CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance

Size: px
Start display at page:

Download "CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance"

Transcription

1 CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance Justin C Kasper Smithsonian Astrophysical Observatory January 3, 2008

2 Outline Calibration Relate the ADU of the Pulse Height Analysis to the original energy deposited for each detector Models of energy deposition Description of Massachusetts General Hospital Proton Facility Example of MGH observations Description of calibration method Demonstration of success with EM Discussion of alternative methods for redundant confirmation of calibration Requirements Review Results Details

3 Project Controlled Relevant Documents ESMD-RLEP-0010 (Revision A effective November ) LRO Mission Requirements Document (MRD) 431-RQMT CRaTER Data ICD 431-ICD CRaTER Configuration Controlled Documents Instrument Requirements Document Performance and Environmental Verification Plan Calibration Plan CRaTER Digital Subsystem Functional Specification Detector Specification Document CRaTER Functional Instrument Description and Performance Verification Plan

4 CRaTER Layout

5 CRaTER Telescope Layout Telescope in cross-section A single detector (D5 for EM) A pair of thin and thick detectors (D5 and D6 for EM)

6 CRaTER Functional Diagram 6

7 Response Function Calibration Requirement Relate ADU to Energy Deposited at 0.5% level Experience with EM and both FM System is linear at 0.1% level Noise level is less than 0.15% Temperature dependence is less than 0.1% Drift with time is less than 0.02%/month Sufficient Response Function E i = G i * (C i O i ) E i is energy deposited [MeV] G i is gain [MeV/ADU] C i is PHA amplitude [ADU] O i is an offset [ADU]

8 Energy Loss of Protons in Silicon Observations of scattering Simulations of energy deposit

9 Signature of Spread Energy Protons in Detector Pair Simulation (Units of MeV) Observation (Units of ADU)

10 MGH Beam Testing with EM

11 Algorithm for Calibrating Instrument

12 Observations and Simulations

13 FM S/N 01 Calibration Parameters (CRA L0 CRA L0 CRA L0) Detector Var Value Error Units % Error D1 Gain KeV/ADU 0.18 Offset ADU D2 Gain KeV/ADU 0.26 Offset ADU 7.68 D3 Gain KeV/ADU 0.12 Offset ADU D4 Gain KeV/ADU 0.18 Offset ADU D5 Gain KeV/ADU 0.21 Offset ADU D6 Gain KeV/ADU 0.22 Offset ADU 3.12

14 Calibration and Derived Parameters Flight Model S/N 02 Flight Model S/N 01 (Selected for delivery to NASA) Var Unit D1 D3 D5 D2 D4 D6 D1 D3 D5 D2 D4 D6 Offset ADU KeV/ Gain ADU Min E KeV MeV/ Max Eum Thick um Min LET KeV/ um Max LET MeV/ um Max/ Min #

15 LET Range for Both Instruments Flight Model S/N 01 (Now flight spare) Flight Model S/N 02 (Selected for delivery to NASA)

16 Level 1 Requirements and Data Products Level 1 Requirements RLEP-LRO-M10 The LRO shall characterize the deep space radiation environment at energies in excess of 10 MeV in lunar orbit, including neutron albedo. Level 1 Data Products Provide Linear Energy Transfer (LET) spectra of cosmic rays (particularly above 10 MeV), most critically important to the engineering and modeling communities to assure safe, longterm, human presence in space. RLEP-LRO-M20 The LRO shall measure the deposition of deep space radiation on human equivalent tissue while in the lunar orbit environment. Provide LET spectra behind different amounts and types of areal density, including tissue equivalent plastic. 16

17 Flow of Level 1 to Level 2 Requirements Level 2 Instrument Requirements RLEP-LRO-M10 Characterize deep space radiation environment Level 1 Parent Requirements RLEP-LRO-M20 Radiation effects on human equivalent tissue Measure the Linear Energy Transfer (LET) spectrum Measure change in LET spectrum through Tissue Equivalent Plastic (TEP) Minimum pathlength through total TEP > 60 mm Two asymmetric TEP components 1/3 and 2/3 total length Minimum LET measurement 0.2 kev per micron Maximum LET measurement 2 MeV per micron Energy deposition resolution < 0.5% max energy Minimum full telescope geometrical factor 0.1 cm 2 sr

