Distances to Quasars. Quasars. The Luminosity Puzzle. Seyfert Galaxies. Seyfert galaxies have

Size: px
Start display at page:

Download "Distances to Quasars. Quasars. The Luminosity Puzzle. Seyfert Galaxies. Seyfert galaxies have"

Transcription

1 Quasars In 1963 Martin Schmidt was trying to understand some unidentified lines in the optical spectra from a star that had a strong radio signal He realized that the lines were Balmer lines that were normally in the UV that had been shifted to the visible by the stars veleocity of recession which was about 15% of the speed of light This star turned out to be very distant and not a star at all Quasi-stellar object - quasar Thousands of quasars have been found and they all show very large redshifts The largest shows λ/λ = 5 94% of the speed of light! Distances to Quasars To figure out how far away quasars are astronomers looked for quasars associated with galaxies that to which they could measure the distance This is difficult because quasars outshine entire galaxies by a lot Then astronomers used previous techniques to measure the distance to the galaxy and hence the quasar 1 3 The Luminosity Puzzle The very large redshifts of quasars means that they are very far away and because we can see them they must be very luminous The quasars also seemed to vary in luminosity over a period of months This luminosity variation suggested that the quasars were large objects 2 Seyfert Galaxies Active galaxies produce abnormal amounts of energy, mostly in their centers Active galactic nuclei, AGN One example is Seyfert galaxies Seyferts are spiral galaxies Seyfert galaxies produce emission lines rather than absorption lines indicating hot gas clouds Seyfert galaxies have luminosity variations on the scale of months like quasars and have pointlike bright centers that are brighter than the sum of individual stars The central region of Seyfert galaxy NGC

2 Active Elliptical Galaxies Elliptic galaxies are also observed to have active nuclei Elliptic galaxy M87 has such an active center Jets of ionized gas are visible coming from the center The Mass of the Quasar in M87 The period of material orbiting the center of M87 was calculated by measuring the redshift of material circling the center The rotation speed was measured to be 550 km/s Using Kepler s law we get a mass of about 2.5 billion M sun There is evidence for black in the center of many galaxies Once formed, these black holes continue to absorb material and grow 5 7 The Power Behind Quasars Astronomers are now convinced that quasars have massive black holes at their centers We can say a black hole exists if we can demonstrate that there is a very massive object such that no star or cluster could account for that mass We can determine the mass of an object using Kepler s law as before We simply measure the period of an object orbiting the quasar and calculate the mass 6 Radio Jets Material falling into a black hole forms an accretion disk Models show that these accretion disks can lead to jets along the axis of the disk These jets glow with radio, light, and x-rays 8

3 Evolution of Quasars When we see a distant object we see it as it was long ago If we see more quasars far away, there must have been more quasars long ago The theory is that quasars are black holes with enough fuel around them to make bright accretion disks This theory leads to the conclusion that quasars should have formed early in the history of the universe This theory leads to the conclusion that quasars should have formed early in the history of the universe 9 The Distribution of Galaxies in Space Looking at distant galaxies is like looking back in time When we look at astronomical objects we find they are seldom alone The question arises: do galaxies cluster also? Hubble used the 100 inch Palomar telescope to sample the sky in 1283 places He found that number of galaxies visible is about the same He found that the number of galaxies increased with faintness More evidence for a constant density of galaxies 11 Gravitational Lenses and Quasars The quasars brilliance and immense distance makes it ideal for the study of deep space Gravitational lensing was first discovered using quasars in 1979 when identical images of a quasar were observed On the right one can see four identical optical images of a quasar (top) and an Einstein ring of a quasar made with radio waves using the VLA The Cosmological Principle The universe is the same everywhere The universe appears to be isotropic and homogeneous Without the cosmological principle, we could not make progress in understanding the universe around us Hubble had simply counted the number of galaxies Recently astronomers have measure the distances of thousands of galaxies and have built up a picture of the distribution of galaxies 10 12

