MARS DROP. Matthew A. Eby Mechanical Systems Department. Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013

Size: px
Start display at page:

Download "MARS DROP. Matthew A. Eby Mechanical Systems Department. Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013"

Transcription

1 MARS DROP Matthew A. Eby Mechanical Systems Department Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013 The Aerospace Corporation 2013

2 The Aerospace Corporation (Aerospace), a California nonprofit corporation has flown 20 small satellites over the past 15 years. 2 Photograph courtesy of NASA

3 MARS DROP Landing System for a Mars Planetary Micro-probe Objective MARS DROP is an Aerospace research project to adapt Aerospace s REBR (Reentry Breakup Recorder) vehicle for use as a Planetary micro-probe Existing aeroshell is well suited for Mars entry (aerodynamically stable) Simply need to add a landing system Research objective to demonstrate proof-ofconcept landing system that leaves sufficient volume for a useful scientific payload. Approach Engage with scientific community from outset Collaboration with Planetary Science Institute Architect three aspects Backshell separation mechanism Deployment of aerodynamic drag device Terminal landing hardware Test on Earth with high altitude balloon deployments REBR Key Milestones Landing Architecture Study Fall 2012 First High Altitude Field Test Soon Complete Detailed Design Fall 2013 Final High Altitude Field Test

4 Entry, Descent, & Landing 7 Minutes of Terror Progressively larger NASA Mars Landers have produced progressively more exciting landings (e.g. MSL s 7 Minutes of Terror ) Larger mass densities equate to higher ballistic coefficients and faster terminal velocities, requiring complex multi-stage, supersonic deceleration Multi-stage, supersonic deceleration is untestable as a system on Earth (cost prohibitive) A micro-probe has the advantage of going smaller, with a low ballistic coefficient that greatly simplifies the landing architecture. A sufficiently low ballistic coefficient will produce a subsonic terminal velocity, requiring a simple, single-stage, subsonic deceleration to reach landing velocity Single stage, subsonic deceleration is easily tested on Earth Drop testing at high altitudes (where atmosphere has same density as Mars surface) Chute Deploy ~ Mach 0.8 Chute Deploy ~ Mach 2 Pathfinder / MER / MSL 4

5 Mach Number Entry, Descent, & Landing Ballistic Mars Entry Curves Pathfinder, 68 kg/m 2, Entry at 7.3 km/sec & DOF Simulation (Range, Height, Orientation) Spirit/Opportunity, 97 kg/m 2, Entry at 5.5 km/sec & Parachute Window Mars DROP, 35 kg/m 2, Entry at 6.9 km/sec & * 5 Altitude (km) Mach 1 Microprobe goes subsonic around 10 km subsonic landing system Pathfinder, Spirit, Opportunity, MSL all supersonic during parachute deploy *Microprobe goes subsonic across wide range of entry parameters

6 Aerodynamic Decelerator Trade Study Available Volume is the Limiting Factor Concepts: Solid Circular Parachute Disk-Gap-Band Parachute Inflatable Decelerator Vortex Ring Parachute Parawing Claim to Fame Standard Round Solid Parachute Used on all NASA Mars Landers Targeted for future NASA Mars Landers Highest Drag Supersonic No Yes Yes Unreliable No Gliding Chute Complexity Low Low High High (Swivel) Medium Prior Research Extensive Extensive Moderate Minimal Moderate Subsonic Drag Moderate (C D ~ 0.9) Mass / Volume for 7.5m/s vertical velocity (reference V) Notes / Landing Site Limitations Low (C D ~ 0.6) Moderate (C D ~ 0.8) Very High (C D ~ 2.0) Very Low (C D ~ 0.3), but Lift 1.1 kg / 2300 cm kg / 3480 cm kg / 5200 cm kg / 1050 cm kg / 200 cm 3 Poor subsonic drag prompts two-stage deceleration Is attractive for much larger vehicles Suspect Reliability Horizontal velocity -could be good or bad 6 ~ 3000 cm 3 internal volume

7 Why a Parawing Back to the Future NASA studied parawings in the 1960 s for Gemini & Apollo reentry vehicles, but ultimately did not employ them. For a Mars microprobe they are attractive We are volume limited, so the Lifting action (L/D ~ 3) sets up a glide path that greatly reduces the vertical landing velocity By far smallest volume amongst options We have a subsonic deployment and deceleration, where parawings are usable Extensive existing database of aerodynamic characteristics for microprobe design sizing Steerable & will glide for km! Image Courtesy of NASA 7

8 Parawing Challenges and why Gemini astronauts never glided back home It kicks like a mule during inflation, 2-3 times higher transient loads than an equivalent circular chute But lightweight instruments designed to MAC (Mass Acceleration Curve) launch loads should be able to handle this better than astronauts It s a bit of a packing nightmare, with 275 feet of rigging line But the advent of high performance synthetic fibers (Spectra) keeps the stowed volume small 8