18 Level 2 Parent Requirements Flow of Requirements Level 3 Instrument Requirements Thin and thick detector pairs 140 & 1000 µm Minimum energy < 250 kev Nominal instrument shielding > 1524 µm Al Nadir and zenith field of view shielding < 762 µm Telescope stack Pathlength constraint < 10% for D1D6 Zenith field of view < 33 o Nadir field of view < 70 o Calibration system Event selection Maximum transmission rate > 1000 events/second

19 Testing Validation Techniques with the CRaTER Prototype Berkeley National Laboratory 88 Cyclotron (Ions, 20 MeV/nuc) Massachusetts General Hospital Proton Therapy Center (0-300 MeV p) Brookhaven National Laboratory (Gev/nuc Fe) Minimum LET measurement 0.2 kev per micron MGH Proton Accelerator Maximum LET measurement 2MeV per micron Energy deposition resolution < 0.5% max energy

20 Level 2 Requirements Verification Outline Item Requirement Quantity Method CRaTER-L2-01 Measure the Linear Energy Transfer LET (LET) spectrum CRaTER-L2-02 Measure change in LET spectrum throughtep Tissue Equivalent Plastic (TEP) CRaTER-L2-03 Minimum pathlength through total TEP > 60 mm I A A CRaTER-L2-04 Two asymmetric TEP components 1/3 and 2/3 I CRaTER-L2-05 Minimum LET measurement < 0.25 kev per micron CRaTER-L2-06 Maximum LET measurement > 2 MeV per T micron CRaTER-L2-07 Energy deposition resolution < 0.5% max energy T T CRaTER-L2-08 Minimum D1D6 geometrical factor > 0.1 cm 2 sr I

21 Level 2 Verification Item Requirement Quantity Method S/N 2 S/N 1 CRaTER-L2-01 Measure the Linear Energy Transfer (LET) spectrum LET A Verified instrument measures LET using energetic particle beams, radioactive sources, models CRaTER-L2-02 Measure change in LET spectrum through Tissue Equivalent Plastic (TEP) CRaTER-L2-03 Minimum pathlength through total TEP TEP A MGH Beam Run September MGH Beam Run December > 60 mm I mm as measured +/ mm mm as measured +/ mm CRaTER-L2-04 Two asymmetric TEP components 1/3 and 2/3 I mm and mm sections of TEP used, both +/ mm measured with micrometer mm and mm sections of TEP used, both +/ mm measured with micrometer CRaTER-L2-05 Minimum LET measurement < 0.25 kev per micron T 2.9, 3.0, 2.9, 0.09, 0.16, , 2.8, 3.2, 0.3, 0.1, 0.04 CRaTER-L2-06 Maximum LET measurement > 2 MeV per micron T 2.2, 2.2, 2.2, 0.09, 0.09, , 2.2, 2.3, 0.09, 0.09, 0.09 CRaTER-L2-07 Energy deposition resolution < 0.5% max energy T <0.1% electronics from external pulser, <0.06% detectors using width of alpha source, <0.25% gain uncertainty from beam calibrations at MGH CRaTER-L2-08 Minimum D1D6 geometrical factor > 0.1 cm 2 sr I 0.57 cm^2 sr derived from mechanical drawings

22 Level 3 Requirements Verification Outline Item Requirement Quantity Method CRaTER-L3-01 Thin and thick detector pairs 140 and 1000 microns I CRaTER-L3-02 Minimum energy < 250 kev T CRaTER-L3-03 Nominal instrument 1524 microns Al I shielding CRaTER-L3-04 Nadir and zenith field of 762 microns Al I view shielding CRaTER-L3-05 Telescope stack Shield, D1D2, A1, D3D4, A2, D5D6, shield I CRaTER-L3-06 Pathlength constraint 10% for D1D6 I CRaTER-L3-07 Zenith field of view <34 degrees D1D4 I CRaTER-L3-08 Nadir field of view <70 degrees D3D6 I CRaTER-L3-09 Calibration system Variable rate and gain T CRaTER-L3-10 Event selection 64-bit mask T CRaTER-L3-11 Maximum event transmission rate 1,000 events/sec T

