Aerothermodynamics for Dragonfly s Titan Entry

Size: px
Start display at page:

Download "Aerothermodynamics for Dragonfly s Titan Entry"

Transcription

1 Aerothermodynamics for Dragonfly s Titan Entry Presented by Aaron Brandis David Saunders, Gary Allen, Eric Stern, Michael Wright, Milad Mahzari, Chris Johnston, Jeff Hill, Douglas Adams and Ralph Lorenz AMA Inc, NASA Ames Research Center NASA Langley Research Center Johns Hopkins Applied Physics Laboratory

2 2 Introduction Address Titan s diverse landscape by using a rotorcraft for aerial mobility Go to the interesting material Conduct surface experiments Obtain aerial images R. Lorenz & D. Adams from APL have more detailed talks about the mission on Friday NASA Ames & Langley Involvement Partnering as the leads for the entry system to provide the completed EDL Assembly Provides an opportunity for continued development of Titan entry capability Leverages unique capabilities at both LaRC and ARC

3 3 Titan Arrival Aerothermal Design Titan offers relatively benign entry conditions for aerothermal environment Largest aero-heating uncertainty is radiative heating Contributes ~20 % of heat load on the forebody Dominates backshell heating environment

4 4 Entry and Descent Wake-up avionics, begin telemetry transmission, E-25 min Vent heat rejection system, E-20 min Turn to entry, switch to tone transmission, E-15 min Cruise stage separation, E-10 min Relevant to Aerothermal Entry interface, h=1270 km, v=7.3 km/s, =-47.7, E-0 min Peak heating, h=254 km, v=5.9 km/s, a=7.8 g s, E+4 min Entry Preparation Ballistic Entry Drogue chute deploy, h=154 km, supersonic, E+6 min Descent on drogue Main chute pilot deployed in lower atmosphere Heatshield separation Parachute Phase For reference, Huygens took min from entry to the surface. Dragonfly s descent is a bit shorter by design. Landing skid deployment Radar and lidar active Lander release Powered Flight Space Exploration

5 5 Entry and Descent (pre Phase A) Relatively benign Titan ballistic entry at EFPA of and 7.3 km/s Genesis scaled m sphere cone heatshield / biconic backshell geometry In terms of TPS materials, Forebody: Tiled PICA. Aftbody: Acusil-II

6 Forebody Heat Loads (Pre Phase A) Margined"Heat"Flux,"W/cm 2" 200" 180" 160" 140" 120" 100" 80" 60" 40" 20" MSL 197 Radia%ve(Hea%ng( Convec%ve(Hea%ng( Total(Hea%ng( Dfly Shoulder 180 Stagnation Point Margin(of(1.25x(for(both(convec%ve(and(radia%ve(hea%ng( 98.23%(N 2 (/(1.57%(CH 4 (/(0.1%(Ar(/(0.1%(H(by(mole( Radia%ve(Equilibrium(Wall( Turbulent(&(Fully(Cataly%c( Emissivity(=(0.89( Stagna%on(Point( TauberDWakefield( ( Dfly Shoulder 9200 MSL " 10000" 8000" 6000" 4000" 2000" Margined"Heat"Load,"J/cm 2" Peak margined heat flux ~ 145 W/cm 2 0" 140" 190" 240" 290" Time,"s" Margined heat load ~ 9.5 kj/cm 2 Even though shoulder loads were higher, stag point was driving TPS sizing location In family with MSL environments and thus similar TPS thickness PICA is flight proven for such fluxes/loads and more than capable 6 0" Wright, et al., AIAA JSR 2014

7 Preliminary Phase A Aerothermal V&V Unmargined Heat Flux, W/cm Radiative Heating: NEQAIR Radiative Heating: HARA 98.23% N 2 / 1.57% CH 4 / 0.1% Ar / 0.1% H 2 Radiative Equilibrium Wall Turbulent & Fully Catalytic Emissivity = 0.89 Stagnation Point Tauber-Wakefield Convective Heating: DPLR Convective Heating: LAURA Preliminary Comparison!!! NB: LAURA/HARA modeling options are slightly different Time, s 7

8 8 Aftbody Heat Flux (Pre Phase A) 30" Radia%ve(Hea%ng( Convec%ve(Hea%ng( Total(Hea%ng( Margined"Heat"Flux,"W/cm 2" 25" 20" 15" 10" 5" MSL ~14 w/rad MSL 6.3 Margin(of(1.5x(for(both(convec%ve(and(radia%ve(hea%ng( 98.23%(N 2 (/(1.57%(CH 4 (/(0.1%(Ar(/(0.1%(H(by(mole( 2 Radia%ve(Equilibrium(Wall( Turbulent(&(Fully(Cataly%c( Emissivity(=(0.89( Backshell(Shoulder(Seal( ( 0" 225" 230" 235" 240" 245" 250" Time,"s" Heat flux calculated at shoulder seal for zero degree angle of attack Peak margined heat flux ~ 25 W/cm 2 Preliminary analysis suggests these environments are relatively insensitive to the increase in mass and size Trade study currently taking place for aftbody TPS material

9 9 Previous Titan Radiation Studies The joint NASA/ESA Cassini/Huygens mission resulted in significant efforts to understand radiative heating for Titan Post flight simulations were conducted assuming a Boltzmann distribution of CN excited states Consequently, experiments were performed in shock tubes and QSS/CR models developed Reasons to believe there were issues with previously reported Titan (pre-upgrade) EAST data Warranted to update previously published data: Advanced mission proposals to Titan Improvements available with the current EAST set up Brandis, et al., AIAA JTHT 2010

10 10 Previous Titan Radiation Studies 5.15 km/s, 98% N2 : 2% CH4, 0.1 Torr, nm. EAST T43-25 Two shock tube facilities: - EAST at NASA Ames - X2 at U. Queensland Test 43 & 45 from EAST (2003 to 2005) Boltzmann predictions shown to substantially overpredict CR models deemed to adequately match peak (within a factor of ~2) Simulations showed slower decay rate than experiment

11 Comparisons To Previous Data: X2, Test 45 New Test 61 EAST data funded by NASA s ESM project 11 Significant differences with previous EAST and X2 data Excellent agreement X2 AB: btwn steel new tube data with & a simulations. diameter With contamination of 8.5 cmadded to T61, closer Results from CR models which were benchmarked to agreement previously reported is observed data, with may now previous provide data under-predictions X2 CJ: when aluminum compared tube to with Test a 61. diameter of 15.5 cm It is recommended that this new dataset be used to benchmark models for current & future Titan missions.