9 Landing Architecture Entry Interface 100 km, V=7km/sec T+1 min, Max Q 35 km, 15 g s T+3 min, Backshell Sep. 6.5 km, Mach DOF Simulation (Range, Height, Orientation) T+3 min, Main Deploy 6.5 km, 200m/sec T+3 min, Peak Inflation Load 6.5 km, 65 g s T+10 min, Terminal Landing 3.0 km, Vertical < 7.5 m/sec Foreground Image Courtesy of NASA 9

10 High Altitude Testing Going to Mars on Earth Low density Mars surface atmosphere is replicated on Earth at high altitude (~100,000 feet), reachable for small payloads with weather balloons Test in stages Deployment tests of the Parawing across Q (dynamic pressure) bounds Proof-of-concept demonstrations for the full landing system Transition capability to mission development Approach yields high fidelity testing at minimal cost Small fraction of cost traditionally expended for verifying a descent and landing architecture 10

11 Test Architecture Release Target Drop Altitude 90k 100k feet Accelerate to Dynamic Pressure Launch Conduct Test Beacon 430 MHz Position & Telemetry MHz 11

12 Let s Propose a Mars Mission Together Some Design Parameters REBR has a history of riding on NASA & ESA spacecraft Who wants to try to hitchhike on a forthcoming Mars bound spacecraft? The parawing is sized to land a 3 kg probe (~1 kg available for the science payload) at most elevations on Mars Who wants to target an interesting but risky location the expensive rovers steer clear of? A parawing is steerable and will glide for kilometers over 10 or more minutes Who wants to fly into Valles Marineris? It s a Cubesat in a reentry package, so its pretty cheap (relatively speaking) Who wants to send a dozen as a distributed science project (weather, seismic, etc.)? 1.) Pick any Location (almost) 2.) Select the Science 3.) Design for Launch & EDL Packed Chute / Backshell Adhere to those Mass Acceleration Curve Loads (~60 g s) Range Enabled Science Probe / Forebody? 12 Map Courtesy of NASA ~ 3000 cm 3 internal volume

13 M RS DROP LET S DISCUSS COLLABORATING 13

14 References 1. NASA Technical Note D-5965 LOW-SPEED WIND TUNNEL INVESTIGATION OF ALL-FLEXIBLE TWIN- KEEL TENSION-STRUCTURE PARAWINGS, NASA Technical Note D-5793 PERFORMANCE AND DEPLOYMENT CHARACTERISTICS OF A TWIN-KEEL PARAWING WITH VARIOUS AMOUNTS AND PERMEABILITIES OF POROUS MATERIAL IN OUTER LOBES,

Small Entry Probe Trajectories for Mars

Small Entry Probe Trajectories for Mars CubeSat (re-)entry can mean burning up in the atmosphere Here, we discuss surviving atmospheric entry We must model & understand flight dynamics, aerodynamics, heating Motivation for CubeSat entry Support

More information

Entry, Descent and Landing Technology Advancement

Entry, Descent and Landing Technology Advancement Entry, Descent and Landing Technology Advancement Dr. Robert D. Braun May 2, 2017 EDL Technology Investments Have Enabled Seven Increasingly-Complex Successful U.S. Landings on Mars Sojourner: 25 kg, 1997

More information

Aeromaneuvering/Entry, Descent, Landing

Aeromaneuvering/Entry, Descent, Landing Aeromaneuvering/Entry, Descent, Landing Aeromaneuvering Case study: Mars EDL Case study: Mars Exploration Rovers Case study: Mars Science Laboratory U N I V E R S I T Y O F MARYLAND 2012 David L. Akin

More information

Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing

Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing Ashley M. Korzun 1 and Robert D. Braun 2 Georgia Institute of Technology, Atlanta,

More information

Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute!

Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute! Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute! Graham V. Candler! Vladimyr Gidzak! William L. Garrard! University of Minnesota! Keith Stein! Bethel University! Supported by

More information

Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades

Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades Kristina Alemany 1, Grant Wells 1, John Theisinger 1, Ian Clark 1, Dr. Robert Braun 2 Space Systems Design Laboratory

More information

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS : SCIENCE WITH DIRECTED AERIAL ROBOT EXPLORERS (DARE) DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION 1 NEW ARCHITECTURE FOR PLANETARY EXPLORATION KEY ELEMENTS: Long-Duration Planetary Balloon Platforms

More information

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS 7 th Annual Meeting of the NASA Institute for Advanced Concepts DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS 1 MARS

More information

FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT

FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT 17 th AIAA Aerodynamic Decelerator Systems AIAA-2003-2126 Technology Conference and Seminar Monterey, CA, 19-22 May 2003 FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT

More information

High Mass Mars Entry, Descent, and Landing Architecture Assessment

High Mass Mars Entry, Descent, and Landing Architecture Assessment AIAA SPACE 29 Conference & Exposition 14-17 September 29, Pasadena, California AIAA 29-6684 High Mass Mars Entry, Descent, and Landing Architecture Assessment Bradley A. Steinfeldt, John E. Theisinger,

More information

Large Supersonic Ballutes: Testing and Applications FISO Telecon

Large Supersonic Ballutes: Testing and Applications FISO Telecon Large Supersonic Ballutes: Testing and Applications FISO Telecon 6-29-216 Dr. Ian Clark, LDSD Principal Investigator Erich Brandeau, Entry Descent and Landing Engineer Overview Ballute history Parachute

More information

Mars Exploration Entry, Descent and Landing Challenges

Mars Exploration Entry, Descent and Landing Challenges Mars Exploration Entry, Descent and Landing Challenges Robert D. Braun * Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 Robert M. Manning Jet Propulsion

More information

Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars

Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars AE8900 MS Special Problems Report Space Systems Design Lab (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute of

More information

MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION Jie Dong *, Zezhou Sun, Wei Rao, Yang Jia, Linzhi Meng, Chuang Wang, Baichao Chen Beijing Institute of Spacecraft System Engineering,

More information

SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION

SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION J. Stephen Lingard (1), John C. Underwood (1), Matt Darley (1), Arrun Saunders (1), Lionel Marraffa (2), Luca Ferracina

More information

Numerical Simulation of Flow Field around an Inflatable Vehicle during a Reentry Demonstration Flight considering Membrane Deformation

Numerical Simulation of Flow Field around an Inflatable Vehicle during a Reentry Demonstration Flight considering Membrane Deformation Numerical Simulation of Flow Field around an Inflatable Vehicle during a Reentry Demonstration Flight considering Membrane Deformation Dongheun HA 1,Yusuke TAKAHASHI 1 Kazuhiko YAMADA 2 1) Hokkaido Univ.

More information

Conceptual Modeling and Analysis of Drag- Augmented Supersonic Retropropulsion for Application in Mars Entry, Descent, and Landing Vehicles

Conceptual Modeling and Analysis of Drag- Augmented Supersonic Retropropulsion for Application in Mars Entry, Descent, and Landing Vehicles University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Dissertations Aerospace Engineering Sciences Spring 1-1-2013 Conceptual Modeling and Analysis of Drag- Augmented

More information

GUIDANCE TRADES FOR HIGH BALLISTIC COEFFICIENT MARS LANDER TRAJECTORIES

GUIDANCE TRADES FOR HIGH BALLISTIC COEFFICIENT MARS LANDER TRAJECTORIES (Preprint) AAS GUIDANCE TRADES FOR HIGH BALLISTIC COEFFICIENT MARS LANDER TRAJECTORIES Tyler R. Anderson * Georgia Institute of Technology, Atlanta, Georgia Robert D. Braun University of Colorado Boulder,

More information

Parachute systems for the atmospheric reentry of launcher upper stages

Parachute systems for the atmospheric reentry of launcher upper stages Parachute systems for the atmospheric reentry of launcher upper stages Bogdan DOBRESCU*,1, Radu BLIDERAN 1, Adrian CHELARU 1 *Corresponding author 1 INCAS National Institute for Aerospace Research Elie

More information

The Archimedes Mars balloon project and the MIRIAM test flights Part 1: from Archimedes to MIRIAM

The Archimedes Mars balloon project and the MIRIAM test flights Part 1: from Archimedes to MIRIAM The Archimedes Mars balloon project and the MIRIAM test flights Part 1: from Archimedes to MIRIAM EMC13-13th European Mars Conference Kai Gehreth Jürgen Herholz Mars Society Deutschland www.marssociety.de

More information

IPPW Bio: Robert Dillman BS Aerospace Engineering, University of Virginia 1989; Masters of Materials Science, University of Virginia 1997 NASA

IPPW Bio: Robert Dillman BS Aerospace Engineering, University of Virginia 1989; Masters of Materials Science, University of Virginia 1997 NASA IPPW Bio: Robert Dillman BS Aerospace Engineering, University of Virginia 1989; Masters of Materials Science, University of Virginia 1997 NASA Langley Research Center, Hampton VA, since 1989 10 years of

More information

Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing

Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing Space Systems Design Laboratory (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute of

More information

IAC-08-D2.3.9 A CONCEPT FOR THE ENTRY, DESCENT, AND LANDING OF HIGH-MASS PAYLOADS AT MARS

IAC-08-D2.3.9 A CONCEPT FOR THE ENTRY, DESCENT, AND LANDING OF HIGH-MASS PAYLOADS AT MARS IAC-08-D2.3.9 A CONCEPT FOR THE ENTRY, DESCENT, AND LANDING OF HIGH-MASS PAYLOADS AT MARS Ashley M. Korzun, Gregory F. Dubos, Curtis K. Iwata Georgia Institute of Technology, United States akorzun@gatech.edu,