23 Item Requirement Quantity Method S/N 2 S/N 1 CRaTER-L3-01 Thin and thick detector pairs 140 and 1000 microns I 148, 149, 149, 1000, 1000, , 147, 148, 933, 933, 932 CRaTER-L3-02 Minimum energy < 250 kev T 435.4, 453.4, 436.0, 90.8, 162.4, , , 475.6, 281.4, 97.1, 39.1 CRaTER-L3-03 Nominal instrument shielding CRaTER-L3-04 Nadir and zenith field of view shielding CRaTER-L3-05 Telescope stack Shield, D1D2, A1, D3D4, A2, D5D6, shield CRaTER-L3-06 Pathlength constraint 1524 microns Al I Verified by inspection of instrument and mechanical drawings 762 microns Al I Measured to be microns zenith and microns nadir I Level 3 Verification Measured to be microns zenith and microns nadir Verified by inspection of instrument and mechanical drawings 10% for D1D6 I Using geometry of telescope and uniform distribution on sky < 5% CRaTER-L3-07 Zenith field of <34 degrees I 33 degrees from mechanical drawing view D1D4 CRaTER-L3-08 Nadir field of view <70 degrees D3D6 I 69 degrees from mechanical drawing CRaTER-L3-09 Calibration Variable rate and T Verified by use of the internal calibration system system gain CRaTER-L3-10 Event selection 64-bit mask T Verified by testing in a beam and by using ambient cosmic ray muons CRaTER-L3-11 Maximum event 1,200 events/sec T Verified using the internal pulser at 2 khz and the MGH beam facility transmission rate

24 CRaTER-L2-01 Measure the LETSpectrum Requirement The fundamental measurement of the CRaTER instrument shall be of the linear energy transfer (LET) of charged energetic particles, defined as the mean energy absorbed (!E) locally, per unit path length (!l), when the particle traverses a silicon solid-state detector. Simulation (Units of MeV) MGH proton measurements Observation (Units of ADU)

25 CRaTER-L2-02 Measure LET Spectrum after Passing through TEP Requirement The LET spectrum shall be measured before entering and after propagating though a compound with radiation absorption properties similar to human tissue such as A-150 Human Tissue Equivalent Plastic (TEP). Fragments pass through telescope Iron nuclei enter D3 Iron breaks up within first section of TEP Breakup of iron into fragments after passing through TEP measured at BNL with EM Iron nuclei enter D1

26 CRaTER-L2-03 Minimum Pathlength through total TEP Requirement The minimum pathlength through the total amount of TEP in the telescope shall be at least 60 mm.

27 CRaTER-L2-04 Two asymmetric TEP components Requirement The TEP shall consist of two components of different length, 1/3 and 2/3 the total length of the TEP. If the total TEP is 61 mm in length, then the TEP section closest to deep space will have a length of approximately 54 mm and the second section of TEP will have a length of approximately 27 mm.

28 CRaTER-L2-05 Minimum LET measurement Requirement At each point in the telescope where the LET spectrum is to be observed, the minimum LET measured shall be no greater than 0.25 kev/ micron in the Silicon.

29 CRaTER-L2-06 Maximum LET measurement Requirement At each point in the telescope where the LET spectrum is to be observed, the maximum LET measured shall be no less than 2 MeV/ micron in the Silicon.

30 CRaTER-L2-07 Energy deposition resolution Requirement The pulse height analysis of the energy deposited in each detector shall have an energy resolution better than 1/200 the maximum energy measured by that detector. Upper limit on system noise is less than 0.15% < 0.5%

31 Requirement 1 G = ( 2 CRaTER-L2-08 Geometrical Factor The geometrical factor created by the first and last detectors shall be at least 0.1 cm 2 sr. 2 & $ r % r 2 6 r1 = 1.75 cm r2 = 1.75 cm Z = = cm G = 0.57 > 0.1 cm 2 sr + z 2 ' ( ) # r + r + z ' 4r r! "

32 CRaTER-L3-01 Thin and thick detector pairs Requirement The telescope stack shall contain adjacent pairs of thin and thick Silicon detectors. The thickness of the thin detectors will be approximately 140 microns and the thick detectors will be approximately 1000 microns.

