Detecting Dark Matter in the X-ray

Size: px
Start display at page:

Download "Detecting Dark Matter in the X-ray"

Transcription

1 Detecting Dark Matter in the X-ray Kev Abazajian University of Maryland Quantum 2 Cosmos 3: Airlie Center, July 8, 2008

2 The CDM Ansatz

3 Problems in Cold Dark Matter? Halo Substructure: satellite galaxies and sub-halos (Klypin et al 1999; Moore et al 1999) Halo Cores and Densities: (Moore 1994; Gilmore et al 2006) Void Galaxy abundances (Peebles 2001) Angular Momentum Problem (Navarro & Benz 1991; Sommer-Larsen & Dolgov 2001) Disk Dominated Galaxy Formation (Governato et al 2002)

4 Problems in Cold Dark Matter? Halo Substructure: satellite galaxies and sub-halos (Klypin et al 1999; Moore et al 1999) Halo Cores and Densities: (Moore 1994; Gilmore et al 2006) Void Galaxy abundances (Peebles 2001) Angular Momentum Problem (Navarro & Benz 1991; Sommer-Larsen & Dolgov 2001) Disk Dominated Galaxy Formation (Governato et al 2002) Is the Dark Matter slightly Warm?

5

6 Dwarf Spheroidal Density Profiles from Radial Stellar Velocity Dispersion Dwarf spheroidals studied are consistent with NFW and cored profiles, except for UMi, only consistent with cored profile [Gilmore et al.,astro-ph/ ] Constant mass halo consistent with M/L-Luminosity relation CDM

7 Sterile Neutrinos Beyond the Standard Model of Particle Physics ν s Phenomenological Insertion of Majorana & Dirac Mass Terms of Comparable Magnitude (atmos. & solar) (e.g. Asaka et al 2006) νmsm ν s Left-Right Symmetric Models (Pati & Salam 1974; Mohapatra & Pati 1975) ν s ν s ν s Higher Dimensional Operators in String-Inspired models (Langacker 1998) Bulk Fermions in Large Extra Dimensions (ADD; Dvali & Smirnov 2000) Axino in R-parity Violating Minimal Supersymmetric Models (Chun & Kim 1999)

8 Sterile Neutrino Dark Matter Production t f s(p, t) Hp p f s(p, t) Γ(ν α ν s ; p, t)[f α (p, t) f s (p, t)] Γ/H T (MeV) Dodelson & Widrow (1994) Abazajian et al (2001) Abazajian (2006) Asaka et al (2006)

9 Sterile Neutrino Dark Matter Production Abazajian (2006) t f s(p, t) Hp p f s(p, t) Γ(ν α ν s ; p, t)[f α (p, t) f s (p, t)] Asaka et al (2006) Γ/H T (MeV) Dodelson & Widrow (1994) Abazajian et al (2001) Abazajian (2006) Asaka et al (2006)

10 Detecting the Dark Matter: Laboratory Limits Pion Decay in Flight Beta Decay

11 Detecting the Dark Matter: Laboratory Limits Pion Decay in Flight Beta Decay

12 Radiative Decay in the X-ray l - l - 2 W + 1 ν i ν j + γ E γ = m s 2 1 kev Pal & Wolfenstein 1981 Γ γ (m s, sin 2 2θ) = s 1 ( sin 2 2θ 10 7 ) ( ms 1 kev ) 5

13 Radiative Decay in the X-ray l - l - 2 W + 1 ν i ν j + γ E γ = m s 2 1 kev Pal & Wolfenstein 1981 Γ γ (m s, sin 2 2θ) = s 1 ( sin 2 2θ 10 7 ) ( ms 1 kev ) 5

14 Dark Matter Halos as Particle Reservoirs: Detecting Decaying Dark Matter particles

15 Dark Matter Halos as Particle Reservoirs: Detecting Decaying Dark Matter particles Signal: F dω [ DM density/distance 2] J[ Ω(θ)] 2π J [ Ω(θ)] = ρ s dφ 0 θ 0 [ xmax(θ ) sin θ x min (θ ) I[ r(x)] dx ] dθ I NFW [ r(x)] = I BUR [ r(x)] = 1 r(x) [1 + r(x)] 2 1 [1 + r(x)] [1 + r 2 (x)]