12 12 Current & Future Work Aerothermal indicator update in progress for Titan entry to aid picking a worst case design trajectory Run aerothermal analysis for Phase A study, including analyzing heating on the long gain antenna on the backshell at an angle of attack Perform a parametric study for relevant CFD and radiation parameters to inform design margins With updated aerothermal environments and informed margins, the Phase A TPS sizing will take place There is also an Engineering Science Investigation (ESI) study happening simultaneously along side the aerothermal work with the goal of obtaining aerothermal flight data

13 13 Conclusion Dragonfly is a proposed mission that would send a rotorcraft to Titan in order to study prebiotic chemistry and extraterrestrial habitability Aerothermal analysis from both Ames and Langley s suite of codes has been run for Dragonfly, with good agreement shown Models for radiative heating have been validated by recent shock tube testing in the EAST facility The entry conditions are relatively benign and can readily be accommodated with a tiled PICA heatshield similar to MSL and a number of flight proven materials for the backshell

14 14 Questions? Reminder for Friday 10:08am - Ralph Lorenz: Sample acquisition and transfer for a Titan lander 11:06am - Doug Adams: Dragonfly: Rotorcraft landing on Titan

15 Backup

16 Effect of Density & Chemical Composition Time 223s, Velocity 6.25 km/s, nominal density 3.17 e-4 kg/m3 Plots show effects of freestream density and composition on the surface aerothermal environment at peak convective heating Pre phase A nominal chemical composition was 98.2N2 : 1.6 CH4 : 0.1 H2 : 0.1 Ar, the present trade study looked at 98:2 and 98.6:1.4 variation of N2 and CH4 Future analysis will be based on expected maximum values for methane in the upper atmosphere, so will be running a composition of 97.8 N2 : 2.2 CH4 These simulations will be used to determine heating indicators for turbulent shoulder locations, and for points of interest on the backshell 16

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute!

Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute! Numerical Simulations of the Mars Science! Laboratory Supersonic Parachute! Graham V. Candler! Vladimyr Gidzak! William L. Garrard! University of Minnesota! Keith Stein! Bethel University! Supported by

More information

A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS

A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS National Aeronautics and Space Administration A COMMON PROBE DESIGN FOR MULTIPLE PLANETARY DESTINATIONS Helen H. Hwang NASA Ames Research Center 2018 International Planetary Probe Workshop June 12, 2018

More information

TPS for Outer Planets

TPS for Outer Planets TPS for Outer Planets Ethiraj Venkatapathy, D. Ellerby, P. Gage, M. Gasch, H. Hwang, D. Prabhu, M. Stackpoole, and Paul Wercinski Entry Systems and Technology Division, NASA ARC Probes / Landers Aerocapture

More information

Atmospheric Entry Studies for Uranus

Atmospheric Entry Studies for Uranus Atmospheric Entry Studies for Uranus Parul Agrawal - ARC Gary Allen - ARC Helen Hwang -ARC Jose Aliaga - ARC Evgeniy Sklyanskiy - JPL Mark Marley - ARC Kathy McGuire - ARC Loc Huynh - ARC Joseph Garcia

More information

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

Small Entry Probe Trajectories for Mars

Small Entry Probe Trajectories for Mars CubeSat (re-)entry can mean burning up in the atmosphere Here, we discuss surviving atmospheric entry We must model & understand flight dynamics, aerodynamics, heating Motivation for CubeSat entry Support

More information

A RECONSTRUCTION OF AEROTHERMAL ENVIRONMENT AND THERMAL PROTECTION SYSTEM RESPONSE OF THE MARS SCIENCE LABORATORY ENTRY VEHICLE

A RECONSTRUCTION OF AEROTHERMAL ENVIRONMENT AND THERMAL PROTECTION SYSTEM RESPONSE OF THE MARS SCIENCE LABORATORY ENTRY VEHICLE AAS 13-311 A RECONSTRUCTION OF AEROTHERMAL ENVIRONMENT AND THERMAL PROTECTION SYSTEM RESPONSE OF THE MARS SCIENCE LABORATORY ENTRY VEHICLE Deepak Bose, * Todd White, Milad Mahzari, and Karl Edquist INTRODUCTION

More information

Aerosciences Considerations in the Design of a Powered Descent Phase for Human-Scale Mars Lander Vehicles

Aerosciences Considerations in the Design of a Powered Descent Phase for Human-Scale Mars Lander Vehicles Aerosciences Considerations in the Design of a Powered Descent Phase for Human-Scale Mars Lander Vehicles Ashley Korzun, Karl Edquist, Alicia Dwyer Cianciolo NASA Langley Research Center Jake Tynis Analytical

More information

Entry, Descent and Landing Technology Advancement

Entry, Descent and Landing Technology Advancement Entry, Descent and Landing Technology Advancement Dr. Robert D. Braun May 2, 2017 EDL Technology Investments Have Enabled Seven Increasingly-Complex Successful U.S. Landings on Mars Sojourner: 25 kg, 1997