33 Requirement CRaTER-L3-02 Minimum Energy The Silicon detectors shall be capable of measuring a minimum energy deposition of 250 kev or lower.

34 CRaTER-L3-03 Nominal instrument shielding Requirement The equivalent shielding of the CRaTER telescope outside of the zenith and nadir fields of view shall be no less than 1524 microns (0.060 inches) of aluminum. Verified by inspection of mechanical drawings

35 CRaTER-L3-04 Nadir and zenith field of view shielding Requirement The zenith and nadir fields of view of the telescope shall have no more than 762 microns (0.030) of aluminum shielding. EM built to 762 microns FM S/N 2 end caps specified to be / , or 762 +/- 51 microns Measured to be microns zenith and microns nadir 812 and 810 microns > 762 microns Within the design tolerance of the mechanical drawing, but nonetheless is slightly greater than the requirement specified. We have filed a Nonconforming Material Report (NMR). The science team feels that this difference in thickness does not affect the quality of the measurements made, since it is still sufficiently thin to allow protons to enter the telescope over the desired energy range, as long as the thickness is measured so it can be fed into the models.

36 Requirement CRaTER-L3-05 Telescope stack The telescope shall consist of a stack of components labeled from the zenith side as zenith shield (S1), the first pair of thin (D1) and thick (D2) detectors, the first TEP absorber (A1), the second pair of thin (D3) and thick (D4) detectors, the second TEP absorber (A2), the third pair of thin (D5) and thick (D6) detectors, and the final nadir shield (S2). Verified by direct inspection

37 CRaTER-L3-06 Full telescope pathlength constraint Requirement The root mean squared (RMS) uncertainty in the length of TEP traversed by a particle that traverses the entire telescope axis shall be less than 10%. RMS from Monte Carlo is 0.78% < 10%

38 Requirement CRaTER-L3-07 Zenith field of view The zenith field of view, defined as D2D5 coincident events incident from deep space using the naming convention in CRaTER-L3-04, shall be less than 34 degrees full width. By inspection 33 < 34 degrees

39 Requirement CRaTER-L3-08 Nadir field of view The nadir field of view, defined as D4D5 coincident events incident from the lunar surface, shall be less than 70 degrees full width. By inspection, 69 < 70 degrees

40 Requirement CRaTER-L3-09 Calibration system The CRaTER electronics shall be capable of injecting calibration signals at with different amplitudes and rates into the measurement chain.

41 Requirement CRaTER-L3-10 Event selection A command capability shall exist to allow specification of detector coincidences that will be analyzed and sent to the spacecraft for transmission to the ground. Shown that this works using proton beam at MGH

42 Requirement CRaTER-L3-11 Maximum event rate CRaTER will be capable of transmitting primary science data, namely the energy deposited in each of the detectors, on at least 1000 events per second. Verified by exposure to proton and iron beams, and by running internal calibration system at 2kHz

43 Conclusions We have conducted multiple calibration activities for both flight models External pulse generator Radioactive sources Proton beam at MGH Absolute calibration of each detector Linear response Solve for gain and offsets for each detector by fitting to numerical simulation Verification Performance requirements verified by inspection or testing Results from beam calibration propagated to determine minimum energy, energy resolution, min and max LET

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update CRaTER Pre-Environmental Review (I-PER) Science Requirements Update Justin C Kasper Smithsonian Astrophysical Observatory September 10-11, 2007 Outline Instrument Overview Verification Methods Science

More information

CRaTER Science Requirements

CRaTER Science Requirements CRaTER Science Requirements Lunar Reconnaissance Orbiter CRaTER Preliminary Design Review Justin Kasper (CRaTER Proj. Sci.) Outline Energy deposition Classical ionizing radiation Nuclear fragmentation