16 Dark Matter Halos as Particle Reservoirs: Detecting Decaying Dark Matter particles Background: X-ray continuum Compact Objects Instrumental Signal: F dω [ DM density/distance 2] J[ Ω(θ)] J [ Ω(θ)] = ρ s 2π 0 dφ θ 0 [ xmax(θ ) sin θ x min (θ ) I[ r(x)] dx ] dθ I NFW [ r(x)] = I BUR [ r(x)] = 1 r(x) [1 + r(x)] 2 1 [1 + r(x)] [1 + r 2 (x)]

17 X-ray Limits: Virgo and M31 (XMM-Newton) Watson et al (2006) Abazajian et al (2001)

18 X-ray Constraint Summary for DW Model XMM Newton: The Virgo Cluster Andromeda Galaxy: Watson et al 2006 ms < 3.5 kev Milky Way in CXB: Abazajian et al 2006 ms < 5.7 kev Coma + Virgo Clusters: Boyarsky et al 2006 ms < 6.3 kev Virgo Cluster: Abazajian et al 2001 ms < 8.2 kev X-Ray Background: Boyarsky et al 2006 ms < 8.9 kev

19 Chandra Deep Field: Milky Way Halo Limits from the Unresoved X-ray Background CDF-South Source Removal Hickox & Markevitch 2006, 2007

20 Milky Way Line Flux limits from the Chandra Deep Field of the CXB High DM mass MW: m s < 2.95 kev 3σ Low DM mass MW: m s < 5.74 kev 2σ (2σ) Abazajian, Markevitch, Koushiappas & Hickox 2007

21 The Soft X-ray Background sec X-ray calorimeter exposure on sounding rocket flight from White Sands, NM Using modern X-ray quantum calorimeters Resolution ~9 ev FWHM (McCammon et al., 2002)

22 The Soft X-ray Background: Spectrum Sterile Neutrino Line (60x MW Predicted) McCammon et al. (2002) Abazajian et al (2006)

23

24 Constellation-X Observatory - Beyond Einstein

25

26

27 How warm is too warm? Or, where does the CDM ansatz fail? Abazajian 2006 SDSS 3D P(k) Main Galaxies (Tegmark et al 2003) SDSS Lyman-alpha forest (McDonald et al 2005) High-Resolution Lyman-alpha forest (Viel, Haehnelt & Springel 2004) CMB: WMAP, ACBAR, CBI, VSA, BooMERANG-2K2

28 How warm is too warm? Or, where does the CDM ansatz fail? SDSS galaxy P g (k) Abazajian 2006 SDSS 3D P(k) Main Galaxies (Tegmark et al 2003) SDSS Lyman-alpha forest (McDonald et al 2005) High-Resolution Lyman-alpha forest (Viel, Haehnelt & Springel 2004) CMB: WMAP, ACBAR, CBI, VSA, BooMERANG-2K2

29 How warm is too warm? Or, where does the CDM ansatz fail? SDSS galaxy P g (k) SDSS Ly-α forest P F (k) Abazajian 2006 SDSS 3D P(k) Main Galaxies (Tegmark et al 2003) SDSS Lyman-alpha forest (McDonald et al 2005) High-Resolution Lyman-alpha forest (Viel, Haehnelt & Springel 2004) CMB: WMAP, ACBAR, CBI, VSA, BooMERANG-2K2

30 How warm is too warm? Or, where does the CDM ansatz fail? SDSS galaxy P g (k) SDSS Ly-α forest P F (k) LUQAS (VLT) Ly-α forest P F (k) Abazajian 2006 SDSS 3D P(k) Main Galaxies (Tegmark et al 2003) SDSS Lyman-alpha forest (McDonald et al 2005) High-Resolution Lyman-alpha forest (Viel, Haehnelt & Springel 2004) CMB: WMAP, ACBAR, CBI, VSA, BooMERANG-2K2