More information

Thermal Protection System (TPS) Design and the Relationship to Atmospheric Entry Environments

Thermal Protection System (TPS) Design and the Relationship to Atmospheric Entry Environments Thermal Protection System (TPS) Design and the Relationship to Atmospheric Entry Environments By Bernard Laub Dr. Michael J. Wright Dr. Ethiraj Venkatapathy NASA Ames Research Center Moffett Field, CA

More information

Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades

Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades Mars Entry, Descent, and Landing Parametric Sizing and Design Space Visualization Trades Kristina Alemany 1, Grant Wells 1, John Theisinger 1, Ian Clark 1, Dr. Robert Braun 2 Space Systems Design Laboratory

More information

High Mass Mars Entry, Descent, and Landing Architecture Assessment

High Mass Mars Entry, Descent, and Landing Architecture Assessment AIAA SPACE 29 Conference & Exposition 14-17 September 29, Pasadena, California AIAA 29-6684 High Mass Mars Entry, Descent, and Landing Architecture Assessment Bradley A. Steinfeldt, John E. Theisinger,

More information

OPEN THALES ALENIA SPACE

OPEN THALES ALENIA SPACE ISSUE : 01 Page : 2/11 CHANGE RECORDS ISSUE DATE CHANGE RECORDS AUTHOR 01 First Issue F. Cogo ISSUE : 01 Page : 3/11 TABLE OF CONTENTS 1. INTRODUCTION...4 2. RADFLIGHT MISSION OVERVIEW...5 3. INSTRUMENTATION

More information

IPPW Bio: Robert Dillman BS Aerospace Engineering, University of Virginia 1989; Masters of Materials Science, University of Virginia 1997 NASA

IPPW Bio: Robert Dillman BS Aerospace Engineering, University of Virginia 1989; Masters of Materials Science, University of Virginia 1997 NASA IPPW Bio: Robert Dillman BS Aerospace Engineering, University of Virginia 1989; Masters of Materials Science, University of Virginia 1997 NASA Langley Research Center, Hampton VA, since 1989 10 years of

More information

Entry Modeling for Asteroid Threat Assessment

Entry Modeling for Asteroid Threat Assessment Presenter: Eric Stern Entry Modeling for Asteroid Threat Assessment Asteroid Threat Assessment Project (ATAP), Entry Modeling Lead Team: Parul Agrawal, Dinesh Prabhu, Francesco Panerai, Justin Haskins,

More information

MARS DROP. Matthew A. Eby Mechanical Systems Department. Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013

MARS DROP. Matthew A. Eby Mechanical Systems Department. Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013 MARS DROP Matthew A. Eby Mechanical Systems Department Vehicle Systems Division/ETG The Aerospace Corporation May 25, 2013 The Aerospace Corporation 2013 The Aerospace Corporation (Aerospace), a California

More information

IAC-08-D2.3.9 A CONCEPT FOR THE ENTRY, DESCENT, AND LANDING OF HIGH-MASS PAYLOADS AT MARS

IAC-08-D2.3.9 A CONCEPT FOR THE ENTRY, DESCENT, AND LANDING OF HIGH-MASS PAYLOADS AT MARS IAC-08-D2.3.9 A CONCEPT FOR THE ENTRY, DESCENT, AND LANDING OF HIGH-MASS PAYLOADS AT MARS Ashley M. Korzun, Gregory F. Dubos, Curtis K. Iwata Georgia Institute of Technology, United States akorzun@gatech.edu,

More information

The Evolution of the MSL Heatshield

The Evolution of the MSL Heatshield The Evolution of the MSL Heatshield by Robin A. S. Beck, NASA Ames Research Center David M. Driver, NASA Ames Research Center Eric M. Slimko, Jet Propulsion Laboratory June 26, 2008 International Planetary

More information

UQ in Reacting Flows

UQ in Reacting Flows UQ in Reacting Flows Planetary Entry Simulations High-Temperature Reactive Flow During descent in the atmosphere vehicles experience extreme heating loads The design of the thermal protection system (TPS)

More information

Stardust Entry Reconstruction

Stardust Entry Reconstruction AIAA-2008-1198 Stardust Entry Reconstruction Prasun N. Desai* and Garry D. Qualls NASA Langley Research Center, Hampton, VA, 23681-2199 An overview of the reconstruction analyses performed for the Stardust

More information

Reconstruction of Mars Pathfinder Aerothermal Heating and Heatshield Material Response Using Inverse Methods

Reconstruction of Mars Pathfinder Aerothermal Heating and Heatshield Material Response Using Inverse Methods 43rd AIAA Thermophysics Conference 25-28 June 22, New Orleans, Louisiana AIAA 22-2872 Reconstruction of Mars Pathfinder Aerothermal Heating and Heatshield Material Response Using Inverse Methods Milad

More information

Trajectory Trade-space Design for Robotic. Entry at Titan

Trajectory Trade-space Design for Robotic. Entry at Titan Georgia Institute of Technology AE8900 Special Problems Trajectory Trade-space Design for Robotic Entry at Titan Evan Roelke Advised by Dr. Robert Braun Abstract In recent years, scientific focus has emphasized

More information

Analysis of shock tube equilibrium radiation for Earth re-entry applications

Analysis of shock tube equilibrium radiation for Earth re-entry applications Center for Turbulence Research Annual Research Briefs 2009 83 Analysis of shock tube equilibrium radiation for Earth re-entry applications By A. M. Brandis 1. Introduction This paper presents measurements

More information

SIMULATION OF TITAN ATMOSPHERE BY AN ARC-HEATED FACILITY

SIMULATION OF TITAN ATMOSPHERE BY AN ARC-HEATED FACILITY SIMULATION OF TITAN ATMOSPHERE BY AN ARC-HEATED FACILITY V. Carandente (1), V. Caso (2), A. Esposito (3), R. Savino (4), G. Zuppardi (5) University of Naples "Federico II", P.le V. Tecchio, 80 80125 Naples

More information

Selection and Certification of TPS: Constraints and Considerations for Venus Missions

Selection and Certification of TPS: Constraints and Considerations for Venus Missions Selection and Certification of TPS: Constraints and Considerations for Venus Missions 6th International Planetary Probe Workshop (IPPW6) Atlanta, GA June 23-27, 2008 by E. Venkatapathy, B. Laub, G. J.