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

Design and analysis of parachute triggering algorithms for re-entry vehicles

Design and analysis of parachute triggering algorithms for re-entry vehicles Design and analysis of parachute triggering algorithms for re-entry vehicles Master thesis report Barend Ording 1147153 Daily Supervisors Ir. G.F. Brouwer TU Delft M. Sudars MSc.Ing Thales Alenia Space

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

Launch Vehicle Family Album

Launch Vehicle Family Album Launch Vehicle Family Album T he pictures on the next several pages serve as a partial "family album" of NASA launch vehicles. NASA did not develop all of the vehicles shown, but has employed each in its

More information

Section 3.5 Recovery Systems: Parachutes 101

Section 3.5 Recovery Systems: Parachutes 101 Section 3.5 Recovery Systems: Parachutes 101 Material taken from: Parachutes for Planetary Entry Systems Juan R. Cruz Exploration Systems Engineering Branch NASA Langley Research Center Also, Images from:

More information

Rocket Science, Reentry and the Race to Mars. From Science Fiction to Simulation

Rocket Science, Reentry and the Race to Mars. From Science Fiction to Simulation Rocket Science, Reentry and the Race to Mars From Science Fiction to Simulation Julian Köllermeier RWTH Aachen, November 1st 2015 The Mars half the diameter of the Earth 40% of Earth s gravity 2 moons

More information

1. INTRODUCTION. Gregg Barton Charles Stark Draper Laboratory El Camino Real, Suite 470 Houston, TX

1. INTRODUCTION. Gregg Barton Charles Stark Draper Laboratory El Camino Real, Suite 470 Houston, TX Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars Ian Meginnis, Zachary Putnam, Ian Clark, Robert Braun Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology

More information

Review of the Trajectory and Atmospheric Structure Reconstruction for Mars Pathfinder

Review of the Trajectory and Atmospheric Structure Reconstruction for Mars Pathfinder Review of the Trajectory and Atmospheric Structure Reconstruction for Mars Pathfinder Paul Withers (Boston University, USA) and Martin Towner, Brijen Hathi, John Zarnecki (Open University, Great Britain)

More information

Trajectory Trade-space Design for Robotic. Entry at Titan

Trajectory Trade-space Design for Robotic. Entry at Titan Georgia Institute of Technology AE8900 Special Problems Trajectory Trade-space Design for Robotic Entry at Titan Evan Roelke Advised by Dr. Robert Braun Abstract In recent years, scientific focus has emphasized

More information

Future Development Plan of Sample return Capsule evolved on the basis of HAYABUSA SRC heritage

Future Development Plan of Sample return Capsule evolved on the basis of HAYABUSA SRC heritage Future Development Plan of Sample return Capsule evolved on the basis of HAYABUSA SRC heritage Kazuhiko Yamada(JAXA) Contents Back ground Importance of sample return capsule technology Future sample return

More information

Verifying Volatile Volcanoes on Venus

Verifying Volatile Volcanoes on Venus Verifying Volatile Volcanoes on Venus Muscle Shoals High School Team #1 Page 1 1.0 Introduction Venus, Earth s sister planet, is a strange and hostile world. The atmosphere is almost completely carbon

More information

ADVANCES IN GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ENTRY, DESCENT, AND LANDING SYSTEMS

ADVANCES IN GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ENTRY, DESCENT, AND LANDING SYSTEMS (Preprint) AAS 16-092 ADVANCES IN GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ENTRY, DESCENT, AND LANDING SYSTEMS Zachary R. Putnam * and Robert D. Braun INTRODUCTION Planetary entry, descent, and

More information

Separable warhead mathematical model of Supersonic & Hypersonic Re-entry Vehicles

Separable warhead mathematical model of Supersonic & Hypersonic Re-entry Vehicles 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Initial Trajectory and Atmospheric Effects

Initial Trajectory and Atmospheric Effects Initial Trajectory and Atmospheric Effects G. Flanagan Alna Space Program July 13, 2011 Introduction A major consideration for an earth-based accelerator is atmospheric drag. Drag loses mean that the gun

More information

4.8 Space Research and Exploration. Getting Into Space

4.8 Space Research and Exploration. Getting Into Space 4.8 Space Research and Exploration Getting Into Space Astronauts are pioneers venturing into uncharted territory. The vehicles used to get them into space are complex and use powerful rockets. Space vehicles

More information

Aerothermodynamics for Dragonfly s Titan Entry

Aerothermodynamics for Dragonfly s Titan Entry Aerothermodynamics for Dragonfly s Titan Entry Presented by Aaron Brandis David Saunders, Gary Allen, Eric Stern, Michael Wright, Milad Mahzari, Chris Johnston, Jeff Hill, Douglas Adams and Ralph Lorenz

More information

SPACE DEBRIS MITIGATION TECHNOLOGIES

SPACE DEBRIS MITIGATION TECHNOLOGIES SPACE DEBRIS MITIGATION TECHNOLOGIES Rob Hoyt Tethers Unlimited, Inc. The orbital debris population and its potential for continued rapid growth presents a significant threat to DoD, NASA, commercial,

More information

Ball Aerospace & Technologies Corp. & L Garde Inc.