More information

CRaTER Instrument Requirements Document Instrument Performance and Data Products Specification. Dwg. No

CRaTER Instrument Requirements Document Instrument Performance and Data Products Specification. Dwg. No Rev. ECO Description Author Approved Date 01 32-002 Initial Release for comment JCKasper 6/3/05 02 32-044 Reposition from Level II MRD to an IRD JCKasper 7/25/05 03 32-066 General Update JCKasper 11/16/05

More information

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter J. E. Mazur 1, H. E. Spence 2, J. B. Blake 1, E. L. Kepko 2, J. Kasper 2,3, L. Townsend

More information

IAC-08-A MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR

IAC-08-A MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR IAC-08-A1.4.06 MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR Lawrence W. Townsend The University of Tennessee, Knoxville, Tennessee, United States of America ltownsen@tennessee.edu

More information

CRaTER. Justin Kasper, PS, Harvard-Smithsonian CfA

CRaTER. Justin Kasper, PS, Harvard-Smithsonian CfA CRaTER Cosmic Ray Telescope for the Effects of Radiation Harlan E. Spence, PI, Boston University CSP Justin Kasper, PS, Harvard-Smithsonian CfA NASA s Goddard Space Flight Center Luna Ut Nos Animalia Tueri

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005 DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter Lunar Reconnaissance Orbiter to Comic Ray Telescope for the Effects of Radiation Mechanical Interface Control Document Date: September

More information

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document Revision B DraftA Effective Date: July 17, 2006 Expiration Date: July 17, 2011 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO)

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO) DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO) Comic Ray Telescope for the Effects of Radiation (CRaTER) to Spacecraft Mechanical Interface Control Document Date: July 13, 2005

More information

Parameterizations of the linear energy transfer spectrum for the CRaTER instrument during the LRO mission

Parameterizations of the linear energy transfer spectrum for the CRaTER instrument during the LRO mission University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 3-1-2010 Parameterizations of the linear energy transfer spectrum for the CRaTER instrument during

More information

Measurements of galactic cosmic ray shielding with the CRaTER instrument

Measurements of galactic cosmic ray shielding with the CRaTER instrument University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 5-1-2013 Measurements of galactic cosmic ray shielding with the CRaTER instrument C. Zeitlin A.

More information

CRaTER Project Monthly Technical Progress and Schedule Status Report (NNG05EB92C DRD 20 & 21) April 2005

CRaTER Project Monthly Technical Progress and Schedule Status Report (NNG05EB92C DRD 20 & 21) April 2005 CRaTER Project Monthly Technical Progress and Schedule Status Report (NNG05EB92C DRD 20 & 21) April 2005 Page 1 of 6 Table of Contents Project Scientist s Report... 3 Project Engineer s Report... 3 Mission

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

Tritel: 3D Silicon Detector Telescope used for Space Dosimetry. Tamás Pázmándi, Attila Hirn, Sándor Deme, István Apáthy, Antal Csőke, *László Bodnár

Tritel: 3D Silicon Detector Telescope used for Space Dosimetry. Tamás Pázmándi, Attila Hirn, Sándor Deme, István Apáthy, Antal Csőke, *László Bodnár Tritel: 3D Silicon Detector Telescope used for Space Dosimetry Tamás Pázmándi, Attila Hirn, Sándor Deme, István Apáthy, Antal Csőke, *László Bodnár KFKI Atomic Energy Research Institute, H-1525 Budapest,

More information

CRaTER Thermal Analysis

CRaTER Thermal Analysis CRaTER Thermal Analysis Huade Tan Contents System Overview Design & Requirements Inputs and Assumptions Power Dissipations Environment and Orbit Current Model Results Instrument temperatures Orbital temperature

More information

Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument

Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 6-2014 Radiation environment at the Moon: Comparisons of transport code modeling and measurements

More information

Cosmic RAy Telescope for the Effects of Radiation. (CRaTER): Science Overview

Cosmic RAy Telescope for the Effects of Radiation. (CRaTER): Science Overview Cosmic Ray Telescope for the Effects of Radiation (CRaTER): Science Overview Harlan E. Spence, Principal Investigator Boston University Department of Astronomy and Center for Space Physics My Background

More information

Status of ISS-RAD. Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team

Status of ISS-RAD. Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team Status of ISS-RAD Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team ISS-RAD MSL-RAD + FND Add Fast Neutron Detector (FND) to RAD. Measure neutrons 0.5 8 MeV Many design changes.