31 How warm is too warm? Or, where does the CDM ansatz fail? SDSS galaxy P g (k) SDSS Ly-α forest P F (k) LUQAS (VLT) Ly-α forest P F (k) Keck Ly-α forest P F (k) Abazajian 2006 SDSS 3D P(k) Main Galaxies (Tegmark et al 2003) SDSS Lyman-alpha forest (McDonald et al 2005) High-Resolution Lyman-alpha forest (Viel, Haehnelt & Springel 2004) CMB: WMAP, ACBAR, CBI, VSA, BooMERANG-2K2

32 The Lyman-alpha Forest (Croft et al 1999)

33 The Lyman-alpha Forest (Croft et al 1999)

34 Stringent Lyman-alpha Forest Constraints? m s > 14 kev m s > 9 kev Seljak et al 2006: WMAP1 + SDSS Pg(k) + Lya + HR Viel et al 2006: WMAP3 + CMB + 2dFGRS + SDSS Lya Both depend on the McDonald et al. (2006) SDSS PF(k) Measurement

35 Lyman-α Dependence on Thermal History CDM with a warmer thermal history can mimic WDM (and vice-versa) Thermal broadening of the line and a larger jeans smoothing scale Abazajian, Lidz & Dalal (in preparation) Keck HIRES data CDM WDM

36 Sterile Neutrino Dark Matter Summary Warm Dark Matter has become the standard alternate cosmological structure formation scenario, as it may resolve many problems in structure formation Sterile Neutrino Dark Matter is a natural, minimal WDM and CDM candidate Lower-limits mass from the Lyman-alpha Forest are dependent on the thermal history of the universe and uncertain Sterile Neutrino Dark Matter, in the standard production scenarios, is detectable or potentially excludable with Constellation-X satellite

Deviant Dark Matter: Indirect Indicators of and Constraints on the Nature of Dark Matter. Kevork Abazajian University of California, Irvine

Deviant Dark Matter: Indirect Indicators of and Constraints on the Nature of Dark Matter. Kevork Abazajian University of California, Irvine Deviant Dark Matter: Indirect Indicators of and Constraints on the Nature of Dark Matter Kevork Abazajian University of California, Irvine SCIPP Seminar March 6, 2012 Dark Matter Today Cosmic Microwave

More information

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine Sterile Neutrino Candidates for the 3.5 kev Line Kevork Abazajian University of California, Irvine UCLA Dark Matter 2016 February 18, 2016 Sterile Neutrinos as Dark Matter: History Super-weak neutrinos

More information

Detection of Dark Matter Decay in the X-ray

Detection of Dark Matter Decay in the X-ray Detection of Dark Matter Decay in the X-ray Submitted to the Astro2010 Decadal Cosmology and Fundamental Physics Science Frontier Panel Kevork N. Abazajian Department of Physics, University of Maryland,

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

Dark matter from cosmological probes

Dark matter from cosmological probes PLANCK 2014 Ferrara Dark matter from cosmological probes Simon White Max Planck Institute for Astrophysics Dark matter was discovered in the Coma Cluster by Zwicky (1933) Fritz Zwicky Abell 2218 Corbelli

More information

Distinguishing Between Warm and Cold Dark Matter

Distinguishing Between Warm and Cold Dark Matter Distinguishing Between Warm and Cold Dark Matter Center for Cosmology Aspen Workshop Neutrinos in Physics & Astrophysics 2/2/2007 Collaborators: James Bullock, Manoj Kaplinghat astro-ph/0701581.. Motivations

More information

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter)

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) ICC, Durham! with the Eagle collaboration: J Schaye (Leiden), R Crain (Liverpool), R Bower, C Frenk, & M Schaller (ICC)

More information

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik Current status of the ΛCDM structure formation model Simon White Max Planck Institut für Astrophysik The idea that DM might be a neutral, weakly interacting particle took off around 1980, following a measurement

More information

Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor ABSTRACT

Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor ABSTRACT A&A 471, 51 57 (2007) DOI: 10.1051/0004-6361:20066774 c ESO 2007 Astronomy & Astrophysics Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and