More information

Scott A. Berry

Scott A. Berry Scott A. Berry s.a.berry@larc.nasa.gov Vehicle Design Process Aerothermodynamics Synergistic Approach for Aerothermodynamic Information Ground Based Testing Computational Fluid Dynamics (CFD) Optimum

More information

Review of the Trajectory and Atmospheric Structure Reconstruction for Mars Pathfinder

Review of the Trajectory and Atmospheric Structure Reconstruction for Mars Pathfinder Review of the Trajectory and Atmospheric Structure Reconstruction for Mars Pathfinder Paul Withers (Boston University, USA) and Martin Towner, Brijen Hathi, John Zarnecki (Open University, Great Britain)

More information

COMPUTATIONAL ANALYSIS OF TOWED BALLUTE INTERACTIONS. NASA Langley Research Center Hampton, VA Abstract

COMPUTATIONAL ANALYSIS OF TOWED BALLUTE INTERACTIONS. NASA Langley Research Center Hampton, VA Abstract AIAA 2002-2997 COMPUTATIONAL ANALYSIS OF TOWED BALLUTE INTERACTIONS Peter A. Gnoffo Brian P. Anderson p.a.gnoffo@larc.nasa.gov b.p.anderson@larc.nasa.gov NASA Langley Research Center GWU JIAFS Hampton,

More information

Overview of Orion Aerodynamics: Database Development and Flight Test Comparisons

Overview of Orion Aerodynamics: Database Development and Flight Test Comparisons Overview of Orion Aerodynamics: Database Development and Flight Test Comparisons Karen L. Bibb, NASA, Langley Research Center MPCV Aerosciences, CM Static Aerodynamic Database Technical Lead 15 th International

More information

Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing

Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing Performance Characterization of Supersonic Retropropulsion for Application to High-Mass Mars Entry, Descent, and Landing Ashley M. Korzun 1 and Robert D. Braun 2 Georgia Institute of Technology, Atlanta,

More information

Radiative Aerothermodynamics of Entering Space Vehicles: Toward the Use of State-to-State Approach

Radiative Aerothermodynamics of Entering Space Vehicles: Toward the Use of State-to-State Approach Send Orders for Reprints to reprints@benthamscience.net The Open Plasma Physics Journal, 2014, 7, (Suppl 1: M9) 127-154 127 Open Access Radiative Aerothermodynamics of Entering Space Vehicles: Toward the

More information

ABSTRACT. Adam Farrell Beerman, Ph.D., Gas-surface modeling is dependent on material type and atmospheric reentry

ABSTRACT. Adam Farrell Beerman, Ph.D., Gas-surface modeling is dependent on material type and atmospheric reentry ABSTRACT Title of Dissertation: THE EFFECTS OF FINITE-RATE REACTIONS AT THE GAS/SURFACE INTERFACE IN SUPPORT OF THERMAL PROTECTION SYSTEM DESIGN Adam Farrell Beerman, Ph.D., 2011 Directed By: Professor

More information

Aerocapture Mission Concepts for Venus, Titan and Neptune. Michelle M. Munk - NASA/LaRC Thomas R. Spilker - NASA/JPL

Aerocapture Mission Concepts for Venus, Titan and Neptune. Michelle M. Munk - NASA/LaRC Thomas R. Spilker - NASA/JPL Aerocapture Mission Concepts for Venus, Titan and Neptune Michelle M. Munk - NASA/LaRC Thomas R. Spilker - NASA/JPL 6th International Planetary Probe Workshop Atlanta, GA June 24, 2008 1 Motivation for

More information

FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT

FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT 17 th AIAA Aerodynamic Decelerator Systems AIAA-2003-2126 Technology Conference and Seminar Monterey, CA, 19-22 May 2003 FLIGHT RECONSTRUCTION OF THE MARS PATHFINDER DISK-GAP-BAND PARACHUTE DRAG COEFFICIENT

More information

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES Raffaele Savino University of Naples Federico II Objectives Show the main capabilities of deployable aero-brakes for Earth

More information

Large Supersonic Ballutes: Testing and Applications FISO Telecon

Large Supersonic Ballutes: Testing and Applications FISO Telecon Large Supersonic Ballutes: Testing and Applications FISO Telecon 6-29-216 Dr. Ian Clark, LDSD Principal Investigator Erich Brandeau, Entry Descent and Landing Engineer Overview Ballute history Parachute

More information

MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION Jie Dong *, Zezhou Sun, Wei Rao, Yang Jia, Linzhi Meng, Chuang Wang, Baichao Chen Beijing Institute of Spacecraft System Engineering,

More information

Limits of Simulating Gas Giant Entry at True Gas Composition and True Flight Velocities in an Expansion Tube

Limits of Simulating Gas Giant Entry at True Gas Composition and True Flight Velocities in an Expansion Tube Limits of Simulating Gas Giant Entry at True Gas Composition and True Flight Velocities in an Expansion Tube 8th European Symposium on Aerothermodynamics for Space Vehicles C.M. James, D.E. Gildfind, R.G.

