzi časticovými fyzikmi, ktorí pracujú na rôznych miestach po celom svete. Dnes je internet s technológiou WWW najpoužívanejším prostriedkom komunikácie. V tejto aktivite budete vytvárať svoje vlastné webové stránky na tému teória Veľkého tresku. Zahrniete do nich najnovšie poznatky z astronómie a fyziky častíc, ktoré podporujú teóriu snažiacu sa vysvetliť pôvod vesmíru. Vedná oblasť, ktorá navzájom prepája poznatky z oblasti najmenších a najväčších štruktúr hmoty vo vesmíre, sa nazýva kozmológia. Na začiatku ste dostali tzv. Štartovací balíček, ktorý obsahuje texty súvisiace s vybranými aspektmi teórie Veľkého tresku. Vašou úlohou je: Vytvoriť hypertextové odkazy z neznámych slov a pojmov Štartovacieho balíčka a následne urobiť nové stránky, ktoré budú obsahovať vysvetlenie daných pojmov. Prečítať si pozorne text a vybrať ďalšie pojmy, ktoré je potrebné vysvetliť na samostatnej stránke. Môžete do toho zaradiť nielen slová, ale aj akékoľvek súvisiace témy. Mali by ste vytvoriť hypertextové odkazy na tieto ďalšie stránky. K tomuto potrebujete vykonať určitý prieskum zameraný na získanie aktuálnych informácií týkajúcich sa teórie Veľkého tresku a súvisiacich tém. Nájsť odkazy na ďalšie zaujímavé webové stránky s uvedenou problematikou, ktoré už na internete existujú. Pridať ďalší text a obrázky, ktoré podľa vás prináležia k danej téme a zvýšia názornosť a zrozumiteľnosť daného textu. 8

10 Veľký tresk Rozpínajúci sa vesmír Štartovací balíček Stránka 1 V roku 1929 americký astronóm Edwin Hubble publikoval výsledky svojej práce, ktorú robil v observatóriu Mount Wilson v Kalifornii. Pozoroval veľa galaxií podobných tej našej a zistil, že všetky sa pohybujú smerom od seba inými slovami, zistil, že vesmír sa rozpína. Ak nakreslíte bodky na balón a začnete ho nafukovať, môžete vidieť, ako sa vesmír rozpína. Keď si predstavíte, že každý bod je galaxia, pri nafukovaní môžete vidieť, ako sa každý bod, či galaxia, vzďaľuje od všetkých ostatných bodov galaxií. Hubble vedel, že galaxie sa od seba navzájom vzďaľujú, a to vďaka analýze svetla z galaxií. Merania preukázali červený posun tohto svetla. Všimol si tiež, že vzdialenejšie galaxie sa vzďaľujú rýchlejšie, podľa rovnice z = v / c, kde z = posun spektrálnej čiary; v = rýchlosť vzďaľovania sa galaxie; c = rýchlosť svetla, a dal do súvislosti vzdialenosť galaxie (d) s rýchlosťou galaxie (v) cez vzťah v = H d, kde d = vzdialenosť galaxie od Zeme; v = rýchlosť pohybu galaxie vzhľadom k Zemi; H = Hubblova konštanta. Jej hodnota bola známa s pomerne veľkou neistotou. Hubble taktiež predstavil schému delenia galaxií na špirálové, špirálové s priečkou, eliptické, šošovkovité a nepravidelné. Vesmírny teleskop, ktorý vypustila NASA na obežnú dráhu v roku 1990, je pomenovaný po Edwinovi Hubblovi. Hubblova konštanta Hubblova rovnica v = H d vyzerá jednoducho, ale astronómom pomohla vypočítať veľkosť a vek vesmíru. Hodnoty Hubblovej konštanty H, získané rôznymi metódami, sa pohybujú v rozpätí od 50 km/s na milión parsekov až po 100 km/s na milión parsekov. Presnejšiu hodnotu napomáha určiť vesmírny ďalekohľad Hubble meraním vzdialenosti premenných hviezd od nás. Hodnoty získané v ostatnom desaťročí sa pohybujú medzi 70 km/s na Mpc a 75 km/s na Mpc, pričom najmodernejšie údaje dosiahli neistotu len 3 %. Cieľom vedcov je namerať Hubblovu konštantu s presnosťou 1 %. 9

11 Štartovací balíček Stránka 2 Kozmické vlny Ak sa galaxie od seba pohybujú veľkou rýchlosťou, znamená to, že vesmír sa rýchlo rozpína. Podobne to bolo aj v minulosti. To znamená, že ak sa vrátime v čase dostatočne ďaleko, musel existovať stav, kedy bol celý dnes pozorovateľný vesmír sústredený do jediného bodu. Potom nastalo niečo ako veľká explózia Veľký tresk (Big Bang). Pri tomto obrovskom výbuchu sa uvoľnilo veľké množstvo energie a hmoty. V priebehu miliárd rokov po Veľkom tresku bola energia viac a viac rozptýlená, ale ostali isté stopy, ktoré svedčia o Veľkom tresku aj dnes. V roku 1965 objavili americkí vedci slabé stopy mikrovlnného žiarenia prichádzajúceho zo všetkých strán vesmíru. Nazvali ho reliktné kozmické žiarenie. Toto žiarenie zodpovedá žiareniu absolútne čierneho telesa s teplotou približne 2,7 kelvinov. Bolo vypočítané, že takéto žiarenie je nutným pozostatkom horúcejšej fázy vesmíru, ktorú predpokladá teória Veľkého tresku, a tak sa tento jav stal jej ďalším potvrdením. Astronómovia si tiež uvedomovali, že v hmote sústredenej do horúcich bodov museli vznikať malé fluktuácie hustoty pri formovaní galaxií. V roku 1992 zachytil satelit COBE (Cosmic Background Explorer) jemné rozdiely v teplote kozmického žiarenia prichádzajúceho z rôznych smerov. Toto svedčilo v prospech existencie horúcich bodov ako budúcich zárodkov galaxií vo vesmíre a teória Veľkého tresku vyzerala byť opäť o niečo pravdepodobnejšia. Hoci väčšina kozmológov verí, že teória Veľkého tresku je správna, nie sú o tom presvedčení všetci. Dokonca aj tí, ktorí s teóriou súhlasia, pripúšťajú, že stále existujú nezodpovedané otázky. Na tieto otázky hľadajú odpovede mnohí vedci a je možné, že ich ďalší výskum v budúcnosti zodpovie. Na druhej strane však s rozširovaním poznania môžu vzniknúť ďalšie problémy a nové nezodpovedané otázky. 10