More information

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 NEUTRINO COSMOLOGY ν e ν µ ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 OUTLINE A BRIEF REVIEW OF PRESENT COSMOLOGICAL DATA BOUNDS ON THE NEUTRINO MASS STERILE NEUTRINOS WHAT IS TO COME

More information

The galaxy population in cold and warm dark matter cosmologies

The galaxy population in cold and warm dark matter cosmologies The galaxy population in cold and warm dark matter cosmologies Lan Wang National Astronomical Observatories, CAS Collaborators: Violeta Gonzalez-Perez, Lizhi Xie, Andrew Cooper, Carlos Frenk, Liang Gao,

More information

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse Reionization and the High-Redshift Galaxy UV Luminosity Function with Axion Dark Matter Rosemary Wyse Johns Hopkins University and University of Edinburgh Brandon Bozek, Doddy Marsh & Joe Silk Galaxy-scale

More information

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006

NEUTRINO COSMOLOGY. n m. n e. n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 NEUTRINO COSMOLOGY n e n m n t STEEN HANNESTAD UNIVERSITY OF AARHUS PLANCK 06, 31 MAY 2006 LIMITS ON THE PROPERTIES OF LIGHT NEUTRINOS FROM COSMOLOGICAL DATA THE MASS OF THE ACTIVE SPECIES BOUNDS ON OTHER

More information

Sterile Neutrinos in Cosmology and Astrophysics

Sterile Neutrinos in Cosmology and Astrophysics Kalliopi Petraki (UCLA) October 27, 2008 Particle Physics Neutrino Oscillation experiments: neutrinos have mass Cosmology and Astrophysics Plenty of unexplained phenomena Dark Matter Pulsar Kicks Supernova

More information

On the detection of kev scale neutrino dark matter in β decay

On the detection of kev scale neutrino dark matter in β decay On the detection of kev scale neutrino dark matter in β decay experiment Wei LIAO U East China University of Science and Technology uànóœæ Workshop CIAS Meudon 2012 6 June 2012, Paris Content Content:

More information

Sterile neutrinos in Cosmology

Sterile neutrinos in Cosmology Sterile neutrinos in Cosmology ev sterile neutrinos Dark Radiation/HDM kev sterile neutrinos WDM N eff in low-scale seesaw models versus the lightest neutrino mass P. Hernandez, J. Lopez-Pavon, M. Kekic

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

Neutrino masses, dark matter and baryon asymmetry of the universe

Neutrino masses, dark matter and baryon asymmetry of the universe Neutrino masses, dark matter and baryon asymmetry of the universe Takehiko Asaka (Tohoku University) @ The 4 th COE Symposium The 21 st Century Center-of-Excellence Program Sendai International Center,

More information

DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT. MATTEO VIEL INAF & INFN Trieste

DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT. MATTEO VIEL INAF & INFN Trieste DARK MATTER AND DARK ENERGY AT HIGH REDSHIFT MATTEO VIEL INAF & INFN Trieste SISSA IDEALS WORKSHOP --- 11th November 2011 RATIONALE HIGHLIGHT THE IMPORTANCE OF HIGH REDSHIFT (z>1) OBSERVABLES IN ORDER

More information

Astrophysical probes of dark matter properties

Astrophysical probes of dark matter properties Astrophysical probes of dark matter properties James Bullock, Manoj Kaplinghat, Alexander Kusenko, Rosemary Wyse Abstract Inferring the microscopic properties of dark matter from observations of cosmic

More information

AN UNIDENTIFIED X-RAY LINE IN ANDROMEDA, PERSEUS AND THE GALACTIC CENTER

AN UNIDENTIFIED X-RAY LINE IN ANDROMEDA, PERSEUS AND THE GALACTIC CENTER AN UNIDENTIFIED X-RAY LINE IN ANDROMEDA, PERSEUS AND THE GALACTIC CENTER Jeroen Franse Instituut Lorentz & Leiden Observatory COSMO 2014 - August 26, Chicago JEROEN FRANSE INSTITUUT LORENTZ & LEIDEN OBSERVATORY