4 The Milky Way is a member of a small group of galaxies called the Local Group containing more than 40 members The Local Group 13 Superclusters and Voids Galaxy clusters form superclusters Among the superclusters are giant voids The Milky Way is located in the Local Supercluster One conclusion we can draw is the space is mostly empty The clusters occupy only about 5% of the space 15 Neighboring Groups and Clusters Galaxies form clusters Rich galaxy cluster have thousands of galaxies The nearest rich galaxy cluster is called the Virgo Cluster An much larger galaxy cluster is the Coma cluster with a diameter of 10 million LY Large galaxy clusters such as Coma have few spirals in the center but have many ellipticals Slices of the Universe Enormous volumes of space lie beyond the Local Supercluster This space has not been completely mapped One striking structure that has been found is the Great Wall There are obvious sheets and filaments separated by huge voids 14 16

5 When Did Galaxies Form? We can study old, distant galaxies and get information about times near the beginning of the universe Most galaxies we can see are least a few billion years old We can learn about a galaxy by measuring its color Blue means young, hot stars Yellow or red means old stars Another way to learn about a galaxy is to study its shape Spiral galaxies are young Elliptical galaxies are old 17 Colliding Galaxies Galaxies can collide which stimulates star formation Indivdual stars are not affected much because of the large distance between stars 19 The Ages and Compositions of Galaxies Nearly all galaxies are old The Milky Way contains stars that about the age of the universe Distant galaxies show evidence for heavier elements that were not present at the beginning of the universe A least one generation of stars has passed Star formation has stopped in elliptical galaxies while it continues in spiral galaxies Elliptical are poor in interstellar gas but galaxy clusters have a large amount Galaxies in clusters collide! The Life History of Galaxies Elliptical galaxies formed early and turned all the gas and dust to stars in the first 3 billion years Spirals converted gas and dust at a much slower rate and are still producing stars today The peak of star formation occurred when the universe was between 3 and billion years old When the universe was 3-6 billion years old, the galaxies were small Galaxies have merged to form larger galaxies since that time 18 20

6 Cosmology The study of the universe as a whole is called cosmology How did the universe come into being? What will its ultimate fate be? What have we observed about the universe? All galaxies show a redshift proportional to distance, implying that the universe is expanding The distribution of galaxies on the largest scale is isotropic and homogeneous The contents of the universe evolve with time: hydrogen and helium are changed into heavier elements inside stars Gravity warps the fabric of space-time Estimates of the Age of the Universe The estimates of the age of the universe depend on our knowledge of the distance of galaxies An error of a factor of 2 in the distance would mean a factor of 2 in the age of the universe Over the past 20 years debate has raged among astronomers about the value of H It has varied from 15 to 35 km/s per million LY Recent data from the Hubble Space Telescope have yielded 20 ± 2km/s per million LY 70 ± 7 km/s per million parsecs The Age of the Universe The universe cannot be static The universe must either be contracting or expanding If we had a movie of the expanding universe and ran it backwards, we would see the galaxies moving together until they were all in one place The big bang We can estimate how long the galaxies would take to be back in the same place v = Hd, Hubble s Law From physics we know d = vt t = d/v = d/(hd) = 1/H Hubble time H = 20 ± 2 km/s per million LY t = 15 ± 1.5 billion years 22 Deceleration/Acceleration The Hubble time is the correct age of the universe only if this expansion has been constant throughout the age of the universe Constant H Gravity creates attraction and should slow the expansion of the universe Deceleration The universe would actually be younger than the Hubble time New measurements of type Ia supernovae can interpreted to mean that the universe is accelerating The universe is expanding more slowly now than in the past The universe would be older than the Hubble time Based on the observation that distant type Ia supernovae are 20% dimmer than they should be if expansion were constant Other explanations? 24

7 The Age of the Universe Astronomers generally agree that the modifications to the Hubble time for acceleration and deceleration make the age of the universe 15 ± 5 billion years Another way to estimate the age of the universe is to find the oldest objects whose age we can measure Computer models show that the age of globular clusters is about 13 billion years and assuming that it took a billion years for stars to form, the oldest stars are younger than the age of the universe This agreement has only occurred in recent years Previously the Hubble time was shorter Previously the age of globular clusters was longer 25 A Balloon Universe If you go in one direction, you get back to where you started There is no center, all points on the balloon are the same If the balloon grows, all points move away from each other The points move away from other other because the balloon is growing, not because any point is doing something special This example represents a closed universe An open universe is also possibility but harder to visualize 27 The Geometry of Spacetime The gravity from the matter of the entire universe warps spacetime We must consider a fourth dimension of space Thinking in 4 dimensions is difficult so we will think in 3 dimensions (2 + 1) In the world of 2 dimensions the third dimension if curvature A 2-dimensional observer would observe odd things in his 2-dimensional curved world Let s use a balloon as an example The Expanding Universe If the universe is dense enough, it will stop expanding and collapse If the universe not dense enough, it continue to expand forever At a critical density, the universe will just stop expanding at infinite time 1. Closed universe 2. Open universe 3. Universe with critical density 4. Universe with less than critical density and positive cosmological constant 26 28