Ball Aerospace & Technologies Corp. & L Garde Inc. Ball Aerospace & Technologies Corp. & L Garde Inc. Rapid De-Orbit of LEO Space Vehicles Using Towed owed Rigidizable Inflatable nflatable Structure tructure (TRIS) Technology: Concept and Feasibility Assessment

More information

MONTGOLFIERE BALLOON MISSIONS FOR MARS AND TITAN

MONTGOLFIERE BALLOON MISSIONS FOR MARS AND TITAN MONTGOLFIERE BALLOON MISSIONS FOR MARS AND TITAN Jack A. Jones, Jack.A.Jones@jpl.nasa.gov James A. Cutts, James.A.Cutts@jpl.nasa.gov Jeffery L. Hall, Jeffery.L.Hall@jpl.nasa.gov Jiunn-Jenq Wu, Jiunnjenq.Wu@jpl.nasa.gov

More information

BRINGING YOUR EXPERIMENT INTO SPACE

BRINGING YOUR EXPERIMENT INTO SPACE BRINGING YOUR EXPERIMENT INTO SPACE Science Service Division SSC - Swedish Space Corporation Space exploration with ESA: opportunities within the ESA programme E3P Stockholm, 13 November 2018 SWEDISH SPACE

More information

9.2 Worksheet #3 - Circular and Satellite Motion

9.2 Worksheet #3 - Circular and Satellite Motion 9.2 Worksheet #3 - Circular and Satellite Motion 1. A car just becomes airborne as it comes off the crest of a bridge that has circular cross section of radius 78.0 m. What is the speed of the car? 2.

More information

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03 Design of Orbits and Spacecraft Systems Engineering Scott Schoneman 13 November 03 Introduction Why did satellites or spacecraft in the space run in this orbit, not in that orbit? How do we design the

More information

Aerosciences Considerations in the Design of a Powered Descent Phase for Human-Scale Mars Lander Vehicles

Aerosciences Considerations in the Design of a Powered Descent Phase for Human-Scale Mars Lander Vehicles Aerosciences Considerations in the Design of a Powered Descent Phase for Human-Scale Mars Lander Vehicles Ashley Korzun, Karl Edquist, Alicia Dwyer Cianciolo NASA Langley Research Center Jake Tynis Analytical

More information

SOLAR MONTGOLFIERE BALLOONS FOR MARS

SOLAR MONTGOLFIERE BALLOONS FOR MARS AIAA-99-3852 SOLAR MONTGOLFIERE BALLOONS FOR MARS Jack A. Jones Jiunn Jeng Wu Member AIAA Member AIAA Principal Engineer Senior Engineer Jet Propulsion Laboratory, California Institute of Technology Pasadena,

More information

HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS

HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS HYBRID AEROCAPTURE USING LOW L/D AEROSHELLS FOR ICE GIANT MISSIONS 15 th International Planetary Probe Workshop (IPPW-15) Boulder, Colorado, June 2018 Athul Pradeepkumar Girija A. Arora, and S. J. Saikia

More information

From Celestial North, this is IT S OVER YOUR HEAD for the week of. The New Year brought together revelers the world over for jubilant parties

From Celestial North, this is IT S OVER YOUR HEAD for the week of. The New Year brought together revelers the world over for jubilant parties 040107.doc Spiritual Experience on Mars Page 1 of 5 From Celestial North, this is IT S OVER YOUR HEAD for the week of January 7 th, 2004, a look at what s up in the sky over Puget Sound. The New Year brought

More information

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F MARYLAND 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric

More information

Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA

Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA Samples returned to terrestrial laboratories by MSR Mission would be analyzed with state-of the-art instrumentation providing unprecedented insight

More information

Space Debris Reentry Hazards

Space Debris Reentry Hazards IAASS Space Debris Reentry Hazards William Ailor, Ph.D., The Aerospace Corporation Chair, Space Hazards Technical Committee, International Association for the Advancement of Space Safety (IAASS) Presented

More information

Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions

Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions The Space Congress Proceedings 1993 (30th) Yesterday's Vision is Tomorrow's Reality Apr 28th, 2:00 PM - 5:30 PM Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions

More information

PSI AP Physics 1 Gravitation

PSI AP Physics 1 Gravitation PSI AP Physics 1 Gravitation Multiple Choice 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B)

More information

21 JSTS Vol. 27, No. 2

21 JSTS Vol. 27, No. 2 21 JSTS Vol. 27, No. 2 Technical Challenges and Study on Guided Reentry Flight for Capsule Spacecraft Shuichi MATSUMOTO 1), Yoshinori KONDOH 1), Takane IMADA 1) and Naoki SATO 1) 1) Japan Aerospace Exploration