More information

X-Ray observability of WHIM and our new mission concept DIOS Intergalactic. Oxygen. Surveyor ) Noriko Yamasaki ISAS/JAXA

X-Ray observability of WHIM and our new mission concept DIOS Intergalactic. Oxygen. Surveyor ) Noriko Yamasaki ISAS/JAXA X-Ray observability of WHIM and our new mission concept DIOS (Diffuse Intergalactic Oxygen Surveyor ) Noriko Yamasaki ISAS/JAXA 1 Cosmic Baryon Budget requires missing baryon The observed baryons are only

More information

COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES

COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES 60 comoving Mpc/h MATTEO VIEL INAF & INFN Trieste HEIDELBERG JOINT ASTRONOMICAL COLLOQUIUM 14 t/h DECEMBER 2010 OUTLINE 1-

More information

Determining the Nature of Dark Matter with Astrometry

Determining the Nature of Dark Matter with Astrometry Determining the Nature of Dark Matter with Astrometry Louie Strigari UC Irvine Center for Cosmology Fermilab, 4.16.2007 Collaborators: James Bullock, Juerg Diemand, Manoj Kaplinghat, Michael Kuhlen, Piero

More information

Dark Matter. Jaan Einasto Tartu Observatory and ICRANet 16 December Saturday, December 15, 12

Dark Matter. Jaan Einasto Tartu Observatory and ICRANet 16 December Saturday, December 15, 12 Dark Matter Jaan Einasto Tartu Observatory and ICRANet 16 December 2012 Local Dark Matter: invisible matter in the Galaxy in Solar vicinity Global Dark Matter: invisible matter surrounding galaxies Global

More information

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Meng Su (MIT)! Pappalardo/Einstein fellow!! In Collaboration with Zhiyuan Li (NJU)!! 15 Years of Science with Chandra!

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context Simon White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al

More information

How Massive is the Milky Way?

How Massive is the Milky Way? How Massive is the Milky Way? See also: Klypin et al. (2002) Simon s talk Matthias Steinmetz Astrophysical Institute Potsdam Overview Spectroscopic Surveys of the MW Geneva-Copenhagen, SDSS, RAVE Mass

More information

Some like it warm. Andrea V. Macciò

Some like it warm. Andrea V. Macciò Some like it warm Andrea V. Macciò MPIA - Heidelberg D. Aderhalden, A. Schneider, B. Moore (Zurich), F. Fontanot (HITS), A. Dutton, J. Herpich, G. Stinson (MPIA), X. Kang (PMO) CDM problems, hence WDM

More information

Dark Matter in Particle Physics

Dark Matter in Particle Physics High Energy Theory Group, Northwestern University July, 2006 Outline Framework - General Relativity and Particle Physics Observed Universe and Inference Dark Energy, (DM) DM DM Direct Detection DM at Colliders

More information

Insights into galaxy formation from dwarf galaxies

Insights into galaxy formation from dwarf galaxies Potsdam, August 2014 Insights into galaxy formation from dwarf galaxies Simon White Max Planck Institute for Astrophysics Planck CMB map: the IC's for structure formation Planck CMB map: the IC's for structure

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Structure formation and sterile neutrino dark matter

Structure formation and sterile neutrino dark matter Structure formation and sterile neutrino dark matter Collaboration: Trujillo-Gomez, Papastergis Merle, Totzauer Aurel Schneider ETH Zurich Dark matter: explore all possibilities DM via annihilation/decay

More information

3.5 kev X-ray line and Supersymmetry

3.5 kev X-ray line and Supersymmetry Miami-2014, Fort Lauderdale, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Bhaskar Dutta, Rizwan Khalid and Qaisar Shafi, JHEP 1411,

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Cosmological observables and the nature of dark matter

Cosmological observables and the nature of dark matter Cosmological observables and the nature of dark matter Shiv Sethi Raman Research Institute March 18, 2018 SDSS results: power... SDSS results: BAO at... Planck results:... Planck-SDSS comparison Summary

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix

Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix CBR Spectrum Planck and all-a Perfect Fit to the CDM Expectation Precise measurements of the CBR specify the cosmological

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

Dark matter velocity spectroscopy

Dark matter velocity spectroscopy TeVPA 2017 TeV Particle Astrophysics Dark matter velocity spectroscopy Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Stanford University SLAC National Accelerator Laboratory Thanks to

More information

Everything in baryons?