8 Facing the Future If the mass density of the universe is high enough, the expansion of the universe will reverse and the universe will collapse The Big Crunch If the mass density of the universe is low enough, the universe will expand forever and slowly die out At critical density, the universe can just barely expand forever Flat universe Zero curvature The Big Bang The big bang theory states that the universe began as a gigantic explosion This idea has entered popular culture Who s s Winning? The observed matter density is too low to close the universe Dark matter may play a role The ages of stars suggest that we live in an open universe Type Ia supernovae suggest that the universe if accelerating The lookback time is how long ago the light from an object was emitted Depends on our model of the universe History of the Idea of the Big Bang Georges Lemaitre proposed a big bang-like theory in the early 1920s involving fission In the 1940s, George Gamov proposed the a big bang model incorporating fusion Since that time, many astronomers and physicists have added their work to what is now known as the standard model of the big bang Three main ideas underlie the big bang model The universe cools as it expands In very early times, the universe was mostly radiation The more hotter the universe, the more energetic photons are available to make matter and anti-matter 30 32

9 The Evolution of the Early Universe With the three previous ideas in mind, we can trace the evolution of the universe back to when it was 0.01 s old and had a temperature of 100 billion K We can go back farther but not all the way to zero time At s most of our physical laws become impractical At times before 0.01 s, the universe was filled with quarks and gluons Learning from Deuterium All the deuterium in the universe was formed in the first 3 minutes If the universe was very hot and dense when the deuterium formed, it would have been broken up If the universe expanded and then out thinned out rapidly, deuterium would survive The density extracted from the surviving deuterium is 5 x g/cm 3 Suggests a low enough mass that the universe is open Dark matter may still play a role After 0.01 s Our picture after 0.01 s is that the universe was filled with radiation and with types of matter that exist today Protons and neutrons Photons and neutrinos The temperature was no longer hot enough to create neutrons and protons in collisions of photons At about 3 minutes, nuclei begin to form 75% hydrogen, 25% helium, some lithium The Universe Becomes Transparent For several hundred thousand years the universe resembled the interior of a star After that time, atoms began to form The universe became transparent Radiation and matter decoupled 1 billion years after the big bang, stars and galaxies began to form The radiation from the big bang faded but it left an indelible fingerprint, the cosmic radiation background 34 36

10 The Cosmic Radiation Background In the 1940s Adler and Herman realized that just before matter and radiation decoupled, the universe must have been radiating like a blackbody at a temperature of 3000 K That was 15 billion years ago, and the universe has expanded, leaving an afterglow of the big bang with a temperature of 3 K In the 1960s, Penzias and Wilson were using a microwave antenna to study the sky They could not make their receiver work without background noise that seemed to be coming from everywhere in the sky They thought is was their detector but soon realized that it was real and was coming from space Penzias and Wilson got in touch with some cosmologists from Princeton and who realized that this radiation was the cosmic background radiation (CBR) 37 Problems with the Big Bang Model The standard big bang model explains many things but there are remaining issues It does not explain why there is more matter than antimatter in the universe It does not explain the observed uniformity of the universe Parts of the universe could never have been in contact yet they show the same background temperature It does not explain why the density of the universe is close to the critical density 39 Properties of the CBR The first accurate measurements of the CBR were made by the COBE satellite They observed that the CBR matched perfectly with a blackbody with a temperature of 2.73 K Astronomers concluded that the universe we see today evolved from a hot, uniform state We live in an evolving universe The universe looks uniform in all directions but not completely uniform Grand Unified Theories There are 4 forces Gravity, weak, electromagnetic, nuclear At high temperatures, these forces become one force Theories exist that unify weak, electromagnetic and nuclear Grand unified theories (GUTs) No theory yet exists incorporating gravity 38 40