More information

Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing

Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing Space Systems Design Laboratory (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute of

More information

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel National Aeronautics and Space Administration Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel Karl Edquist (Karl.T.Edquist@nasa.gov) and Ashley Korzun NASA Langley

More information

Detailed investigations of the Huygens spin anomaly in a subsonic wind tunnel

Detailed investigations of the Huygens spin anomaly in a subsonic wind tunnel Detailed investigations of the Huygens spin anomaly in a subsonic wind tunnel A. Leroy 1, J.-P. Lebreton 2, P. Devinant 1, S. Loyer 1, G. Thébault 1, J. Simier 1 O. Witasse 3, R. Lorenz 4, M. Perez Ayucar

More information

IPPW-Enabled International Collaborations in EDL: Lessons Learned and Recommendations

IPPW-Enabled International Collaborations in EDL: Lessons Learned and Recommendations IPPW-Enabled International Collaborations in EDL: Lessons Learned and Recommendations Ethiraj Venkatapathy Senior Technologist NASA ARC Ali Gülhan DLR Cologne, Germany Michelle Munk Principal Technologist

More information

Chapter 3 AEROTHERMODYNAMICS OF BLUNT BODY ENTRY VEHICLES

Chapter 3 AEROTHERMODYNAMICS OF BLUNT BODY ENTRY VEHICLES Chapter 3 AEROTHERMODYNAMICS OF BLUNT BODY ENTRY VEHICLES Brian R. Hollis NASA Langley Research Center USA Salvatore Borrelli CIRA Italian Aerospace Research Centre ITALY 3.1 INTRODUCTION In this chapter,

More information

Chemical kinetic and radiating species studies of Titan aerocapture entry

Chemical kinetic and radiating species studies of Titan aerocapture entry 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Chemical kinetic and radiating species studies of Titan aerocapture entry Pénélope Leyland 1, Raffaello

More information

A Finite Element approach for the design of innovative ablative materials for space applications

A Finite Element approach for the design of innovative ablative materials for space applications 6 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) A Finite Element approach for the design of innovative ablative materials for space applications Valerio Carandente*, Roberto Scigliano,

More information

Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars

Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars AE8900 MS Special Problems Report Space Systems Design Lab (SSDL) Guggenheim School of Aerospace Engineering Georgia Institute of

More information

Hypersonics Research at The University of Queensland. Richard Morgan Centre for Hypersonics The University of Queensland

Hypersonics Research at The University of Queensland. Richard Morgan Centre for Hypersonics The University of Queensland Hypersonics Research at The University of Queensland Richard Morgan Centre for Hypersonics The University of Queensland Current activities All aspects of Scramjet propulsion Radiating flows Optical diagnostics

More information

CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS

CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD ANALYSIS OF AERODYNAMIC HEATING FOR HYFLEX HIGH ENTHALPY FLOW TESTS AND FLIGHT CONDITIONS Keiichi Murakami*, Yukimitsu Yamamoto*, Olivier Rouzand**

More information

SUPERSONIC PARACHUTE TESTING USING A MAXUS SOUNDING ROCKET PIGGY- BACK PAYLOAD

SUPERSONIC PARACHUTE TESTING USING A MAXUS SOUNDING ROCKET PIGGY- BACK PAYLOAD SUPERSONIC PARACHUTE TESTING USING A MAXUS SOUNDING ROCKET PIGGY- BACK PAYLOAD J. Stephen Lingard (1), Arrun Saunders (1), Jim Merrifield (2), Jamie Caldwell (2), José Longo (3), Luca Ferracina (4) (1)

More information

Flow Simulation over Re-Entry Bodies at Supersonic & Hypersonic Speeds

Flow Simulation over Re-Entry Bodies at Supersonic & Hypersonic Speeds International Journal of Engineering Research and Development eissn : 2278-067X, pissn : 2278-800X, www.ijerd.com Volume 2, Issue 4 (July 2012), PP. 29-34 Flow Simulation over Re-Entry Bodies at Supersonic

More information

Winds on Titan: First results from the Huygens Doppler Wind Experiment

Winds on Titan: First results from the Huygens Doppler Wind Experiment 1 Winds on Titan: First results from the Huygens Doppler Wind Experiment Supplementary Discussion. It was realized during the DWE design phase that Earth-based Doppler measurements could be combined with

More information

Numerical modeling of the CN spectral emission of the Stardust re-entry vehicle

Numerical modeling of the CN spectral emission of the Stardust re-entry vehicle 42nd AIAA Thermophysics Conference 27-30 June 2011, Honolulu, Hawaii AIAA 2011-3125 Numerical modeling of the CN spectral emission of the Stardust re-entry vehicle Alexandre Martin Department of Mechanical

More information

Analysis of Aeroheating Augmentation and Control Interference Due to Reaction Control System Jets on Blunt Capsules. by Artem Alexander Dyakonov

Analysis of Aeroheating Augmentation and Control Interference Due to Reaction Control System Jets on Blunt Capsules. by Artem Alexander Dyakonov ABSTRACT DYAKONOV, ARTEM ALEXANDER. Analysis of Aeroheating Augmentation and Control Interference Due to Reaction Control System Jets on Blunt Capsules. (Under the direction of Dr. Fred R. DeJarnette.)

More information

MODELING AND SIMULATION OF RADIATION FROM HYPERSONIC FLOWS WITH MONTE CARLO METHODS

MODELING AND SIMULATION OF RADIATION FROM HYPERSONIC FLOWS WITH MONTE CARLO METHODS The Pennsylvania State University The Graduate School Department of Aerospace Engineering MODELING AND SIMULATION OF RADIATION FROM HYPERSONIC FLOWS WITH MONTE CARLO METHODS A Dissertation in Aerospace

More information

Planar Laser-Induced Iodine Fluorescence Technique for Flow Visualization and Quantitative Measurements in Rarefied Flows

Planar Laser-Induced Iodine Fluorescence Technique for Flow Visualization and Quantitative Measurements in Rarefied Flows Planar Laser-Induced Iodine Fluorescence Technique for Flow Visualization and Quantitative Measurements in Rarefied Flows Professor James McDaniel*, Eric Cecil*, Erin Reed* and Josh Codoni* Professor Iain

More information

Nonequilibrium radiation measurements and modelling relevant to Titan entry

Nonequilibrium radiation measurements and modelling relevant to Titan entry 6 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Nonequilibrium radiation measurements and modelling relevant to Titan entry A.M. Brandis, R.G. Morgan, C.O.