Everything in baryons? Everything in baryons? Benoit Famaey (ULB) Rencontres de Blois 2007 General Relativity -> Dark Matter R αβ - 1/2 R g αβ + Λg αβ = (8πG/c 4 ) T αβ very precisely tested on solar system scales (but Pioneer)

More information

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Decaying Dark Matter, Bulk Viscosity, and Dark Energy Decaying Dark Matter, Bulk Viscosity, and Dark Energy Dallas, SMU; April 5, 2010 Outline Outline Standard Views Dark Matter Standard Views of Dark Energy Alternative Views of Dark Energy/Dark Matter Dark

More information

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays F. Bezrukov MPI für Kernphysik, Heidelberg, Germany 11-12-2008 Kaffeepalaver Outline Outline 1 Implications for light

More information

Dark Radiation from Particle Decay

Dark Radiation from Particle Decay Dark Radiation from Particle Decay Jörn Kersten University of Hamburg Based on Jasper Hasenkamp, JK, JCAP 08 (2013), 024 [arxiv:1212.4160] Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay

More information

A.Klypin. Dark Matter Halos

A.Klypin. Dark Matter Halos A.Klypin Dark Matter Halos 1 Major codes: GADET N-body Hydro Cooling/Heating/SF Metal enrichment Radiative transfer Multistepping/Multiple masses Springel, SDM White PKDGRAV - GASOLINE ART ENZO Quinn,

More information

Tracing the bright and dark sides of the universe with X-ray observations. Yasushi Suto. Department of Physics University of Tokyo

Tracing the bright and dark sides of the universe with X-ray observations. Yasushi Suto. Department of Physics University of Tokyo Tracing the bright and dark sides of the universe with X-ray observations Yasushi Suto Department of Physics University of Tokyo 1 WMAP summary of cosmic energy budget baryons ordinary matter makes up

More information

Viable production mechanism of kev sterile neutrino with large mixing angle

Viable production mechanism of kev sterile neutrino with large mixing angle EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher EPJ Web of Conferences 182, 02032 (2018) c Owned by the authors, published by EDP Sciences, 2018 Viable production

More information

Dark matter, baryogenesis and neutrinos

Dark matter, baryogenesis and neutrinos Dark matter, baryogenesis and neutrinos Mikhail Shaposhnikov ISAPP 2011: The dark side of the Universe Heidelberg, 13 and 14 July 2011 p. 1 Outline 1 Introduction: No new scale paradigm Minimal model leading

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Recent developments in the understanding of Dark Matter

Recent developments in the understanding of Dark Matter Liverpool Physics Teachers Conference 20th June 2013 Recent developments in the understanding of Dark Matter Phil James Liverpool John Moores University Astrophysics Research Institute OUTLINE OF TALK

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

Production mechanisms for kev sterile neutrino dark matter in the Early Universe

Production mechanisms for kev sterile neutrino dark matter in the Early Universe Production mechanisms for kev sterile neutrino dark matter in the Early Universe based on JCAP06 (2015) 011, JCAP04 (2016) 003 & 1509.01289 in collaboration with J. König, A. Merle and A. Schneider Maximilian

More information

arxiv: v3 [hep-ph] 25 Oct 2017

arxiv: v3 [hep-ph] 25 Oct 2017 UCI-TR-2017-03 Sterile neutrinos in cosmology Kevork N. Abazajian Center for Cosmology, Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, USA Abstract arxiv:1705.01837v3

More information

Clusters of galaxies and the large scale structure of the universe. Gastão B. Lima Neto IAG/USP

Clusters of galaxies and the large scale structure of the universe. Gastão B. Lima Neto IAG/USP Clusters of galaxies and the large scale structure of the universe Gastão B. Lima Neto IAG/USP IWARA, Maresias 10/2009 Our story begins... William Herschel recognizes the clustering of nebulae and their

More information

Sterile neutrinos, moduli, and dark matter with a kev mass.