11 The Inflationary Hypothesis GUTs predict that at s, a rapid, early expansion took place Prior to this inflation, the universe was small enough to communicate with itself After inflation, parts of the universe were beyond each other s horizon The inflationary model also predicts that the universe is exactly at critical density 41 Lucky Accidents The temperature of the radiation emitted when the universe became transparent varies by about 16 millionth of a K Smaller variations would have led to no galaxies Larger variations would have led to black holes The fine balance between expansion and contraction The existence of only matter and not anti-matter The production rate of nuclei in the big bang produced only hydrogen and helium, and did not go all the way to iron Neutrinos have to have just the right interaction properties with matter to allow supernovae Anthropic principle 42

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 17 Cosmology

Chapter 17 Cosmology Chapter 17 Cosmology Over one thousand galaxies visible The Universe on the Largest Scales No evidence of structure on a scale larger than 200 Mpc On very large scales, the universe appears to be: Homogenous

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

Cosmology. Chapter 18. Cosmology. Observations of the Universe. Observations of the Universe. Motion of Galaxies. Cosmology

Cosmology. Chapter 18. Cosmology. Observations of the Universe. Observations of the Universe. Motion of Galaxies. Cosmology Cosmology Chapter 18 Cosmology Cosmology is the study of the structure and evolution of the Universe as a whole How big is the Universe? What shape is it? How old is it? How did it form? What will happen

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

ASTR 101 General Astronomy: Stars & Galaxies

ASTR 101 General Astronomy: Stars & Galaxies ASTR 101 General Astronomy: Stars & Galaxies ANNOUNCEMENTS MIDTERM III: Tuesday, Nov 24 th Midterm alternate day: Fri, Nov 20th, 11am, ESS 450 At LAST: In the very Beginning BIG BANG: beginning of Time

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

Homework 6 Name: Due Date: June 9, 2008

Homework 6 Name: Due Date: June 9, 2008 Homework 6 Name: Due Date: June 9, 2008 1. Where in the universe does the general expansion occur? A) everywhere in the universe, including our local space upon Earth, the solar system, our galaxy and

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works Chapter 34: Cosmology According to the currents models of stellar life cycle, our sun will eventually become a a) Cloud of hydrogen gas b) Protostar c) Neutron star d) Black hole e) White dwarf id you

More information

BROCK UNIVERSITY. Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359

BROCK UNIVERSITY. Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359 BROCK UNIVERSITY Page 1 of 10 Test 2: June 2016 Number of pages: 10 Course: ASTR 1P02, Section 2 Number of students: 359 Examination date: 25 June 2016 Time limit: 50 min Time of Examination: 13:00 13:50

More information

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 18 Cosmology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cosmology Cosmology is the study of the structure and evolution of the Universe as a whole

More information

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence that the Universe began with a Big Bang? How has the Universe

More information

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology Cosmology is the study of the universe; its nature, origin and evolution. General Relativity is the mathematical basis of cosmology from which

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193

ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY. Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193 ASTR 1P02 Test 2, March 2017 Page 1 BROCK UNIVERSITY Test 2: March 2017 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 1193 Examination date: 4 March 2017 Time limit: 50 min Time of

More information

BROCK UNIVERSITY. Test 2: July 2015 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 318

BROCK UNIVERSITY. Test 2: July 2015 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 318 BROCK UNIVERSITY Page 1 of 9 Test 2: July 2015 Number of pages: 9 Course: ASTR 1P02, Section 2 Number of students: 318 Examination date: 4 July 2015 Time limit: 50 min Time of Examination: 13:00 13:50

More information

Figure 19.19: HST photo called Hubble Deep Field.

Figure 19.19: HST photo called Hubble Deep Field. 19.3 Galaxies and the Universe Early civilizations thought that Earth was the center of the universe. In the sixteenth century, we became aware that Earth is a small planet orbiting a medium-sized star.

More information

Astronomy 210 Final. Astronomy: The Big Picture. Outline

Astronomy 210 Final. Astronomy: The Big Picture. Outline Astronomy 210 Final This Class (Lecture 40): The Big Bang Next Class: The end HW #11 Due next Weds. Final is May 10 th. Review session: May 6 th or May 9 th? Designed to be 2 hours long 1 st half is just

More information

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Information Makeup quiz Wednesday, May 31, 5-6PM, Planetarium Review Session, Monday, June 5 6PM, Planetarium Cosmology Study of the universe

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

Big Bang Theory PowerPoint

Big Bang Theory PowerPoint Big Bang Theory PowerPoint Name: # Period: 1 2 3 4 5 6 Recombination Photon Epoch Big Bang Nucleosynthesis Hadron Epoch Hadron Epoch Quark Epoch The Primordial Era Electroweak Epoch Inflationary Epoch

More information

i>clicker Quiz #14 Which of the following statements is TRUE?

i>clicker Quiz #14 Which of the following statements is TRUE? i>clicker Quiz #14 Which of the following statements is TRUE? A. Hubble s discovery that most distant galaxies are receding from us tells us that we are at the center of the Universe B. The Universe started

More information

Cosmology. What is Cosmology?