12 Štartovací balíček Stránka 3 Na začiatku Po tom, ako vedci zistili, že vesmír začal Veľkým treskom, mohli začať pracovať na komplexnej teórii, ktorá by vysvetľovala, čo sa stalo a kedy. Použili pritom Einsteinovu všeobecnú teóriu relativity. Teória je príliš komplikovaná a vysvetliť, čo sa udialo v okamihu začiatku, je veľmi ťažké. Vedci doteraz nemajú odpovede na všetky otázky. Rozpracovali teóriu, čo sa mohlo udiať v čase sekundy po začiatku! Vesmír bol vtedy neuveriteľne horúci (okolo K) a skoncentrovaný tak, že dnes pozorovateľná časť vesmíru nebola väčšia ako veľkosť atómového jadra vodíka. Od tohto momentu do času sekundy sa takáto časť vesmíru roztiahla a dosiahla priemer 10 cm. Teplota klesla na K. Vznikli častice, ktoré voláme kvarky a leptóny, začala sa prejavovať gravitácia. V čase približne 10 mikrosekúnd sa kvarky začali spájať a vytvárať protóny a neutróny. Teplota dosiahla hodnotu K. Keď mal vesmír 3 minúty, veľkosť pozorovanej časti sa už dala uvádzať vo svetelných rokoch a jeho teplota opäť klesla na približne 10 9 K (1 miliarda kelvinov). V tomto momente sa začali spájať protóny a neutróny a začali sa formovať prvé jadrá hélia. Vesmír starý rokov bol už dostatočne studený (okolo K), aby v ňom mohli atómové jadrá k sebe viazať elektróny, a tak začať tvoriť atómy. V tomto momente s nabitými časticami prestalo interagovať elektromagnetické žiarenie, ktoré dnes pozorujeme ako reliktové žiarenie. Vesmír bol teraz plný plynu tvoreného prevažne vodíkom a héliom. Ako sa vesmír ďalej rozpínal, neustále chladol. Oblaky plynu sa postupne rozchádzali a niektoré zhluky sa začali pod vplyvom gravitácie zväčšovať. Vznikli tu miesta, kde sa vytvorili hviezdy. Tieto hviezdy sa postupne zoskupili do galaxií. Vesmír pokračuje stále ďalej vo svojej expanzii a ochladzovaní a robí tak už približne 14 miliárd rokov. 11

13 Štartovací balíček Stránka 4 Hľadanie dôkazov vo vnútri atómu Vytvárať teórie na vysvetlenie rôznych javov a vlastností hmoty je pri napredovaní v poznávaní len jednou časťou. Každá vedecká teória vyžaduje experimentálne dôkazy. V prípade teórie Veľkého tresku je potrebný nielen astronomický výskum, ale aj výskum v oblasti časticovej fyziky. Ak kvarky a leptóny existujú, potom by sme mali byť schopní ich aj nájsť. K tomu potrebujeme veľkú energiu. Kvôli tomu sme postavili veľké zariadenia, tzv. urýchľovače častíc. Jedným z nich je urýchľovač v CERN-e v Ženeve. Zrážajú sa v ňom častice protóny a vedci skúmajú, čo sa pritom deje. Urýchľovače sú drahé zariadenia, preto sa na ich financovaní podieľa viacero krajín. Na experimentoch tiež spolupracujú medzinárodné kolektívy. V niekoľkých veľkých aj menších experimentoch v CERN-e má zastúpenie aj Slovensko. Časticoví fyzici objavili niekoľko druhov kvarkov a hľadajú ďalšie zaujímavé exotické častice. Niektoré častice sú stále neobjavené a vystupujú zatiaľ v niektorých oblastiach modernej fyziky len v teoretickej rovine. Môžu mať veľmi nezvyčajné vlastnosti. Ako príklad uvádzame časticu neutralino časticu, ktorá je súčasťou teórie predpokladajúcej takzvanú supersymetriu. Supersymetrické teórie predpokladajú existenciu veľmi ťažkých verzií častíc odlišných od teraz známych častíc (takéto častice by mohli byť aj dobrými kandidátmi na reprezentantov tmavej hmoty). Exotické častice sú často uvádzané v sci-fi žánroch, kde sa ich vlastnosti niekedy zakladajú na reálnych poznatkoch súčasnej vedy, inokedy sú zase úplne vymyslené. 12

14 Štartovací balíček Stránka 5 Neviditeľná astronómia Až do 20. storočia astronómovia poznávali vesmír pozorovaním svetla zo vzdialených hviezd a galaxií. Dnes dokážu rôzne zariadenia detegovať vlny z celého elektromagnetického spektra, a tým umožňujú skúmanie aj tých objektov, ktoré nie sú pre nás inak viditeľné. Rádioteleskopy boli, napríklad, použité pri objave kvazarov a pulzarov. Infračervené detektory nám dovoľujú nazerať dovnútra molekulových oblakov plynu a umožňujú nám pochopiť, ako vznikajú hviezdy. Ultrafialové a röntgenové lúče sú vyžarované veľmi horúcimi telesami, akými sú aj kvazary a pulzary. Ultrafialové a röntgenové teleskopy musia byť umiestnené na družiciach, pretože naša atmosféra pohlcuje tieto druhy žiarenia, a tak by sa nedostali k teleskopom umiestneným na povrchu Zeme. Ultrafialové žiarenie sa absorbuje studeným medzihviezdnym plynom, a preto môže byť použité k štúdiu tejto hmoty. Röntgenové lúče sú vyžarované pri pohlcovaní hmoty čiernou dierou. Gama žiarenie vzniká zo silných energetických zdrojov, ako sú napríklad supernovy, pulzary, kvazary. Existujú ďalšie silné zdroje, akými sú záblesky gama žiarenia (GBR), ktoré sa záhadne objavujú a miznú v priebehu niekoľkých sekúnd. Nikto nevie, čo vyvoláva tieto záblesky energie. 13

15 Štartovací balíček Stránka 6 Tmavá hmota Odhaduje sa, že vo vesmíre existuje približne 300 miliárd galaxií. Ak vynásobíte toto číslo priemernou hmotnosťou jednej galaxie, vyjde vám celková hmotnosť všetkej pozorovanej hmoty. Toto číslo však predstavuje len menej ako 1 % z hmotnosti, ktorú by mala mať všetka hmota podľa meraní rozpínania vesmíru. Preto musí existovať veľké množstvo hmoty, ktorú nevidíme, čo je jeden z dôvodov, prečo dostala pomenovanie tmavá hmota. Časť chýbajúcej hmotnosti môže byť vysvetlená existenciou čiernych dier a hnedých trpaslíkov. Určitá hmota je rozptýlená medzi galaxiami, aj keď väčšia časť je v samotnom vnútri galaxií. Astronómovia vypočítali, že ramená špirálových galaxií by sa odtrhli, ak by obsahovali iba hmotu, ktorú vidíme. To znamená, že viditeľná hmota musí byť obklopená hmotou, ktorú nevidíme. Ďalšia hmota je obsiahnutá v exotických časticiach, akými sú neutríno a slabo interagujúce hmotné častice, tzv. WIMP. Najnovšie zistenia naznačujú aj existenciu tmavej energie. V roku 1998 si vedci všimli, že náš vesmír sa nielen rozpína, ale že toto rozpínanie sa ešte aj zrýchľuje a pravdepodobným páchateľom môže byť tmavá energia. V roku 2011 práve za tento objav dostali fyzici Nobelovu cenu. Kým pri tmavej hmote majú vedci aspoň predstavu, čo by mohlo byť jej podstatou, pri tmavej energii, ktorá tvorí zhruba dve tretiny celého vesmíru, to ani netušia. Vedia len o nezvyčajnom vzďaľovaní sa supernov a rozpínajúcom sa kozme. Je dôležité zistiť celkovú hmotnosť vesmíru, pretože od toho závisí jeho ďalšia budúcnosť: bude platiť teória kontinuálnej expanzie, alebo teória pevného stavu, alebo teória Veľkého kolapsu? Toto je jedna z najdôležitejších otázok vedy, ktorá ostáva stále nezodpovedaná. 14