More information

Flow Simulation over Re-Entry Bodies at Supersonic & Hypersonic Speeds

Flow Simulation over Re-Entry Bodies at Supersonic & Hypersonic Speeds International Journal of Engineering Research and Development eissn : 2278-067X, pissn : 2278-800X, www.ijerd.com Volume 2, Issue 4 (July 2012), PP. 29-34 Flow Simulation over Re-Entry Bodies at Supersonic

More information

OPEN THALES ALENIA SPACE

OPEN THALES ALENIA SPACE ISSUE : 01 Page : 2/11 CHANGE RECORDS ISSUE DATE CHANGE RECORDS AUTHOR 01 First Issue F. Cogo ISSUE : 01 Page : 3/11 TABLE OF CONTENTS 1. INTRODUCTION...4 2. RADFLIGHT MISSION OVERVIEW...5 3. INSTRUMENTATION

More information

Autonomous Formation Flying and Proximity Operations using Differential Drag on the Mars Atmosphere

Autonomous Formation Flying and Proximity Operations using Differential Drag on the Mars Atmosphere Autonomous Formation Flying and Proximity Operations using Differential Drag on the Mars Atmosphere Andrés E. Villa M.S. in Aerospace Engineering candidate California Polytechnic State University May 5

More information

PRECISION LANDING AT MARS USING DISCRETE-EVENT DRAG MODULATION

PRECISION LANDING AT MARS USING DISCRETE-EVENT DRAG MODULATION AAS 13-438 PRECISION LANDING AT MARS USING DISCRETE-EVENT DRAG MODULATION Zachary R. Putnam and Robert D. Braun INTRODUCTION An entry, descent, and landing architecture capable of achieving Mars Science

More information

Abstract. THOMAS, CASEY. Aerodynamic Validation using MER and Phoenix Entry Flight Data. (Under the supervision of Dr. Robert Tolson.

Abstract. THOMAS, CASEY. Aerodynamic Validation using MER and Phoenix Entry Flight Data. (Under the supervision of Dr. Robert Tolson. Abstract THOMAS, CASEY. Aerodynamic Validation using MER and Phoenix Entry Flight Data. (Under the supervision of Dr. Robert Tolson.) Every NASA Mars landing mission has used a 70-degree half-cone forebody,

More information

MASS MODEL DEVELOPMENT FOR CONCEPTUAL DESIGN OF A HYPERSONIC RIGID DEPLOYABLE DECELERATOR

MASS MODEL DEVELOPMENT FOR CONCEPTUAL DESIGN OF A HYPERSONIC RIGID DEPLOYABLE DECELERATOR MASS MODEL DEVELOPMENT FOR CONCEPTUAL DESIGN OF A HYPERSONIC RIGID DEPLOYABLE DECELERATOR Juan G. Cruz-Ayoroa (1), Cole D. Kazemba (2), Bradley A. Steinfeldt (3) Jenny R. Kelly (4), Ian G. Clark (5), Robert

More information

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES Raffaele Savino University of Naples Federico II Objectives Show the main capabilities of deployable aero-brakes for Earth

More information

A simplified trajectory analysis model for small satellite payload recovery from low Earth orbit

A simplified trajectory analysis model for small satellite payload recovery from low Earth orbit Aerospace Science and Technology 7 (2003) 231 237 www.elsevier.com/locate/aescte A simplified trajectory analysis model for small satellite payload recovery from low Earth orbit Frank K. Lu a,, Hyungwon

More information

Mars Precision Entry Guidance Using Internal Moving Mass Actuators

Mars Precision Entry Guidance Using Internal Moving Mass Actuators Mars Precision Entry Guidance Using Internal Moving Mass Actuators Brad M. Atkins Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

Atmospheric Entry. Technology, Mathematical Model and Simulation

Atmospheric Entry. Technology, Mathematical Model and Simulation Atmospheric Entry Technology, Mathematical Model and Simulation Julian Köllermeier RWTH Aachen, August 26th 2016 Outline 1. Introduction to Atmospheric Reentry 2. Rarefied Gases: From Science Fiction to

More information

Opportunities for Small Satellites and Space Research Using the K-1 Vehicle

Opportunities for Small Satellites and Space Research Using the K-1 Vehicle SSC99-X-5 Opportunities for Small Satellites and Space Research Using the K-1 Vehicle Debra Facktor Lepore, Gary Lai, and Tom Taylor Kistler Aerospace Corporation 3760 Carillon Point, Kirkland, Washington

More information

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

Report Team /09/2012

Report Team /09/2012 Report 3082 Next month Felix Baumgartner plans on breaking the world record for high altitude skydiving. He will make his jump from a capsule suspended beneath a balloon, at the edge of space. After Felix

More information

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review U N I V E R S I T Y O F MARYLAND 2008 David L. Akin - All rights reserved

More information

Venus Bridge: Orbiter and atmospheric element

Venus Bridge: Orbiter and atmospheric element Venus Bridge: Orbiter and atmospheric element Jim Cutts 1, Damon Landau 1 Members of the Venus Bridge Focus Group Members of the NASA ARC and LaRC aeroentry team Alfred Nash 1 and the members of JPL s

More information

ENAE 791 Course Overview

ENAE 791 Course Overview ENAE 791 Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Space Transportation System

More information

Human Spaceflight Value Study Was the Shuttle a Good Deal?