More information

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document Effective Date: February 14, 2006 Expiration Date: February 14, 2011 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document

More information

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract SLAC-PUB-10261 December 2003 STATUS OF THE GLAST LARGE AREA TELESCOPE Richard Dubois Stanford Linear Accelerator Center, Stanford University, PO Box 20750, Stanford, CA, USA Abstract The GLAST Large Area

More information

GLAST Large Area Telescope:

GLAST Large Area Telescope: Gamma-ray Large Area Space Telescope GLAST Large Area Telescope: Balloon Flight Results WBS 4.1.E Tune Kamae Stanford Linear Accelerator Center Stanford University LAT Instrument Technical Manager kamae@slac.stanford.edu

More information

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Y.Asaoka for the CALET Collaboration RISE, Waseda University 2016/12/15 CTA-Japan Workshop The extreme

More information

N. A. Schwadron, J. K. Wilson, M. D. Looper, A. P. Jordan, H. E. Spence, J. B. Blake, A. W. Case, Y. Iwata, J. C. Kasper, W. M. Farrell, D. J.

N. A. Schwadron, J. K. Wilson, M. D. Looper, A. P. Jordan, H. E. Spence, J. B. Blake, A. W. Case, Y. Iwata, J. C. Kasper, W. M. Farrell, D. J. Signatures of Volatiles in the CRaTER Proton Albedo N. A. Schwadron, J. K. Wilson, M. D. Looper, A. P. Jordan, H. E. Spence, J. B. Blake, A. W. Case, Y. Iwata, J. C. Kasper, W. M. Farrell, D. J. Lawrence,

More information

Towards Proton Computed Tomography

Towards Proton Computed Tomography SCIPP Towards Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz, CA 95064 V.

More information

Position Sensitive Germanium Detectors for the Advanced Compton Telescope

Position Sensitive Germanium Detectors for the Advanced Compton Telescope Position Sensitive Germanium Detectors for the Advanced Compton Telescope R.A. Kroeger 1, W.N. Johnson 1, J.D. Kurfess 1, B.F. Phlips, P.N. Luke 3, M. Momayezi 4, W.K. Warburton 4 1 Naval Research Laboratory,

More information

Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications

Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications E. R. Benton 1, A. C. Lucas 1, O. I. Causey 1, S. Kodaira 2 and H. Kitamura 2 1 E. V. Benton Radiation Physics

More information

Background and Sensitivity Simulation of a Space Based Germanium Compton Telescope

Background and Sensitivity Simulation of a Space Based Germanium Compton Telescope Background and Sensitivity Simulation of a Space Based Germanium Compton Telescope B. L. Graham George Mason University, Institute for Computational Sciences and Informatics, 4400 University Dr, Fairfax

More information

Calibration of the Modular Neutron Array (MoNA)

Calibration of the Modular Neutron Array (MoNA) Calibration of the Modular Neutron Array (MoNA) Robert Pepin Gonzaga University ~1~ Calibration of the Modular Neutron Array (MoNA): Figure 1 - A rendering of the Modular Neutron Array In recent years

More information

Introduction to Ionizing Radiation

Introduction to Ionizing Radiation Introduction to Ionizing Radiation Bob Curtis OSHA Salt Lake Technical Center Supplement to Lecture Outline V. 10.02 Basic Model of a Neutral Atom Electrons(-) orbiting nucleus of protons(+) and neutrons.