16 Measuring the HUBBLE CONSTANT Mario Livio and Adam G. Riess The Hubble Space Telescope orbiting Earth in (Courtesy of the Space Telescope Science Institute and NASA.) Perhaps the fundamental parameter of cosmology, the ratio of an object s recessional speed to its distance from us encodes information about the universe s age, composition, and structure. In 2011 a passionate debate flared up about who deserves the credit for the discovery that our universe is expanding. Here are some of the background facts. By February 1922, US astronomer Vesto Slipher had already measured the redshifts for 41 galaxies. British astrophysicist Arthur Eddington, who listed them in his 1923 book The Mathematical Theory of Relativity (Cambridge University Press), noted that the great preponderance of positive (receding) velocities is very striking. He did add, however, that the lack of observations from the Southern Hemisphere precluded any definitive conclusions. In 1924 Swedish astronomer Knut Lundmark provided tentative, qualitative evidence for the expansion. However, his results did not carry much weight, since he relied on the implausible assumption that all galaxies have the same diameter and his correlation between velocity and distance was not readily apparent. A stronger case for an expanding universe came from Belgian priest and cosmologist Georges Lemaître who, in 1927, published a paper in French entitled A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extragalactic nebulae. In that paper, Lemaître reported on the expanding-universe solutions to Einstein s general relativity equations. He also used Slipher s results in combination with distance estimates, now based on the rather inaccurate assumption that all galaxies have the same luminosity, to propose a tentative Hubble law v = H 0 d, that is, a linear relationship between distance d and recession velocity v. Lemaître derived the value of 625 kilometers per second per megaparsec for the Hubble constant H 0. (The expansion rate actually changes with time as 1/t; the constant H 0 is its present value.) Unfortunately, Lemaître s paper received little attention. Two years later Edwin Hubble, shown in figure 1, published his seminal paper with improved distance determinations based on the brightnesses of certain classes of stars. His resulting linear relation between recession velocity again, obtained from Slipher s redshift data and distance was more significant and convincing. It became the widely cited origin of the discovery of the expanding universe. The value Hubble obtained for the Hubble constant was 500 km s 1 Mpc 1. A key driver for the recent debate over who discovered the Hubble law was that in the English translation of Lemaître s paper, which appeared in 1931, certain paragraphs were omitted. Suspicion arose that the omission reflected some form of censorship, possibly encouraged by Hubble. After extensive research, one of us (Livio) discovered conclusive evidence that, following the publication of Hubble s more precise results, Lemaître, out of modesty, deleted those paragraphs from the translation because he thought they were superseded by Hubble s work. 1 In brief, Lundmark was the first to offer observational evidence for the expansion, Lemaître made the tentative connection between theory and observations, Hubble and his assistant Mario Livio is an astrophysicist at the Space Telescope Science Institute in Baltimore, Maryland. Adam Riess is an astrophysicist at the STScI and a professor of astronomy and physics at the Johns Hopkins University in Baltimore. [[[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: October 2013 Physics Today Downloaded 41 to ]]] IP: On: Tue, 05 Nov :10:30

17 Hubble constant Figure 1. Edwin Hubble with an image of a galaxy. Hubble presented convincing evidence that galaxies recede with a speed proportional to their distance from us. (Hale Observatories, courtesy of the AIP Emilio Segrè Visual Archives.) Milton Humason provided the best observational proof in a series of papers, and all were aided by Slipher s redshifts. Early measurements Ever since the 1920s, physicists have known that we live in an expanding universe. In the framework of general relativity and given the cosmological principle that the universe is the same at all locations and in all directions on large scales, the expansion is measured by a single function of time, the scale factor R(t). The evolution of the scale factor is governed by what is known as the Friedmann equation, which describes how the curvature of space is determined by the density of matter and radiation and the density of the so-called dark energy, the physical manifestation of Einstein s cosmological constant. The most recent observations of the cosmic micro - wave background, by the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck space observatory, indicate that matter and dark energy combine so as to produce nearly, if not exactly, zero spatial curvature. The Hubble constant is a direct measure of the current expansion rate and is the key parameter in determining the age of the universe, t 0, through t 0 H 0 1. (Matter and dark energy play a smaller role, causing the cosmic expansion to decelerate or accelerate, respectively.) Physical processes such as the growth of cosmic structure and the nucleo synthesis of the light isotopes hydrogen, deuterium, helium- 3, helium-4, and lithium-7 depend on the cosmic expansion rate and thereby on the value of H 0. So do critical periods in the universe s history, such as the transition from a radiation-dominated epoch in which the energy density scales as R 4 (t) to the matter- dominated universe in which density is proportional to R 3 (t). It should therefore come as no surprise that the determination of H 0 has been a major observational goal for the past nine decades. Figure 2a summarizes the early history of H 0 measurements. The first values were all roughly 500 km s 1 Mpc 1, with an uncertainty estimated rather naively to be of the order of 10 percent. 2 Some 20 years after Hubble s measurements, astronomer Walter Baade revised the distance to nearby galaxies. Baade recognized that Hubble had confused two generations of pulsating stars used as distance standards; his revised estimates increased distances and reduced H 0 by about a factor of two. Measurements of H 0 first approached the range of values accepted today (see figure 2b for modern measurements) through the work of Allan Sandage in the late 1950s. Sandage demonstrated that Hubble had mistakenly identified ionized-hydrogen (H II) regions as bright stars and revised the value down to H 0 75 km s 1 Mpc 1, recognizing that the uncertainty was comparable to the value itself. In the three decades that followed, published values of the Hubble constant ranged over a factor of two. One group, led by Sandage, consistently claimed values near 50 km s 1 Mpc 1 ± 10%; another, led by Gérard de Vaucouleurs, persistently measured 100 km s 1 Mpc 1 ± 10%. Those determinations were embarrassing for two reasons. One, obviously, was the smallness of the cited errors, which couldn t both be correct. The other was that if one took the average of the two values, the deduced age of the universe was shorter than the calculated ages of the oldest star clusters! The eventual resolution of the age discrepancy required two inputs: accurate astrometric distance determinations by the Hipparcos satellite, which somewhat reduced the calculated stellar ages, and the discovery that the cosmic expansion is accelerating, which implied an older age for the universe. To determine redshifts, and therefore radial velocities, astrophysicists need to look far enough away that cosmic expansion rather than local motions predominantly determine the redshift. Given that, and notwithstanding the challenges posed by the most distant or faintest objects, redshifts can be obtained relatively readily; the problem of meas - uring the Hubble constant has always primarily been one of determining accurate astronomical distances. The availability of new observing facilities the Hubble Space Telescope in particular has allowed for a dramatic improvement in distance determinations. Cepheids, a primary distance indicator The simplest and most robust measure of distance comes from geometry via triangulation, with the diameter of Earth s orbit around the Sun serving as a baseline. Unfortunately, the parallax essential for triangulation can only be detected for stars within the Milky Way at distances of up to about 1 kilo - parsec; for even the nearest galaxies, the angular shift would be less than a microarcsecond. Consequently, astrophysicists must use other methods to determine extragalactic distances of tens to hundreds of megaparsecs. [[[This article 42 is October copyrighted 2013 as indicated Physics in Today the abstract. Reuse of AIP content is subject to the terms at: to ]]] IP: On: Tue, 05 Nov :10:30