Cosmology. What is Cosmology? Cosmology What is Cosmology? The study of the structure and evolution of the entire universe The idea is to form picture of the entire Universe: origin, size, and future We will make assumptions that what

More information

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra The Big Bang Theory Rachel Fludd and Matthijs Hoekstra Theories from Before the Big Bang came from a black hole from another universe? our universe is part of a multiverse? just random particles? The Big

More information

Agenda. Chapter 17. Cosmology. Cosmology. Observations of the Universe. Observations of the Universe

Agenda. Chapter 17. Cosmology. Cosmology. Observations of the Universe. Observations of the Universe Agenda Chapter 17 3/17/09 Measure Solar Altitude is it really 2pm? Announce: Observation: Tue March 24 Test 2: Tue March 24 Online stuff due by Test 2 Ch. 17 Cosmology Labwork: Hubble s Law & Large Scale

More information

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding 26. Cosmology Significance of a dark night sky The Universe is expanding The Big Bang initiated the expanding Universe Microwave radiation evidence of the Big Bang The Universe was initially hot & opaque

More information

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data. Cosmology Cosmology is the study of the origin and evolution of the Universe, addressing the grandest issues: How "big" is the Universe? Does it have an "edge"? What is its large-scale structure? How did

More information

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy II. Cosmology: How the universe developed Outstanding features of the universe today: 1. It is big, and full of galaxies. 2. It has structure: the galaxies are clumped in filaments and sheets The structure

More information

Cosmology: The History of the Universe

Cosmology: The History of the Universe Cosmology: The History of the Universe The Universe originated in an explosion called the Big Bang. Everything started out 13.7 billion years ago with zero size and infinite temperature. Since then, it

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 Astronomy 101.003 Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 atoms, approximately how many Ra 226 atoms would be left

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

Chapter 18. Cosmology in the 21 st Century

Chapter 18. Cosmology in the 21 st Century Chapter 18 Cosmology in the 21 st Century Guidepost This chapter marks a watershed in our study of astronomy. Since Chapter 1, our discussion has focused on learning to understand the universe. Our outward

More information

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period

More information

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 26 Astronomy Today 8th Edition Chaisson/McMillan Chapter 26 Cosmology Units of Chapter 26 26.1 The Universe on the Largest Scales 26.2 The Expanding Universe 26.3 The Fate of the

More information

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way Chapter 33 The History of a Star Introduction Did you read chapter 33 before coming to class? A. Yes B. No You can see about 10,000 stars with the naked eye. The milky way Radio telescopes allow us to

More information

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids Class Announcements Vocab Quiz 4 deadline is Saturday Midterm 4 has started, ends Monday Lab was in the Planetarium. You still need to do the 2 questions Check PS100 webpage, make sure your clicker is

More information

Large Scale Structure

Large Scale Structure Large Scale Structure Measuring Distance in Universe-- a ladder of steps, building from nearby Redshift distance Redshift = z = (λ observed - λ rest )/ λ rest Every part of a distant spectrum has same

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

The Big Bang Theory was first proposed in the late 1920 s. This singularity was incredibly dense and hot.

The Big Bang Theory was first proposed in the late 1920 s. This singularity was incredibly dense and hot. The Big Bang Theory was first proposed in the late 1920 s. It states that there was an infinitely small, infinitely dense point that contained everything that is the universe. This singularity was incredibly

More information

The Science Missions of Columbia

The Science Missions of Columbia The Science Missions of Columbia Tools for Viewing The Universe Tools for Viewing The Universe & Columbia Shuttle Added Corrective Optics to the Hubble Space Telescope Hubble Discovers a New View of The

More information

Formation of the Universe. What evidence supports current scientific theory?