More information

SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION

SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION SUPERSONIC PARACHUTE AERODYNAMIC TESTING AND FLUID STRUCTURE INTERACTION SIMULATION J. Stephen Lingard (1), John C. Underwood (1), Matt Darley (1), Arrun Saunders (1), Lionel Marraffa (2), Luca Ferracina

More information

1. INTRODUCTION. Gregg Barton Charles Stark Draper Laboratory El Camino Real, Suite 470 Houston, TX

1. INTRODUCTION. Gregg Barton Charles Stark Draper Laboratory El Camino Real, Suite 470 Houston, TX Guided Entry Performance of Low Ballistic Coefficient Vehicles at Mars Ian Meginnis, Zachary Putnam, Ian Clark, Robert Braun Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology

More information

STRUCTURAL DESIGN OF THE TITAN AEROCAPTURE MISSION

STRUCTURAL DESIGN OF THE TITAN AEROCAPTURE MISSION 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 20-23 July 2003, Huntsville, Alabama AIAA 2003-4955 AIAA-2003-4955 39 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville,

More information

Aerocapture Technology

Aerocapture Technology Aerocapture Technology Dr. Thomas Spilker Planetary Scientist / Engineer, Jet Propulsion Laboratory / Caltech Michelle M. Munk In-Space Propulsion Aerocapture Manager, NASA-Langley Research Center www.nasa.gov

More information

Mars Exploration Entry, Descent and Landing Challenges

Mars Exploration Entry, Descent and Landing Challenges Mars Exploration Entry, Descent and Landing Challenges Robert D. Braun * Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 Robert M. Manning Jet Propulsion

More information

Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis Simulation and Validation for Planetary Entry Vehicle Analysis Peter A. Gnoffo, Christopher O. Johnston, Bil Kleb NASA Langley Research Center Hampton, VA 23681-2199 USA Peter.A.Gnoffo@nasa.gov ABSTRACT

More information

Stagnation Point. Nonequilibrium Radiative Heating. Lin C. Hartung, Robert A. Mitcheltree, and Peter A. Gnoo y

Stagnation Point. Nonequilibrium Radiative Heating. Lin C. Hartung, Robert A. Mitcheltree, and Peter A. Gnoo y Stagnation Point Nonequilibrium Radiative Heating and the Inuence of Energy Exchange Models Lin C. Hartung, Robert A. Mitcheltree, and Peter A. Gnoo y NASA Langley Research Center, Hampton, VA 23665-5225

More information

8th European Symposium on ATD for Space Vehicle, Lisbon, 2-6 March 2015

8th European Symposium on ATD for Space Vehicle, Lisbon, 2-6 March 2015 1 FAST a Pre-Design Tool for the Atmospheric Re-entry of Space Vehicles and Debris F. Sourgen (*) Y. Prévereaud J-L. Vérant E. Laroche J-M. Moschetta (*) frederic.sourgen@onera.fr Onera Midi Pyrénées Center

More information

Aerothermal Analysis of a Sample-Return Reentry Capsule

Aerothermal Analysis of a Sample-Return Reentry Capsule Copyright 2013 Tech Science Press FDMP, vol.9, no.4, pp.461-484, 2013 Aerothermal Analysis of a Sample-Return Reentry Capsule V. Carandente 1, R. Savino 1, M. Iacovazzo 1 and C. Boffa 1 Abstract: The article

More information

HUYGENS MISSION AND PROJECT OVERVIEW

HUYGENS MISSION AND PROJECT OVERVIEW Annex HUYGENS MISSION AND PROJECT OVERVIEW Note: This overview is an introductory support to the HUYGENS Enquiry Board activities as defined by ESA Director General in his Board mandate letter. It is intentionaly

More information

Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle

Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry

More information

THE Mars Science Laboratory (MSL) is currently scheduled for

THE Mars Science Laboratory (MSL) is currently scheduled for JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 2, No. 4, October December 26 Modeling of Shock Tunnel Aeroheating Data on the Mars Science Laboratory Aeroshell Michael J. Wright, Joe Olejniczak, and James

More information

THERMAL ANALYSIS METHODS FOR AN EARTH ENTRY VEHICLE

THERMAL ANALYSIS METHODS FOR AN EARTH ENTRY VEHICLE THERMAL ANALYSIS METHODS FOR AN EARTH ENTRY VEHICLE Eleventh Thermal and Fluids Analysis Workshop August 21-25, 2000 Cleveland, Ohio Ruth M. Amundsen, John A. Dec, Michael C. Lindell National Aeronautics

More information

Catalytic Effects on Heat Transfer Measurements for Aerothermal Studies with CO 2

Catalytic Effects on Heat Transfer Measurements for Aerothermal Studies with CO 2 Catalytic Effects on Heat Transfer Measurements for Aerothermal Studies with CO 2 Matthew MacLean * and Michael Holden CUBRC, Aerothermal/Aero-optics Evaluation Center, Buffalo, NY, 14225 An investigation

More information

ORION REENTRY: Modeling the Aerothermodynamic Environment and Thermal Protection System Response