18 H 0 (km s Mpc ) a Lemaître Hubble Hubble and Humason Hubble Mineur H 0 (km s Mpc ) YEAR Baade and Thackeray Behr McVittie Humason, Mayall, and Sandage Holmberg Sérsic van den Bergh Sandage de Vaucouleurs b Figure 2. Hubble constant measurements. (a) The earliest measurements of H 0 were about an order of magnitude greater than measurements made 50 years later. (Adapted from ref. 10.) (b) More modern measurements have tended to cluster around a range of km s 1 Mpc 1, particularly since 2005 (red band). The most recent and precise measurement 7 has an uncertainty of 3%; with improved instrumentation and data handling, astronomers hope to soon achieve a precision of 1% Ambartsumyan Sandage and Tammann YEAR The distances so obtained are relative measures, calibrated from nearby examples within range of parallax analysis, and the objects to which the methods are applied are called primary distance indicators. Secondary distance indicators are objects or systems that are far away from us. Their intrinsic rarity places the nearest examples beyond the range of parallax, and so their distances are calibrated from primary indicators. The sequence continues, forming a distance ladder that reaches areas of the universe where the smooth expansion of the cosmos the Hubble flow dominates over local, peculiar motions. Errors in measurement or systematics necessarily propagate along the ladder to the determination of H 0. The most common relative distance indicators employ so-called standard candles that are based on geometrical properties, physical properties, or various correlations. Underlying the notion of standard candles is that the flux of radiation decreases as an inverse square law. Useful standard-candle candidates either have a constant luminosity or are objects whose luminosity can be related to a measurable property that is independent of distance, such as an oscillation period or the decay rate of a transient light curve. They are highly luminous and so can be seen far away. Perhaps the best-known standard candles are pulsing, supergiant stars called Cepheid variables. They are named after the prototype of this class, Delta Cephei, which has a 5.4-day period and, at a distance of 270 parsecs, a parallax angle of 3.7 milliarcseconds. The relative proximity to the Sun of some Cepheids in the Milky Way, their high luminosity ( times the Sun s), and wellunderstood stellar physics make them one of the most reliable of the primary distance indicators. In 1912 Henrietta Leavitt, shown in figure 3, realized that the relation between the Cepheids period and luminosity could allow those giant stars to serve as standard candles. Hubble used the Cepheids to determine distances to Local Group galaxies, the group of about three dozen nearby galaxies to which the Milky Way belongs. The physical process responsible for a Cepheid s pulsations and the period luminosity relation begins with a perturbation a contraction that drives the star away from hydrostatic equilibrium. As a result, the temperature and density of the gas increase. Near the star s ionization zones in which the primary reaction is He + He ++ as helium becomes doubly ionized, the opacity of the gas increases. Consequently, the gas traps radiation, warms up even more, and further expands. In the ionization zones, the pressure does not decrease as quickly with decreasing density as it would for an ideal gas, so the expansion goes beyond the point where hydrostatic equilibrium would have been achieved for an ideal gas. The excess heating stops only when helium recombination back into He + reduces the gas opacity and heat is radiated into space. As heat leaves the system, the pressure decreases, the gas contracts, and the cycle starts anew. The pulsation cycle operates only for a small temperature range, and only in a narrow range of stellar masses does the ionization zone occur at a middling depth where ionization and recombination can effectively drive oscillations. It turns out that the pulsation period is inversely proportional to the square root of the Cepheid s density and therefore depends on the stellar mass and radius. The luminosity is determined by some [[[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: October 2013 Physics Today Downloaded 43 to ]]] IP: On: Tue, 05 Nov :10:30

19 Hubble constant Figure 3. Henrietta Leavitt, seated at her desk. Leavitt recognized that the relationship between the period and the luminosity of supergiant stars called Cepheid variables implied that the Cepheids would be good distance standards. (Courtesy of the AIP Emilio Segrè Visual Archives, PHYSICS TODAY Collection.) power of the mass, but it is also a simple function of temperature and radius. Given the three specific formulas, one expects (and astronomers have observed) a temperature-dependent period luminosity relation. Thanks to the high optical resolution and stability of the Hubble Space Telescope and the capabilities of the Wide Field Planetary Camera 2 (WFPC2) instrument installed at the first Hubble servicing mission, observers could resolve individual Cepheids in galaxies as far away as 20 Mpc. One of Hubble s initial key projects, led by Wendy Freedman, Jeremy Mould, and Robert Kennicutt, and another investigation led by Sandage, Gustav Tammann, and Abi Saha, took advantage of that then-new capability to measure the Hubble constant with about 10% precision. The key project, which operated from 1994 to 2001, and several contemporaneous programs also used Cepheids to calibrate tools for analyzing many of the secondary distance indicators mentioned later. Below we briefly describe the physical basis for long-range distance methods that are presently being used to refine determinations of the Hubble constant. Of the three techniques most commonly employed, one analysis of supernova light curves rests on calibration via Cepheids. But approaches based on so-called megamasers and gravitational lensing are at least partially geometric and thus serve to indicate distances independently of Cepheid data. Extending the ladder Type Ia supernovae result from the thermonuclear disruptions of mass-accreting white dwarfs made up of carbon and oxygen. At peak brightness, they are extremely bright a million times brighter than the Cepheids and, as a class, they show relatively little variation in that peak luminosity. Furthermore, there exists a tight correlation between the peak luminosity of a type Ia supernova and the shape of its brightness-versus-time light curve. As figure 4 shows, the light curve declines more slowly for brighter supernovae. (See also the article by Saul Perlmutter, PHYSICS TODAY, April 2003, page 53.) Physicists currently lack a full theoretical understanding of the observed correlations, but the relative homogeneity likely arises because the white dwarfs that blow up as supernovae are at or near the Chandrasekhar limit, the mass above which gravity overcomes electron degeneracy pressure and runaway nuclear fusion ensues. The relation between peak luminosity and light-curve shape may be the result of the following scenario. The peak luminosity of a type Ia supernova is proportional to the mass of nickel-56 that it produces, since the decay of 56 Ni is what powers the luminosity. A higher mass of 56 Ni, however, also results in more heating and a higher opacity; consequently, the light curve declines more slowly. On its way to us, light from supernovae passes through dust, which reduces its intensity and shifts its color to the red. Once the light-curve and dust-induced variations are accounted for, type Ia supernovae have a statistical dispersion of about 15% in their optical luminosity and about 10% in the near-ir. The low dispersion and high luminosity of type Ia supernovae have made them the most widely sought long-range standard candle. They can be used to measure distances over a range of Mpc, but they are rare; about one supernova goes off each decade within a distance of about 20 Mpc from us. Thus there are only a few good examples near enough that their host galaxies also include visible Cepheids, and some of those supernovae date to the era of less accurate photographic observations. The megamaser method, 3 first applied to the galaxy NGC 4258 (shown in figure 5), some 8 Mpc away, has proved to be an effective approach for making direct distance measurements beyond the Local Group. The technique involves submilliarcsecond-resolution imaging and monitoring of water-vapor maser emission from circum nuclear disks surrounding the black hole in active galaxies such as NGC Basically, if a masing blob that is acted on mainly by the gravitational pull of the central black hole moves in the disk with a velocity v and centripetal acceleration a, then the distance to the disk can be determined through v 2 D= sin i, aδθ where ΔΘ is the apparent angular radius of the orbit and i is the orbit s inclination, with i = 90 denoting that the orbit is seen edge on. The inclination can be determined via the angular offset of systemic masers from the central black hole. (Systemic masers have velocities close to the recession velocity of the galaxy.) The other parameters on the right-hand side of the equation can be determined with very long baseline interferometry observations of blueshifted and redshifted blobs coupled with monitoring of maser spectra over a long period of time. Thus the distance can be accurately determined. Unfortunately, astronomers have not found any other megamaser system that [[[This article 44 is October copyrighted 2013 as indicated Physics in Today the abstract. Reuse of AIP content is subject to the terms at: to ]]] IP: On: Tue, 05 Nov :10:30