Formation of the Universe. What evidence supports current scientific theory? Formation of the Universe What evidence supports current scientific theory? Cosmology Cosmology is the study of the Nature, Structure, Origin, And fate of the universe. How did it all begin? Astronomers

More information

Complete Cosmos Chapter 24: Big Bang, Big Crunch Outline Sub-chapters

Complete Cosmos Chapter 24: Big Bang, Big Crunch Outline Sub-chapters Complete Cosmos Chapter 24: Big Bang, Big Crunch Theory of the Big Bang. From that cataclysmic explosion, the Universe continues to expand. But will it stop and reverse? Outline How did the Universe begin?

More information

The first 400,000 years

The first 400,000 years The first 400,000 years All about the Big Bang Temperature Chronology of the Big Bang The Cosmic Microwave Background (CMB) The VERY early universe Our Evolving Universe 1 Temperature and the Big Bang

More information

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae

More information

Revision Guide for Chapter 12

Revision Guide for Chapter 12 Revision Guide for Chapter 12 Contents Student s Checklist Revision Notes The speed of light... 4 Doppler effect... 4 Expansion of the Universe... 5 Microwave background radiation... 5 Galaxy... 6 Summary

More information

Astronomy 122 Outline

Astronomy 122 Outline Astronomy 122 Outline This Class (Lecture 26): The Primeval Fireball Next Class: Dark Matter & Dark Energy ICES Form!!! HW10 due Friday Hubble s Law implications An expanding Universe! Run in movie in

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final is Comprehensive! Covers content of the entire course Please be sure to look at the Study Guides for the first three in-class exams All of that material will be on the final

More information

It is possible for a couple of elliptical galaxies to collide and become a spiral and for two spiral galaxies to collide and form an elliptical.

It is possible for a couple of elliptical galaxies to collide and become a spiral and for two spiral galaxies to collide and form an elliptical. 7/16 Ellipticals: 1. Very little gas and dust an no star formation. 2. Composed of old stars. 3. Masses range from hundreds of thousands to 10's of trillions of solar masses. 4. Sizes range from 3000 ly

More information

M31 - Andromeda Galaxy M110 M32

M31 - Andromeda Galaxy M110 M32 UNIT 4 - Galaxies XIV. The Milky Way galaxy - a huge collection of millions or billions of stars, gas, and dust, isolated in space and held together by its own gravity M110 M31 - Andromeda Galaxy A. Structure

More information

How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1

How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1 Today Announcements: HW#8 due Friday 4/9 at 8:00 am. The size of the Universe (It s expanding!) The Big Bang Video on the Big Bang NOTE: I will take several questions on exam 3 and the final from the videos

More information

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see?

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see? Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe Cosmology Cosmology Study of the origin, evolution and future of the Universe Obler s Paradox If the Universe is infinite why is the sky dark at night? Newtonian Universe The Universe is infinite and unchanging

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe

Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe The Big Bang Theory The Big Bang Theory The Big Bang Theory is the most widely accepted scientific explanation

More information

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture (Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture A.D. 125? Ptolemy s geocentric model Planets ( ) wander among stars ( ) For more info: http://aeea.nmns.edu.tw/aeea/contents_list/universe_concepts.html

More information

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics LARGE QUASAR GROUPS Kevin Rahill Astrophysics QUASARS Quasi-stellar Radio Sources Subset of Active Galactic Nuclei AGNs are compact and extremely luminous regions at the center of galaxies Identified as

More information

1 Observational Overview of the Universe

1 Observational Overview of the Universe 1 1 Observational Overview of the Universe The Earth s atmosphere admits only a small portion of the electromagnetic spectrum. The visible light band lies between 400 800 nm. Historically, our picture

More information

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES THE ORIGIN OF THE UNIVERSE AND BLACK HOLES WHAT IS COSMOGONY? Cosmogony (or cosmogeny) is any model explaining the origin of the universe. Cosmogony = Coming into existence WHAT IS COSMOLOGY Cosmology

More information

Question 1. Question 2. Correct. Chapter 16 Homework. Part A

Question 1. Question 2. Correct. Chapter 16 Homework. Part A Chapter 16 Homework Due: 11:59pm on Thursday, November 17, 2016 To understand how points are awarded, read the Grading Policy for this assignment. Question 1 Following are a number of distinguishing characteristics