ORION REENTRY: Modeling the Aerothermodynamic Environment and Thermal Protection System Response ORION REENTRY: Modeling the Aerothermodynamic Environment and Thermal Protection System Response with an overview of shock layer radiation and ablative materials Benjamin S. Kirk Adam J. Amar on behalf

More information

Enceladus Probe Mission Design Using Titan Aerogravity-Assist

Enceladus Probe Mission Design Using Titan Aerogravity-Assist 15 th International Planetary Probe Workshop, June 11 15, 2018, Boulder, Colorado Enceladus Probe Mission Design Using Titan Aerogravity-Assist Ye Lu Ph.D. Candidate yelu@purdue.edu Sarag Saikia sarag@purdue.edu

More information

Radiative heating predictions for Huygens entry

Radiative heating predictions for Huygens entry JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005je002627, 2006 Radiative heating predictions for Huygens entry L. Caillault, 1 L. Walpot, 2 T. E. Magin, 1,3 A. Bourdon, 1 and C. O. Laux 1 Received

More information

DSMC Simulation of Entry Vehicle Flowfields Using a Collision-Based Chemical Kinetics Approach

DSMC Simulation of Entry Vehicle Flowfields Using a Collision-Based Chemical Kinetics Approach DSMC Simulation of Entry Vehicle Flowfields Using a Collision-Based Chemical Kinetics Approach R.G. Wilmoth a, D.B. VanGilder a, and J.L. Papp a a Combustion Research and Flow Technology, Inc., 6210 Keller

More information

MARYLAND U N I V E R S I T Y O F. Entry Aerothermodynamics. ENAE Launch and Entry Vehicle Design

MARYLAND U N I V E R S I T Y O F. Entry Aerothermodynamics. ENAE Launch and Entry Vehicle Design Entry Aerothermodynamics Review of basic fluid parameters Heating rate parameters Stagnation point heating Heating on vehicle surfaces Slides from 2012 NASA Thermal and Fluids Analysis Workshop: https://tfaws.nasa.gov/tfaws12/proceedings/

More information

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE J. Comput. Fluids Eng. Vol.17, No.4, pp.69-74, 2012. 12 / 69 CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE IN NONEQUILIBRIUM HYPERSONIC FLOW M. Ahn Furudate * Dept. of Mechatronics Engineering,

More information

Lin C. Hartung, Robert A. Mitcheltree, and Peter A. Gnoo y. NASA Langley Research Center, Abstract

Lin C. Hartung, Robert A. Mitcheltree, and Peter A. Gnoo y. NASA Langley Research Center, Abstract Coupled Radiation Eects in Thermochemical Nonequilibrium Shock-Capturing Floweld Calculations Lin C. Hartung, Robert A. Mitcheltree, and Peter A. Gnoo y NASA Langley Research Center, Abstract Lunar and

More information

Keywords: re-entry, radiation, hypervelocity, ablation. Abstract

Keywords: re-entry, radiation, hypervelocity, ablation. Abstract 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES Abstract STUDY OF RADIATIVE HEAT TRANSFER IN TITAN ATMOSPHERIC ENTRY Hadas Porat*, Richard G. Morgan*, Timothy J. McIntyre** The University of

More information

Titan Mare Explorer: TiME for Titan

Titan Mare Explorer: TiME for Titan Titan Mare Explorer: TiME for Titan Titan Mare Explorer (TiME) will: Conduct the first exploration of an extraterrestrial sea Directly sample and measure the organic constituents on another planetary object

More information

Modeling of heat transfer attenuation by ablative gases during the Stardust re-entry

Modeling of heat transfer attenuation by ablative gases during the Stardust re-entry 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0814 Modeling of heat transfer attenuation by ablative

More information

PRELIMINARY THERMAL ANALYSIS OF A MARS SAMPLE RETURN EARTH ENTRY VEHICLE

PRELIMINARY THERMAL ANALYSIS OF A MARS SAMPLE RETURN EARTH ENTRY VEHICLE AIAA-2000-2584 PRELIMINARY THERMAL ANALYSIS OF A MARS SAMPLE RETURN EARTH ENTRY VEHICLE Ruth M. Amundsen, John A. Dec, Robert A. Mitcheltree, Michael C. Lindell, Robert A. Dillman National Aeronautics

More information

THREE DIMENSIONAL FINITE ELEMENT ABLATIVE THERMAL RESPONSE ANALYSIS APPLIED TO HEATSHIELD PENETRATION DESIGN

THREE DIMENSIONAL FINITE ELEMENT ABLATIVE THERMAL RESPONSE ANALYSIS APPLIED TO HEATSHIELD PENETRATION DESIGN THREE DIMENSIONAL FINITE ELEMENT ABLATIVE THERMAL RESPONSE ANALYSIS APPLIED TO HEATSHIELD PENETRATION DESIGN A Dissertation Presented to The Academic Faculty of the School of Aerospace Engineering by John

More information

7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference June 15-18, 1998 / Albuquerque, NM

7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference June 15-18, 1998 / Albuquerque, NM AIAA 98-285 Mars Ascent Vehicle Flight Analysis P. N. Desai R. D. Braun W. C. Engelund F. M. Cheatwood NASA Langley Research Center Hampton, VA J. A. Kangas Jet Propulsion Laboratory, California Institute

More information

Design and analysis of parachute triggering algorithms for re-entry vehicles

Design and analysis of parachute triggering algorithms for re-entry vehicles Design and analysis of parachute triggering algorithms for re-entry vehicles Master thesis report Barend Ording 1147153 Daily Supervisors Ir. G.F. Brouwer TU Delft M. Sudars MSc.Ing Thales Alenia Space