20 20 a 20 b ABSOLUTE MAGNITUDE SCALED MAGNITUDE DAYS SCALED DAYS Figure 4. Type Ia supernova light curves. (a) As shown in these plots of magnitude (a logarithmic measure of luminosity; more negative values are brighter) versus time, luminosity decays more slowly for the brightest supernovae than it does for the fainter ones. (b) With a suitable rescaling of time and brightness, the supernovae plotted in panel a lie on a single curve. Because of that universality, type Ia supernovae can serve as standards for determining distance. (Courtesy of the Supernova Cosmology Project.) can be observed with a precision comparable to that for NGC 4258; indeed, the potential precision of the next-best observed candidates less than a dozen is several times worse. Rarity of megamaser systems may thus limit the ultimate precision achievable by the method. When a galaxy lies along the line of sight to a more distant source galaxy, strong gravitational lensing can produce multiple images of the source. If the source happens to be variable, the time delays between the different images can be accurately measured through careful monitoring of light curves. When combined with a model for the mass distribution in the gravitational lens, which determines the gradient of the gravitational potential, the time delays can be used to convert angular separations into absolute distance. As with megamasers, rarity of suitable systems may ultimately be a significant limitation of the lensing method. A miscellany of methods Other distance indicators have contributed less in recent times to the accurate measurement of the Hubble constant due to their larger systematic errors or complexity. Those include the Tully Fisher relation between the luminosity and maximum rotational velocity for a spiral galaxy; the fundamental plane, a correlation among the effective radius, effective surface brightness, and central velocity dispersion in elliptical galaxies; the tip of the red-giant branch, a method based on the luminosity of the brightest red giants in a galaxy; and methods relying on core- collapse supernovae, globular clusters, or planetary nebulae. Two rather interesting methods have, unfortunately, failed thus far to produce very accurate results. One is based on the Sunyaev Zeldovich effect. The phenomenon involves the hot (kt 10 kev) gas trapped in the potential wells of galaxy clusters. Photons from the cosmic microwave background that pass through a cluster have a small probability of interacting with energetic electrons in the intracluster gas. The inverse Compton scattering that ensues boosts the energy of the microwave background photon and, in turn, generates a small distortion in the spectrum of the microwave background at frequencies near 218 GHz slightly more photons at higher frequencies and slightly fewer at lower frequencies than would otherwise be expected. The magnitude of the effect is proportional to the integral of the pressure along the line of sight, n e T e dl, where n e and T e are the electron number density and temperature, respectively. Since the x-ray emission from the intracluster medium is proportional to a different power of the density, a combination of the two measurements can, given some assumptions about the cluster geometry, determine the distance to the cluster without the need to calibrate against other standard candles. At present, systematic uncertainties associated with the method are 15 30%. The second physical method is that of surface brightness fluctuations. That method, developed primarily by astronomer John Tonry and collaborators, exploits the obvious fact that the ability to resolve stars within galaxies is distance dependent. 4 More specifically, for every region of a galaxy one can measure the average flux per pixel, g, and the pixel-to-pixel root-mean-square variation, σ. Since the flux obtained in a pixel is received from N stars of average flux f, g = Nf and σ = N f. A galaxy that is twice as distant thus appears twice as smooth as the closer galaxy, because N is proportional to distance squared. Although elegant, the method is rather difficult to employ because it requires the excision of globular clusters and background galaxies, which produce large fluctuations, and of areas of dust absorption, which smooth fluctuations. The Hubble constant and dark energy The new standard model of cosmology, largely established in the past 15 years, is dominated by two poorly understood components, dark matter and dark energy. Dark energy, the cause attributed to the [[[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: October 2013 Physics Today Downloaded 45 to ]]] IP: On: Tue, 05 Nov :10:30

21 Hubble constant accelerating expansion of the universe, is the larger enigma. It may represent the energy of the vacuum, but in that case its observed density is puzzlingly low. It may be associated with some scalar field, but the time dependence of that field remains an open question. The empirical approach to understanding dark energy is to measure its equation-of-state parameter, w = P/ρc 2, where P is the pressure, ρ is the density, and c is the speed of light. If the dark energy represents vacuum energy (or, equivalently, Einstein s cosmological constant), then w = 1. Alternatively, the cosmic acceleration could result from a decaying scalar field, a low- energy imitation of the field that drives inflation. If so, it may be possible to detect a time dependence of w or a scale dependence indicating a breakdown of general relativity. A wide range of ultraprecise cosmological measurements in the planning stages may address the nature of the dark energy. Measurements of the Hubble constant based on local objects with redshifts of up to about 0.1 should yield a precision approaching 1%. Combined with the precise cosmic microwave background observations from WMAP, the Atacama Cosmology Telescope, the South Pole Telescope, and the Planck satellite, those measurements can constrain w to about 2%. Local measurements of H 0 are complementary to other, higher-redshift probes. Indeed, we d be remiss if we did not note an apparent tension, at the 3σ level, between current measurements of H 0 based on local objects and its deduced value based on the standard cosmological model and new Planck results for the cosmic microwave background. That tension may be the harbinger of new physics, but past experience indicates that discrepancies below 3σ often disappear when more data are available. Toward more precise determinations To achieve the goal of 1% precision in local distance measurements requires refinements to mitigate the systematic errors that dominated prior uncertainties. Here we focus on progress with the distanceladder approach, though we expect progress on other fronts as well. Only the better distance indicators are likely to yield improved precision. Moreover, they will achieve that end only if, to the extent possible, all the individual exemplars are treated identically in constructing the distance ladder. The availability of multiple types of distance indicators may offer a way to crosscheck distance determinations, but only if the various indicators are independent and offer comparable precision. With a number of crucial refinements made Figure 5. The galaxy NGC 4258 contains many megamasers, radiating masses of gas whose speed and centripetal acceleration allow observers to determine the distance to the host galaxy. (Courtesy of the Space Telescope Science Institute, NASA, and the European Space Agency.) possible in recent years, the ladder connecting geometrical distances to Cepheids and type Ia supernovae has the potential to reach the desired goal of 1% precision. New instruments on Hubble in particular, the Advanced Camera for Surveys and the Wide Field Camera 3 (WFC3) have doubled the telescope s range and thus have afforded an eightfold increase in opportunities for calibrating supernovae via Cepheids. Greater accuracy comes from the replacement of older, problematic data with modern digital data. Past calibrations of type Ia supernovae via Cepheids made use of photographic plates obtained in 1937, 1960, and Those analog data could not readily benefit from modern digital techniques used, for example, to remove background light from the host galaxy and ensure that all observations are looking at the same portion of the spectral energy distribution. Other supernova data obtained within the Wide Field Planetary Camera 2 range suffered from a missed peak in the luminosity or heavy extinction due to dust, or they were atypical of type Ia supernovae. The SH0ES (Supernova H 0 for the Equation of State) team led by one of us (Riess) and Lucas Macri is halfway through calibrating 17 ideal type Ia supernovae with the help of the new Hubble instruments. After 10 years of radio observations of the water megamasers in orbit around NGC 4258 s super - massive black hole, Elizabeth Humphreys and colleagues have recently determined the distance to the galaxy 5 to be 7.60 Mpc, with an uncertainty of 3%. The improved distance estimate will serve to better calibrate Cepheids. New instruments on Hubble allowed Macri and colleagues to discover hundreds of Cepheids in NGC 4258 and to calibrate their luminosities. 6 The SH0ES team observed those Cepheids in the near-ir with the WFC3 to reduce past systematic uncertainties in the dependence of Cepheid luminosities on the star s chemical composition and on the variety of obscuring dust. [[[This article 46 is October copyrighted 2013 as indicated Physics in Today the abstract. Reuse of AIP content is subject to the terms at: to ]]] IP: On: Tue, 05 Nov :10:30