Human Spaceflight Value Study Was the Shuttle a Good Deal? Human Spaceflight Value Study Was the Shuttle a Good Deal? Andy Prince Billy Carson MSFC Engineering Cost Office/CS50 20 October 2016 Purpose Examine the Space Shuttle Program Relative to its Goals and

More information

Rapid De-Orbit of LEO Space Vehicles Using Towed Rigidizable Inflatable Structure (TRIS) Technology: Concept and Feasibility Assessment

Rapid De-Orbit of LEO Space Vehicles Using Towed Rigidizable Inflatable Structure (TRIS) Technology: Concept and Feasibility Assessment Rapid De-Orbit of LEO Space Vehicles Using Towed Rigidizable Inflatable Structure (TRIS) Technology: Concept and Feasibility Assessment Submitted to: AIAA Small Satellite Conference August 2004 Ball Aerospace

More information

Design of a High Altitude Balloon Drop Test for SPORE (Small Probes for Orbital Return of Experiments)

Design of a High Altitude Balloon Drop Test for SPORE (Small Probes for Orbital Return of Experiments) Design of a High Altitude Balloon Drop Test for SPORE (Small Probes for Orbital Return of Experiments) Jessica Juneau School of Aerospace Engineering AE 8900 Spring/2012 Advisor: Prof. David A. Spencer

More information

CHARACTERIZATION OF GUIDANCE ALGORITHM PERFORMANCE FOR DRAG MODULATION-BASED AEROCAPTURE

CHARACTERIZATION OF GUIDANCE ALGORITHM PERFORMANCE FOR DRAG MODULATION-BASED AEROCAPTURE (Preprint) AAS 17-032 CHARACTERIZATION OF GUIDANCE ALGORITHM PERFORMANCE FOR DRAG MODULATION-BASED AEROCAPTURE Michael S. Werner * and Robert D. Braun INTRODUCTION Discrete-event drag modulation systems

More information

PHYSICS 3300 Case Study - Falling through Jupiter

PHYSICS 3300 Case Study - Falling through Jupiter PHYSICS 3300 Case Study - Falling through Jupiter 1 Overview The atmosphere of Jupiter is a complex and dynamic place. The primary component is molecular hydrogen with fractional concentrations of helium

More information

ADEPT, A Mechanically Deployable Re-Entry Vehicle System, Enabling Interplanetary CubeSat and Small Satellite Missions

ADEPT, A Mechanically Deployable Re-Entry Vehicle System, Enabling Interplanetary CubeSat and Small Satellite Missions SSC18-XII-08 ADEPT, A Mechanically Deployable Re-Entry Vehicle System, Enabling Interplanetary CubeSat and Small Satellite Missions Alan M. Cassell 1, Brandon P. Smith 1, Paul F. Wercinski 1, Shakib M.

More information

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773 ENAE 483/788D MIDTERM FALL, 208 NAME: One 8.5 x piece of paper allowed for notes (both sides). No Internet-enabled devices allowed. Put your name on the cover page, and on each page if you disassemble

More information

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F.

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F MARYLAND 2004 David L. Akin - All rights reserved http://spacecraft.ssl.

More information

REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE. By Alexander Bolonkin

REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE. By Alexander Bolonkin REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE By Alexander Bolonkin New York 01 1 Article Reentry of Space Ship after Shmuel 11 4 1 REENTRY OF SPACE CRAFT TO EARTH ATMOSPHERE By Alexander Bolonkin C&R abolonkin@juno.com

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

II. Current and Recommended State of Knowledge

II. Current and Recommended State of Knowledge I. Introduction The Martian atmosphere is the origin of many possible hazards to both humans and equipment. The unknown thermodynamic properties of the bulk gas fluid, including unexpected turbulence in

More information

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel National Aeronautics and Space Administration Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel Karl Edquist (Karl.T.Edquist@nasa.gov) and Ashley Korzun NASA Langley

More information

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS

A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS National Aeronautics and Space Administration A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS Helen H. Hwang NASA Ames Research Center 2018 International Planetary Probe Workshop June 12, 2018