More information

ENTRY TRAJECTORY AND ATMOSPHERE RECONSTRUCTION METHODOLOGIES FOR THE MARS EXPLORATION ROVER MISSION

ENTRY TRAJECTORY AND ATMOSPHERE RECONSTRUCTION METHODOLOGIES FOR THE MARS EXPLORATION ROVER MISSION ENTRY TRAJECTORY AND ATMOSPHERE RECONSTRUCTION METHODOLOGIES FOR THE MARS EXPLORATION ROVER MISSION Prasun N. Desai (1), Robert C. Blanchard (2), Richard W. Powell (3) (1) NASA Langley Research Center,

More information

ExoMars EDL Demonstrator Module (EDM) Mission and Design Overview

ExoMars EDL Demonstrator Module (EDM) Mission and Design Overview ExoMars EDL Demonstrator Module (EDM) Mission and Design Overview O. Bayle, L. Lorenzoni, Th. Blancquaert, S. Langlois, Th. Walloschek ESA S. Portigliotti, M.Capuano Thales Alenia Space Italy 8 th International

More information

REBUILDING THERMAL RESPONSE AND ABLATION RADIATION COUPLING FOR SUPERORBITAL RETURN

REBUILDING THERMAL RESPONSE AND ABLATION RADIATION COUPLING FOR SUPERORBITAL RETURN REBUILDING THERMAL RESPONSE AND ABLATION RADIATION COUPLING FOR SUPERORBITAL RETURN Jérémy Mora-Monteros 1, Elise Fahy 2, Nikhil Banerji 1, Nathan Joiner 3, Georges Du a 4, and Pénélope Leyland 1 1 Interdisciplinary

More information

Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications

Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications Suggestions for Making Useful the Uncertainty Quantification Results from CFD Applications Thomas A. Zang tzandmands@wildblue.net Aug. 8, 2012 CFD Futures Conference: Zang 1 Context The focus of this presentation

More information

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in Titan Martin E Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in our solar system to have a dense atmosphere.

More information

Solar Thermal Propulsion

Solar Thermal Propulsion AM A A A01-414 AIAA 2001-77 Solar Thermal Propulsion SOLAR THERMAL PROPULSION FOR AN INTERSTELLAR PROBE Ronald W. Lyman, Mark E. Ewing, Ramesh S. Krishnan, Dean M. Lester, Thiokol Propulsion Brigham City,

More information

Simulation of a typical reentry vehicle TPS local flow features and material response

Simulation of a typical reentry vehicle TPS local flow features and material response Simulation of a typical reentry vehicle TPS local flow features and material response E. V. Titov, and D. A. Levin Pennsylvania State University, University Park, PA 1682 Abstract. Statistical BGK/DSMC

More information

AIAA Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell

AIAA Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell AIAA 2002-4506 and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell Derek S. Liechty, Brian R. Hollis, and Karl T. Edquist NASA Langley Research Center Hampton, VA AIAA Atmospheric

More information

Dynamic Stability Analysis of Blunt Body Entry Vehicles Through the Use of a Time-Lagged Aftbody Pitching Moment

Dynamic Stability Analysis of Blunt Body Entry Vehicles Through the Use of a Time-Lagged Aftbody Pitching Moment Dynamic Stability Analysis of Blunt Body Entry Vehicles Through the Use of a Time-Lagged Aftbody Pitching Moment AE8900 MS Special Problems Report Space Systems Design Lab (SSDL) Guggenheim School of Aerospace

More information

MASS MODEL DEVELOPMENT FOR CONCEPTUAL DESIGN OF A HYPERSONIC RIGID DEPLOYABLE DECELERATOR

MASS MODEL DEVELOPMENT FOR CONCEPTUAL DESIGN OF A HYPERSONIC RIGID DEPLOYABLE DECELERATOR MASS MODEL DEVELOPMENT FOR CONCEPTUAL DESIGN OF A HYPERSONIC RIGID DEPLOYABLE DECELERATOR Juan G. Cruz-Ayoroa (1), Cole D. Kazemba (2), Bradley A. Steinfeldt (3) Jenny R. Kelly (4), Ian G. Clark (5), Robert

More information

ADVANCES IN GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ENTRY, DESCENT, AND LANDING SYSTEMS

ADVANCES IN GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ENTRY, DESCENT, AND LANDING SYSTEMS (Preprint) AAS 16-092 ADVANCES IN GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ENTRY, DESCENT, AND LANDING SYSTEMS Zachary R. Putnam * and Robert D. Braun INTRODUCTION Planetary entry, descent, and

More information

Research Article High-Fidelity Aerothermal Engineering Analysis for Planetary Probes Using DOTNET Framework and OLAP Cubes Database

Research Article High-Fidelity Aerothermal Engineering Analysis for Planetary Probes Using DOTNET Framework and OLAP Cubes Database International Journal of Aerospace Engineering Volume 2009, Article ID 326102, 21 pages doi:10.1155/2009/326102 Research Article High-Fidelity Aerothermal Engineering Analysis for Planetary Probes Using

More information

Lecture1: Characteristics of Hypersonic Atmosphere

Lecture1: Characteristics of Hypersonic Atmosphere Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of

More information

All-Particle Multiscale Computation of Hypersonic Rarefied Flow

All-Particle Multiscale Computation of Hypersonic Rarefied Flow 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-822 All-Particle Multiscale Computation of Hypersonic Rarefied

More information

Abstract. THOMAS, CASEY. Aerodynamic Validation using MER and Phoenix Entry Flight Data. (Under the supervision of Dr. Robert Tolson.

Abstract. THOMAS, CASEY. Aerodynamic Validation using MER and Phoenix Entry Flight Data. (Under the supervision of Dr. Robert Tolson. Abstract THOMAS, CASEY. Aerodynamic Validation using MER and Phoenix Entry Flight Data. (Under the supervision of Dr. Robert Tolson.) Every NASA Mars landing mission has used a 70-degree half-cone forebody,

More information