22 Another improvement came from observing Cepheids with a given range of periods both in galaxies hosting supernovae and in NGC 4258, the anchor of the SH0ES distance ladder. Armed with such observations, astrophysicists can reduce systematic uncertainties in the period luminosity relation. Observations of Cepheids in supernova host galaxies and NGC 4258 have now been taken with the same instrument, a move that removes uncertainties in flux calibration. Those improvements reduced the uncertainty in the Hubble constant to about 5% by 2009 and 3% two years later. 7 Yet just as the SH0ES distance ladder was completed, construction had begun on a potentially more powerful distance ladder. Trigonometric parallaxes to Cepheids in the Milky Way can, in principle, anchor a distance ladder to reach 1% precision. Using the fine guidance sensors on board Hubble, in 2007 the astrometry science team led by G. Fritz Benedict measured the parallaxes of the 10 nearest Cepheids 8 with a mean error of 3%. Their sample provides an anchor for the distance ladder that s different from the one used by the SH0ES team or the earlier key project. A ladder built on that alternate anchor gives similar results for the value of H 0, but at the cost of giving back the reductions in systematic errors realized by the SH0ES team. However, the new spatial-scanning capability of the WFC3 can provide even better parallax measurements and crucial flux measurements of bright Cepheids. A group led by Riess and Stefano Casertano has begun to use spatial scanning to measure parallaxes of the less common and previously uncalibrated longer-period Cepheids prevalent at distances of 1 3 kpc. By the end of this decade the European Space Agency s Gaia mission will also provide Cepheid parallaxes out to 10 kpc. Recent mid-ir calibrations of Cepheids as part of the Carnegie Hubble Program can further improve the reliability of the local span of the distance ladder. 9 If the measurements enabled by WFC3 are to serve as the anchor for a new, potent distance ladder, the improvements in techniques related to secondary distance indicators already achieved will also need to be retained and extended. Type Ia supernovae have less scatter in the near-ir than the optical, so near-ir measurements may put a 1% measurement of H 0 within reach. When the new ladder is completed during Hubble s third and likely final decade, it will be a powerful tool, sturdy enough to probe the mysteries that still remain in the standard cosmological model. References 1. M. Livio, Nature 479, 171 (2011). 2. E. Hubble, M. L. Humason, Astrophys. J. 74, 43 (1931). 3. J. Herrnstein et al., Nature 400, 539 (1999). 4. J. L. Tonry, Astrophys. J. 373, L1 (1991). 5. E. M. L. Humphreys et al., Astrophys. J. 775, 13 (2013). 6. L. M. Macri et al., Astrophys. J. 652, 1133 (2006). 7. A. G. Riess et al., Astrophys. J. 730, 119 (2011). 8. G. F. Benedict et al., Astron. J. 133, 1810 (2007). 9. A. J. Monson et al., Astrophys. J. 759, 146 (2012). 10. V. Trimble, UHV MULTI-CF FITTINGS Some of over 100 Available Fittings Customs Encouraged info@kimphys.com Tel [[[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: Downloaded to ]]] IP: On: Tue, 05 Nov :10:30

ASTR 200 : Lecture 27. Expansion and large scale structure

ASTR 200 : Lecture 27. Expansion and large scale structure ASTR 200 : Lecture 27 Expansion and large scale structure 1 A preference for recession In 1912, american astronomer Vesto Slipher began painstakingly acquiring spectra of `spiral nebulae' and was the first

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect Lecture 9 H 0 from the Hubble diagram Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae H 0 from other methods Gravitational lensing Sunyaev-Zeldovich effect H 0 from the Hubble

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2 Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2 Key Ideas Measuring the Distances to Galaxies and Determining the Scale of the Universe Distance Methods: Trigonometric Parallaxes Spectroscopic

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it.

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it. The Next 2-3 Weeks [27.1] The Extragalactic Distance Scale. [27.2] The Expansion of the Universe. [29.1] Newtonian Cosmology [29.2] The Cosmic Microwave Background [17] General Relativity & Black Holes

More information

The Cosmological Distance Ladder. It's not perfect, but it works!

The Cosmological Distance Ladder. It's not perfect, but it works! The Cosmological Distance Ladder It's not perfect, but it works! First, we must know how big the Earth is. Next, we must determine the scale of the solar system. Copernicus (1543) correctly determined

More information

Lecture 22: The expanding Universe. Astronomy 111 Wednesday November 15, 2017

Lecture 22: The expanding Universe. Astronomy 111 Wednesday November 15, 2017 Lecture 22: The expanding Universe Astronomy 111 Wednesday November 15, 2017 Reminders Online homework #10 due Monday at 3pm Then one week off from homeworks Homework #11 is the last one The nature of

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

Lecture 14: Other Galaxies A2020 Prof. Tom Megeath. The Milky Way in the Infrared 3/17/10. NGC 7331: the Milky Way s Twins. Spiral Galaxy bulge halo

Lecture 14: Other Galaxies A2020 Prof. Tom Megeath. The Milky Way in the Infrared 3/17/10. NGC 7331: the Milky Way s Twins. Spiral Galaxy bulge halo Lecture 14: Other Galaxies A2020 Prof. Tom Megeath Our Galaxy: Side View We see our galaxy edge-on Primary features: Disk: young and old stars where we live. Bulge: older stars Halo: oldest stars, globular

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

2019 Astronomy Team Selection Test

2019 Astronomy Team Selection Test 2019 Astronomy Team Selection Test Acton-Boxborough Regional High School Written by Antonio Frigo Do not flip over this page until instructed. Instructions You will have 45 minutes to complete this exam.

More information

The King's University College Astronomy 201 Mid-Term Exam Solutions

The King's University College Astronomy 201 Mid-Term Exam Solutions The King's University College Astronomy 201 Mid-Term Exam Solutions Instructions: The exam consists of two sections. Part A is 20 multiple choice questions - please record answers on the sheet provided.

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe!

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe! The Cosmic Distance Ladder Hubble s Law and the Expansion of the Universe! Last time: looked at Cepheid Variable stars as standard candles. Massive, off-main sequence stars: at a certain stage between

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

Cosmology at a Crossroads: Tension With the Hubble Constant

Cosmology at a Crossroads: Tension With the Hubble Constant Cosmology at a Crossroads: Tension With the Hubble Constant Wendy L. Freedman We are at an interesting juncture in cosmology. With new methods and technology, the accuracy in measurement of the Hubble

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

Set 5: Expansion of the Universe

Set 5: Expansion of the Universe Set 5: Expansion of the Universe Cosmology Study of the origin, contents and evolution of the universe as a whole Expansion rate and history Space-time geometry Energy density composition Origin of structure

More information

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra The Big Bang Theory Rachel Fludd and Matthijs Hoekstra Theories from Before the Big Bang came from a black hole from another universe? our universe is part of a multiverse? just random particles? The Big

More information

Hubble s Law and the Cosmic Distance Scale

Hubble s Law and the Cosmic Distance Scale Lab 7 Hubble s Law and the Cosmic Distance Scale 7.1 Overview Exercise seven is our first extragalactic exercise, highlighting the immense scale of the Universe. It addresses the challenge of determining