Sterile neutrinos, moduli, and dark matter with a kev mass. Sterile neutrinos, moduli, and dark matter with a kev mass. Dark matter candidates at a kev scale: sterile neutrinos, string/supersymmetry moduli Warm or cold, depending on the production scenario Particle

More information

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013 GALAXY CLUSTERING Emmanuel Schaan AST 542 April 10th 2013 INTRODUCTION: SCALES GALAXIES: 10kpc Milky Way: 10kpc, 10 12 Mo GALAXY GROUPS: 100kpc or «poor clusters» Local Group: ~50gal, 3Mpc, 10 13 Mo GALAXY

More information

Angular Momentum Problems in Disk Formation

Angular Momentum Problems in Disk Formation Angular Momentum Problems in Disk Formation MPIA Theory Group Seminar, 07/03/2006 The Standard Picture Disks galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum

More information

Dark matter and entropy dilution

Dark matter and entropy dilution Dark matter and entropy dilution Miha Nemevšek Goran Senjanović, Yue Zhang 1205.0844 Dark workshop TÜM/IAS, December 2015 Dark Matter stability Discrete symmetries MSSM & R-parity extended Higgs Inert

More information

DM overproduction Excluded by X-ray observations. Dark matter mass MDM [kev]

DM overproduction Excluded by X-ray observations. Dark matter mass MDM [kev] Light Dark Matter Kenji Kadota IBS Center for Theoretical Physics of the Universe (CTPU) Institute for Basic Science, Korea Ø Two concrete examples ü Sterile neutrino DM Production mechanism ü Axion(-like)

More information

Theoretical Cosmology and Galaxy Formation at UMD

Theoretical Cosmology and Galaxy Formation at UMD Theoretical Cosmology and Galaxy Formation at UMD Massimo Ricotti (Associate Professor, Dept. of Astronomy) Current group members: Owen Parry (Postdoc) Sam Leithner (CTC postdoc) Emil Polisensky (PhD student)

More information

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler Dark matter or modified gravity? Chaire Galaxies et Cosmologie Françoise Combes 11 December, 2017 XENON1T Abel & Kaehler Why modified gravity? CDM models beautifully account for LSS, CMB, galaxy formation

More information

Baryons MaEer: Interpre>ng the Dark MaEer Model

Baryons MaEer: Interpre>ng the Dark MaEer Model Baryons MaEer: Interpre>ng the Dark MaEer Model Alyson Brooks Rutgers, the State University of New Jersey In collabora>on with the University of Washington s N- body Shop makers of quality galaxies Most

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

What are the best constraints on theories from galaxy dynamics?

What are the best constraints on theories from galaxy dynamics? What are the best constraints on theories from galaxy dynamics? TDG in MOND DM MOND Françoise Combes Observatoire de Paris Tuesday 29 June 2010 O.Tiret Still most baryons are unidentified 6% in galaxies

More information

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

Dark Matter -- Astrophysical Evidences and Terrestrial Searches SFB 443 Bosen workshop 2010 Dark Matter -- Astrophysical Evidences and Terrestrial Searches Klaus Eitel, Karlsruhe Institute of Technology, KCETA, IK KIT University of the State of Baden-Württemberg and

More information

Sterile Neutrinos as Dark Matter. Manfred Lindner

Sterile Neutrinos as Dark Matter. Manfred Lindner Sterile Neutrinos as Dark Matter Manfred Lindner 13-20 December 2012 SM works perfectly & Higgs seems to be there - mass range was shrinking and is now rather precisely known - no signs for anything else

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure Modern cosmology : The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations effect of cosmological parameters Large scale structure

More information

arxiv: v1 [astro-ph.co] 17 Jun 2015

arxiv: v1 [astro-ph.co] 17 Jun 2015 Draft Version June 9, 25 Preprint typeset using L A TEX style emulateapj v. 5/2/ SEARCHING FOR KEV STERILE NEUTRINO DARK MATTER WITH X-RAY MICROCALORIMETER SOUNDING ROCKETS E. Figueroa-Feliciano, A. J.