More information

SUBSONIC AND TRANSONIC WIND TUNNEL TESTING OF TWO INFLATABLE AERODYNAMIC DECELERATORS

SUBSONIC AND TRANSONIC WIND TUNNEL TESTING OF TWO INFLATABLE AERODYNAMIC DECELERATORS SUBSONIC AND TRANSONIC WIND TUNNEL TESTING OF TWO INFLATABLE AERODYNAMIC DECELERATORS Christopher L. Tanner (1), Juan R. Cruz (2), Monica F. Hughes (3), Ian G. Clark (4), Robert D. Braun (5) (1) Georgia

More information

Chariot. to the Moons of Mars. Z. R. Putnam. University of Illinois at Urbana-Champaign. Zachary R. Putnam

Chariot. to the Moons of Mars. Z. R. Putnam. University of Illinois at Urbana-Champaign. Zachary R. Putnam Chariot to the Moons of Mars A NASA Planetary Science Deep Space SmallSat Studies Program Mission Concept Z. R. Putnam University of Illinois at Urbana Champaign Zachary R. Putnam University of Illinois

More information

Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications

Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications Thomas A. Zang tzandmands@wildblue.net Aug. 8, 2012 CFD Futures Conference: Zang 1 Context The focus of this presentation

More information

Overview of Orion Aerodynamics: Database Development and Flight Test Comparisons

Overview of Orion Aerodynamics: Database Development and Flight Test Comparisons Overview of Orion Aerodynamics: Database Development and Flight Test Comparisons Karen L. Bibb, NASA, Langley Research Center MPCV Aerosciences, CM Static Aerodynamic Database Technical Lead 15 th International

More information

De-orbiting Small Satellites Using Inflatables

De-orbiting Small Satellites Using Inflatables De-orbiting Small Satellites Using Inflatables Aman Chandra Space and Terrestrial Robotic Exploration Laboratory, Department of Aerospace and Mechanical Engineering, University of Arizona Jekanthan Thangavelautham

More information

PAYLOAD CONCEPT PROPOSAL VENUS EXPLORER MISSION

PAYLOAD CONCEPT PROPOSAL VENUS EXPLORER MISSION PAYLOAD CONCEPT PROPOSAL VENUS EXPLORER MISSION More than Meets the Eye Prepared by: Guntersville High School May 2014 1.0 Introduction The Venus Fly Traps is a team of six engineering students at Guntersville

More information

Advanced drop tests from stratospheric balloons

Advanced drop tests from stratospheric balloons Advanced drop tests from stratospheric balloons Mr Mikael Töyrä SSC, Esrange, P.O. Box 802, SE-981 28 Kiruna, Sweden Stratospheric balloons are used for scientific measurements, drop tests of aerospace

More information

Irvine. Salton Sea. Palm Springs. Interstate 10

Irvine. Salton Sea. Palm Springs. Interstate 10 Salton Sea _ Palm Springs _ Irvine _ Interstate 10 _ Courtesy University of Arizona Cassini VIMS Operations Center and NASA-JPL The future arrives on its own timetable in unexpected ways. Paul Saffo A

More information

Parachute Dynamic Stability and the Effects of Apparent Inertia

Parachute Dynamic Stability and the Effects of Apparent Inertia Parachute Dynamic Stability and the Effects of Apparent Inertia AE89 MS Special Problems Report Space Systems Design Lab (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute of Technology

More information

Minimum-Mass Limit of Venus Atmospheric Probes

Minimum-Mass Limit of Venus Atmospheric Probes Minimum-Mass Limit of Venus Atmospheric Probes Dr. Jacob Izraelevitz and Dr. Jeff Hall Extreme Environment Robotics Group Jet Propulsion Laboratory 15 th International Planetary Probe Workshop, June 2018

More information

Circular vs. Elliptical Orbits for Persistent Communications

Circular vs. Elliptical Orbits for Persistent Communications 5th Responsive Space Conference RS5-2007-2005 Circular vs. Elliptical Orbits for Persistent Communications James R. Wertz Microcosm, Inc. 5th Responsive Space Conference April 23 26, 2007 Los Angeles,

More information

RE-ENTRY TRAJECTORY SIMULATION OF A SMALL BALLISTIC RECOVERABLE SATELLITE

RE-ENTRY TRAJECTORY SIMULATION OF A SMALL BALLISTIC RECOVERABLE SATELLITE INPE-11308-PRE/6745 RE-ENTRY TRAJECTORY SIMULATION OF A SMALL BALLISTIC RECOVERABLE SATELLITE Walkiria Schulz* Paulo Moraes Jr. ADVANCES IN SPACE DYNAMICS 4: CELESTIAL MECHANICS AND ASTRONAUTICS, H. K.

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Testing the Composition of Ganymede

Testing the Composition of Ganymede PHILLIPS 01 Testing the Composition of Ganymede Can We Dig It? Yes We Can 12/4/2012 Phillips High School Team 1, the, will be testing the composition of the surface of Ganymede. 1.0 Introduction NASA is

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information