More information

The History and Philosophy of Astronomy

The History and Philosophy of Astronomy Astronomy 350L (Fall 2006) The History and Philosophy of Astronomy (Lecture 22: Hubble II) Instructor: Volker Bromm TA: Jarrett Johnson The University of Texas at Austin Edwin P. Hubble: Mariner of the

More information

The phenomenon of gravitational lenses

The phenomenon of gravitational lenses The phenomenon of gravitational lenses The phenomenon of gravitational lenses If we look carefully at the image taken with the Hubble Space Telescope, of the Galaxy Cluster Abell 2218 in the constellation

More information

Part 3: The Dark Energy

Part 3: The Dark Energy Part 3: The Dark Energy What is the fate of the Universe? What is the fate of the Universe? Copyright 2004 Pearson Education, published as Addison Weasley. 1 Fate of the Universe can be determined from

More information

There are three basic types of galaxies:

There are three basic types of galaxies: Galaxies There are three basic types of galaxies: Spirals Ellipticals Irregulars To make a long story short, elliptical galaxies are galaxies that have used up all their gas forming stars, or they have

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes. Distances to galaxies Cepheids used by Hubble, 1924 to show that spiral nebulae like M31 were further from the Sun than any part of the Milky Way, therefore galaxies in their own right. Review of Cepheids

More information

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works Chapter 34: Cosmology According to the currents models of stellar life cycle, our sun will eventually become a a) Cloud of hydrogen gas b) Protostar c) Neutron star d) Black hole e) White dwarf id you

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

Ned Wright's Cosmology Tutorial

Ned Wright's Cosmology Tutorial Sunday, September 5, 1999 Ned Wright's Cosmology Tutorial - Part 1 Page: 1 Ned Wright's Cosmology Tutorial Part 1: Observations of Global Properties Part 2: Homogeneity and Isotropy; Many Distances; Scale

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

Galaxies Guiding Questions

Galaxies Guiding Questions Galaxies Guiding Questions How did astronomers first discover other galaxies? How did astronomers first determine the distances to galaxies? Do all galaxies have spiral arms, like the Milky Way? How do

More information

Dead & Variable Stars

Dead & Variable Stars Dead & Variable Stars Supernovae Death of massive Stars As the core collapses, it overshoots and bounces A shock wave travels through the star and blows off the outer layers, including the heavy elements

More information

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious.

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious. UNIT 3 The Study of the Universe Chapter 7: The Night Sky Chapter 8: Exploring Our Stellar Neighbourhood Chapter 9:The Mysterious Universe CHAPTER 9 The Mysterious Universe In this chapter, you will: identify

More information

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193 ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193 Examination date: 4 March 2017 Time limit: 50 min Time of

More information

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period

More information

BROCK UNIVERSITY. Test 2: July 2015 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 318

BROCK UNIVERSITY. Test 2: July 2015 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 318 BROCK UNIVERSITY Page 1 of 9 Test 2: July 2015 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 318 Examination date: 4 July 2015 Time limit: 50 min Time of Examination: 13:00 13:50

More information

ASTR 1040: Stars & Galaxies

ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Our wide world (universe) of Galaxies Expanding universe: Hubble s discovery #2 Challenge of measuring s in universe review methods used Subtle concept of Lookback time Active

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

Revision Guide for Chapter 12

Revision Guide for Chapter 12 Revision Guide for Chapter 12 Contents Student s Checklist Revision Notes The speed of light... 4 Doppler effect... 4 Expansion of the Universe... 5 Microwave background radiation... 5 Galaxy... 6 Summary

More information

V. M. Slipher ( ) was an astronomer who worked at Lowell Observatory in Flagstaff, Arizona. In 1909 he began studying the spectrum of the

V. M. Slipher ( ) was an astronomer who worked at Lowell Observatory in Flagstaff, Arizona. In 1909 he began studying the spectrum of the Hubble s Law V. M. Slipher (1875-1969) was an astronomer who worked at Lowell Observatory in Flagstaff, Arizona. In 1909 he began studying the spectrum of the Andromeda Nebula. He found that that object

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

ASTR Final Examination Phil Armitage, Bruce Ferguson

ASTR Final Examination Phil Armitage, Bruce Ferguson ASTR 1120-001 Final Examination Phil Armitage, Bruce Ferguson FINAL EXAM MAY 6 th 2006: Closed books and notes, 1.5 hours. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Figure 19.19: HST photo called Hubble Deep Field.

Figure 19.19: HST photo called Hubble Deep Field. 19.3 Galaxies and the Universe Early civilizations thought that Earth was the center of the universe. In the sixteenth century, we became aware that Earth is a small planet orbiting a medium-sized star.

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

The Observable Universe: Redshift, Distances and the Hubble-Law. Max Camenzind Sept 2010

The Observable Universe: Redshift, Distances and the Hubble-Law. Max Camenzind Sept 2010 The Observable Universe: Redshift, Distances and the Hubble-Law Max Camenzind Bremen @ Sept 2010 Key Facts Universe 1. The Universe is expanding and presently even accelerating. Hubble Expansion: Space

More information

AS1001: Galaxies and Cosmology

AS1001: Galaxies and Cosmology AS1001: Galaxies and Cosmology Keith Horne kdh1@st-and.ac.uk http://www-star.st-and.ac.uk/~kdh1/eg/eg.html Text: Kutner Astronomy:A Physical Perspective Chapters 17-21 Cosmology Today Blah Title Current

More information

Hubble Ultra Deep Space View PHYS 162 2

Hubble Ultra Deep Space View PHYS 162 2 Galaxies stars come in large groups (20-200 billion stars) called Galaxies >2 trillion observable galaxies. Come in Shapes and Sizes depending on how they were formed Elliptical (football shape) Spirals

More information

Addition to the Lecture on Galactic Evolution

Addition to the Lecture on Galactic Evolution Addition to the Lecture on Galactic Evolution Rapid Encounters In case the encounter of two galaxies is quite fast, there will be not much dynamical friction due to lack of the density enhancement The

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Short introduction to the accelerating Universe

Short introduction to the accelerating Universe SEMINAR Short introduction to the accelerating Universe Gašper Kukec Mezek Our expanding Universe Albert Einstein general relativity (1917): Our expanding Universe Curvature = Energy Our expanding Universe

More information

Complete Cosmos Chapter 23: Infinity Outline Sub-chapters

Complete Cosmos Chapter 23: Infinity Outline Sub-chapters Complete Cosmos Chapter 23: Infinity The structure of the Universe - galaxies, clusters, strands. How we measure to a nearby galaxy and to the farthest quasar. Outline In the Australian night sky, the

More information

There are three main ways to derive q 0 :

There are three main ways to derive q 0 : Measuring q 0 Measuring the deceleration parameter, q 0, is much more difficult than measuring H 0. In order to measure the Hubble Constant, one needs to derive distances to objects at 100 Mpc; this corresponds

More information

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae

More information

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Big Bang Theory PowerPoint

Big Bang Theory PowerPoint Big Bang Theory PowerPoint Name: # Period: 1 2 3 4 5 6 Recombination Photon Epoch Big Bang Nucleosynthesis Hadron Epoch Hadron Epoch Quark Epoch The Primordial Era Electroweak Epoch Inflationary Epoch

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Set 1: Expansion of the Universe

Set 1: Expansion of the Universe Set 1: Expansion of the Universe Syllabus Course text book: Ryden, Introduction to Cosmology, 2nd edition Olber s paradox, expansion of the universe: Ch 2 Cosmic geometry, expansion rate, acceleration:

More information

MIT Invitational, Jan Astronomy C. 2. You may separate the pages, but do not forget to put your team number at the top of all answer pages.