More information

Chapter 15 Galaxies and the Foundation of Modern Cosmology

Chapter 15 Galaxies and the Foundation of Modern Cosmology 15.1 Islands of stars Chapter 15 Galaxies and the Foundation of Modern Cosmology Cosmology: study of galaxies What are they 3 major types of galaxies? Spiral galaxies: like the milky way, look like flat,

More information

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

More information

The expansion of the Universe, and the big bang

The expansion of the Universe, and the big bang The expansion of the Universe, and the big bang Q: What is Hubble s law? A. The larger the galaxy, the faster it is moving way from us. B. The farther away the galaxy, the faster it is moving away from

More information

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!! Reminders! Website: http://starsarestellar.blogspot.com/ Lectures 1-15 are available for download as study aids. Reading: You should have Chapters 1-14 read. Read Chapters 15-17 by the end of the week.

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Chapter 30. Galaxies and the Universe. Chapter 30:

Chapter 30. Galaxies and the Universe. Chapter 30: Chapter 30 Galaxies and the Universe Chapter 30: Galaxies and the Universe Chapter 30.1: Stars with varying light output allowed astronomers to map the Milky Way, which has a halo, spiral arm, and a massive

More information

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

More information

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Beyond the Solar System 2006 Oct 17 Page 1 of 5 I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured

More information

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate

More information

THE UNIVERSE CHAPTER 20

THE UNIVERSE CHAPTER 20 THE UNIVERSE CHAPTER 20 THE UNIVERSE UNIVERSE everything physical in and Includes all space, matter, and energy that has existed, now exists, and will exist in the future. How did our universe form, how

More information

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe Standard 1: Students will understand the scientific evidence that supports theories that explain how the universe and the solar system developed. They will compare Earth to other objects in the solar system.

More information

Relative Sizes of Stars. Today Exam#3 Review. Hertzsprung-Russell Diagram. Blackbody Radiation

Relative Sizes of Stars. Today Exam#3 Review. Hertzsprung-Russell Diagram. Blackbody Radiation Today Exam#3 Review Exam #3 is Thursday April 4th in this room, BPS 40; Extra credit is due 8:00 am Tuesday April 9 Final Exam is 3:00pm Monday April 8 in BPS 40 The exam is 40 multiple choice questions.

More information

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc. Chapter 20 Lecture The Cosmic Perspective Seventh Edition Galaxies and the Foundation of Modern Cosmology 20.1 Islands of Stars Our goals for learning: How do galaxies evolve? What are the three major

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

The Cosmological Principle

The Cosmological Principle Cosmological Models John O Byrne School of Physics University of Sydney Using diagrams and pp slides from Seeds Foundations of Astronomy and the Supernova Cosmology Project http://www-supernova.lbl.gov

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

25/11/ Cosmological Red Shift:

25/11/ Cosmological Red Shift: 12.1 Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way Hubble

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

ASTR Final Examination Phil Armitage, Bruce Ferguson

ASTR Final Examination Phil Armitage, Bruce Ferguson ASTR 1120-001 Final Examination Phil Armitage, Bruce Ferguson FINAL EXAM MAY 6 th 2006: Closed books and notes, 1.5 hours. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

Killer Skies. Last time: Hubble s Law Today: Big Bang. HW 11 due next Monday Exam 3, Dec 11. Music: Rocket Man Elton John

Killer Skies. Last time: Hubble s Law Today: Big Bang. HW 11 due next Monday Exam 3, Dec 11. Music: Rocket Man Elton John Killer Skies HW 11 due next Monday Exam 3, Dec 11 Last time: Hubble s Law Today: Big Bang Music: Rocket Man Elton John 1 Hour Exam 3 Hour Exam 3 Wed, Dec 11th, in class information on course website 40

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through

More information

The Big Bang Theory PRESS Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice

The Big Bang Theory PRESS Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice The Big Bang Theory PRESS-2002 Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice Supervised by: Dr KY Szeto, HKUST Abstract: We did a survey at our current

More information

The Universe. Unit 3 covers the following framework standards: ES 8 and 12. Content was adapted the following:

The Universe. Unit 3 covers the following framework standards: ES 8 and 12. Content was adapted the following: Unit 3 The Universe Chapter 4 ~ The Formation of the Universe o Section 1 ~ The Scale of the Universe o Section 2 ~ The Formation of the Universe o Section 3 ~ The Future of the Universe Chapter 5 ~ Galaxies

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information