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Dark Matter. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

Dark Matter. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark 10-14 December 2012 6 th TRR Winter School - Passo del Tonale Dark Matter Marco Cirelli (CNRS IPhT Saclay) in collaboration with: A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

arxiv: v3 [hep-ph] 11 Sep 2009

arxiv: v3 [hep-ph] 11 Sep 2009 Sterile neutrinos: the dark side of the light fermions UCLA/09/TEP/55 arxiv:0906.2968v3 [hep-ph] 11 Sep 2009 Alexander Kusenko Department of Physics and Astronomy, University of California, Los Angeles,

More information

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Dark Baryons and their Hidden Places Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Contents History Inconsistent Matter Inventory Dark Baryon vs. Dark Matter Possible Hidden Places Search

More information

CLUMPY: A public code for γ-ray and ν signals from dark matter structures.

CLUMPY: A public code for γ-ray and ν signals from dark matter structures. CLUMPY: A public code for γ-ray and ν signals from dark matter structures. Moritz Hütten, DESY Zeuthen for the CLUMPY developers: Vincent Bonnivard, Moritz Hütten, Emmanuel Nezri, Aldée Charbonnier, Céline

More information

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz Modelling the Milky Way: challenges in scientific computing and data analysis Matthias Steinmetz Can we form disk galaxies? 3 Not really Formation of disks has been notoriously difficult Feedback? Resolution?

More information

Invisible Sterile Neutrinos

Invisible Sterile Neutrinos Invisible Sterile Neutrinos March 25, 2010 Outline Overview of Sterile Neutrino Dark Matter The Inert Doublet Model with 3 Singlet Fermions Non-thermal Dark Matter Conclusion Work done in collaboration

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001 Neutrino mass and neutrino dark matter Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001 Dr. Theo M. Nieuwenhuizen Institute for Theoretical Physics University

More information

Where to Look for Dark Matter Weirdness

Where to Look for Dark Matter Weirdness Where to Look for Dark Matter Weirdness Dark Matter in Southern California (DaMaSC) - II James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Mike Boylan-Kolchin U. Maryland Miguel Rocha

More information

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology A unified multi-wavelength model of galaxy formation Carlton Baugh Institute for Computational Cosmology M81 Angel Lopez Sanchez A unified multi-wavelength model of galaxy formation Lacey et al. 2015 arxiv:1509.08473

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Warm dark matter with future cosmic shear data

Warm dark matter with future cosmic shear data Workshop CIAS Meudon, Tuesday, June 7, 2011 Warm dark matter with future cosmic shear data Katarina Markovic (University Observatory Munich) markovic@usm.lmu.de in collaboration with Jochen Weller and

More information

Modified Gravity and Dark Matter

Modified Gravity and Dark Matter Modified Gravity and Dark Matter Jose A. R. Cembranos University Complutense of Madrid, Spain J. Cembranos, PRL102:141301 (2009) Modifications of Gravity We do not know any consistent renormalizable Quantum

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on Observational cosmology: Large scale structure Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 Large Scale Structure After these lectures, you

More information

The imprint of the initial conditions on large-scale structure

The imprint of the initial conditions on large-scale structure Stars, Planets and Galaxies 2018 Harnack House, Berlin The imprint of the initial conditions on large-scale structure Simon White Max Planck Institute for Astrophysics The Planck map of TCMB the initial

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

Theory of galaxy formation

Theory of galaxy formation Theory of galaxy formation Bibliography: Galaxy Formation and Evolution (Mo, van den Bosch, White 2011) Lectures given by Frank van den Bosch in Yale http://www.astro.yale.edu/vdbosch/teaching.html Theory

More information

Distinguishing between WDM and CDM by studying the gap power spectrum of stellar streams

Distinguishing between WDM and CDM by studying the gap power spectrum of stellar streams Distinguishing between WDM and CDM by studying the gap power spectrum of stellar streams based on arxiv:1804.04384, JCAP 07(2018)061 Nilanjan Banik Leiden University/GRAPPA, University of Amsterdam In

More information