MIT Invitational, Jan Astronomy C. 2. You may separate the pages, but do not forget to put your team number at the top of all answer pages. MIT Invitational, Jan 2019 Astronomy C Competitors: School name: Team number: INSTRUCTIONS 1. Please turn in all materials at the end of the event. 2. You may separate the pages, but do not forget to put

More information

Galaxies and the expansion of the Universe

Galaxies and the expansion of the Universe Review of Chapters 14, 15, 16 Galaxies and the expansion of the Universe 5/4/2009 Habbal Astro 110-01 Review Lecture 36 1 Recap: Learning from Light How does light tell us what things are made of? Every

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age

More information

The State of the Universe

The State of the Universe The State of the Universe Harry Ringermacher, PhD General Electric Research Center Adj. Prof. of Physics, U. of S. Mississippi State of the Universe Universe is still going strong! - At least 100,000,000,000

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

Chapter 1 Introduction 1.1 The Relevance of Very Distant Galaxies

Chapter 1 Introduction 1.1 The Relevance of Very Distant Galaxies Chapter 1 Introduction 1.1 The Relevance of Very Distant Galaxies From observations of the Cosmic Microwave Background (e.g., [491]) and from other, independent astronomical observations we know that,

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

Supernovae explosions and the Accelerating Universe. Bodo Ziegler

Supernovae explosions and the Accelerating Universe. Bodo Ziegler Nobel Prize for Physics 2011 Supernovae explosions and the Accelerating Universe Institute for Astronomy University of Vienna Since 09/2010: ouniprof University of Vienna 12/2008-08/10: Staff member European

More information

i>clicker Quiz #14 Which of the following statements is TRUE?

i>clicker Quiz #14 Which of the following statements is TRUE? i>clicker Quiz #14 Which of the following statements is TRUE? A. Hubble s discovery that most distant galaxies are receding from us tells us that we are at the center of the Universe B. The Universe started

More information

Cosmology. Thornton and Rex, Ch. 16

Cosmology. Thornton and Rex, Ch. 16 Cosmology Thornton and Rex, Ch. 16 Expansion of the Universe 1923 - Edwin Hubble resolved Andromeda Nebula into separate stars. 1929 - Hubble compared radial velocity versus distance for 18 nearest galaxies.

More information

Distances in Cosmology

Distances in Cosmology Distances in Cosmology One of the most basic measurements that can be performed is that of distance. How tall am I? How about that building? How far is it to my school or travel destination? In fact, throughout

More information

Determining distance. L 4π f. d = d = R θ. Standard candle. Standard ruler

Determining distance. L 4π f. d = d = R θ. Standard candle. Standard ruler Determining distance Standard candle d = L 4π f 1 2 d L Standard ruler d = R θ θ R Determining distance: Parallax RULER tanπ = R d π R d π R = 1AU = 1.5 10 13 cm Define new distance unit: parsec (parallax-second)

More information

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture (Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture A.D. 125? Ptolemy s geocentric model Planets ( ) wander among stars ( ) For more info: http://aeea.nmns.edu.tw/aeea/contents_list/universe_concepts.html

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

The Cosmic Distance Ladder

The Cosmic Distance Ladder The Cosmic Distance Ladder (Mário Santos) What is it? A way to calculate distances to objects very far away based on the measured distances to nearby objects: 1. Start with the distance to the Sun (1 AU)

More information

CHAPTER 28 STARS AND GALAXIES

CHAPTER 28 STARS AND GALAXIES CHAPTER 28 STARS AND GALAXIES 28.1 A CLOSER LOOK AT LIGHT Light is a form of electromagnetic radiation, which is energy that travels in waves. Waves of energy travel at 300,000 km/sec (speed of light Ex:

More information

Lecture 30: Geometry & Expansion of the. Astronomy 101

Lecture 30: Geometry & Expansion of the. Astronomy 101 Lecture 30: Geometry & Expansion of the Universe Astronomy 101 Cosmology Cosmology is the study of the entire Universe: Physics of the Universe. Distribution of objects on allscales scales. Motions of

More information

Supernovae Observations of the Accelerating Universe. K Twedt Department of Physics, University of Maryland, College Park, MD, 20740, USA

Supernovae Observations of the Accelerating Universe. K Twedt Department of Physics, University of Maryland, College Park, MD, 20740, USA Supernovae Observations of the Accelerating Universe K Twedt Department of Physics, University of Maryland, College Park, MD, 20740, USA Over the past three decades, supernovae observations have been the

More information

Distances to Quasars. Quasars. The Luminosity Puzzle. Seyfert Galaxies. Seyfert galaxies have

Distances to Quasars. Quasars. The Luminosity Puzzle. Seyfert Galaxies. Seyfert galaxies have Quasars In 1963 Martin Schmidt was trying to understand some unidentified lines in the optical spectra from a star that had a strong radio signal He realized that the lines were Balmer lines that were

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

New Ideas from Astronomy and Cosmology. Martin Buoncristiani Session 5 4/21/2011

New Ideas from Astronomy and Cosmology. Martin Buoncristiani Session 5 4/21/2011 New Ideas from Astronomy and Cosmology Martin Buoncristiani Session 5 Agenda Introduction Space, Time and Matter Early views of the cosmos Important Ideas from Classical Physics Two 20 th Century revolutions

More information

HUBBLE SPACE TELESCOPE

HUBBLE SPACE TELESCOPE ASTRO 202 Age of the Universe Tuesday February 19, 2008 STARS: How and where do they form? From clouds of dust and gas primarily hydrogen -in our galaxy and other galaxies Part of the Orion nebula (Hubble

More information

Paradigm Shifts in Cosmology

Paradigm Shifts in Cosmology FEATURE Principal Investigator Naoshi Sugiyama Research Area Astrophysics Paradigm Shifts in Cosmology The paradigm shift as put forward by Thomas Kuhn means revolutionary changes in the normative concepts

More information

This Week in Astronomy

This Week in Astronomy Homework #8 Due Wednesday, April 18, 11:59PM Covers Chapters 15 and 16 Estimated time to complete: 40 minutes Read chapters, review notes before starting This Week in Astronomy Credit: NASA/JPL-Caltech

More information

Hubble Ultra Deep Space View

Hubble Ultra Deep Space View Galaxies stars come in large groups (20-1000 billion stars) called Galaxies >2 trillion observable galaxies. Come in Shapes and Sizes depending on how they were formed Elliptical (football shape) Spirals

More information

Lecture 37 Cosmology [not on exam] January 16b, 2014

Lecture 37 Cosmology [not on exam] January 16b, 2014 1 Lecture 37 Cosmology [not on exam] January 16b, 2014 2 Structure of the Universe Does clustering of galaxies go on forever? Looked at very narrow regions of space to far distances. On large scales the

More information

BROCK UNIVERSITY. Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359

BROCK UNIVERSITY. Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359 BROCK UNIVERSITY Page 1 of 10 Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359 Examination date: 25 June 2016 Time limit: 50 min Time of Examination: 13:00 13:50

More information

The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way

The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way The Milky Way Milky Way : A band of and a The band of light we see is really 100 billion stars Milky Way probably looks like Andromeda. Milky Way Composite Photo Milky Way Before the 1920 s, astronomers

More information

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate PHY 475/375 Lecture 2 (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate By the 1920 s a debate had developed over whether some of the spiral nebulae catalogued in the 18th century by

More information