More information

Space Application of Geant4 for the Japanese X-ray X Gamma-ray Mission

Space Application of Geant4 for the Japanese X-ray X Gamma-ray Mission Space Application of Geant4 for the Japanese X-ray X and Gamma-ray Mission Yukikatsu Terada (RIKEN, Japan), Shin Watanabe, Masanobu Ozaki, Tadayuki Takahashi (ISAS/JAXA), and Motohide Kokubun (Univ. of

More information

Deep Space Test Bed. POC Deep Space Test Bed (DSTB)

Deep Space Test Bed. POC   Deep Space Test Bed (DSTB) Deep Space Test Bed Workshop for Radiation Monitoring on the International Space Station September 3-5, 2003 Berkeley, California Presented by Eric Benton POC Mark.J.Christl@NASA.GOV http://sd.msfc.nasa.gov/cosmicray/dstb/dstb.htm

More information

Simulation of Radiation Effects on NGST. Bryan Fodness, Thomas Jordan, Jim Pickel, Robert Reed, Paul Marshall, Ray Ladbury

Simulation of Radiation Effects on NGST. Bryan Fodness, Thomas Jordan, Jim Pickel, Robert Reed, Paul Marshall, Ray Ladbury Simulation of Radiation Effects on NGST Bryan Fodness, Thomas Jordan, Jim Pickel, Robert Reed, Paul Marshall, Ray Ladbury 1 Outline Introduction to Project Goals and Challenges Approach Preliminary Results

More information

The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 4-1-2013 The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

More information

A New Look at the Galactic Diffuse GeV Excess

A New Look at the Galactic Diffuse GeV Excess A New Look at the Galactic Diffuse GeV Excess Brian Baughman Santa Cruz Institute for Particle Physics 1 Overview Diffuse gamma-ray emission The Galactic diffuse gamma-ray GeV excess Discussion of the

More information

Hodoscope performance for the cosmic ray set-up of the MDT-BIS chamber Beatrice

Hodoscope performance for the cosmic ray set-up of the MDT-BIS chamber Beatrice ATLAS Internal Note 7 December 2002 Hodoscope performance for the cosmic ray set-up of the MDT-BIS chamber Beatrice R.M. Avramidou 1, M. Dris 1, E.N. Gazis 1, O. Kortner 2, S. Palestini 3 1 NTU, Athens,

More information

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Flux and neutron spectrum measurements in fast neutron irradiation experiments Flux and neutron spectrum measurements in fast neutron irradiation experiments G.Gorini WORKSHOP A neutron irradiation facility for space applications Rome, 8th June 2015 OUTLINE ChipIr and SEE: New Istrument

More information

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document Effective Date: 01/11/2007 Expiration Date: 01/11/2012 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document December 19,

More information

Initial Studies in Proton Computed Tomography

Initial Studies in Proton Computed Tomography SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz,

More information

Spectroscopy on Mars!

Spectroscopy on Mars! Spectroscopy on Mars! Pathfinder Spirit and Opportunity Real World Friday H2A The Mars Pathfinder: Geological Elemental Analysis On December 4th, 1996, the Mars Pathfinder was launched from earth to begin

More information

Development of a Radiation Hard CMOS Monolithic Pixel Sensor

Development of a Radiation Hard CMOS Monolithic Pixel Sensor Development of a Radiation Hard CMOS Monolithic Pixel Sensor M. Battaglia 1,2, D. Bisello 3, D. Contarato 2, P. Denes 2, D. Doering 2, P. Giubilato 2,3, T.S. Kim 2, Z. Lee 2, S. Mattiazzo 3, V. Radmilovic

More information

Calibration of the AGILE Gamma Ray Imaging Detector

Calibration of the AGILE Gamma Ray Imaging Detector Calibration of the AGILE Gamma Ray Imaging Detector Andrew Chen on behalf of the AGILE Team April 11, 2011 AGILE Astrorivelatore Gamma ad Immagini LEggero Italian Space Agency (ASI) small mission Participation

More information

Appendices 193 APPENDIX B SCATTERING EXPERIMENTS

Appendices 193 APPENDIX B SCATTERING EXPERIMENTS Appendices 193 APPENDIX B SCATTERING EXPERIMENTS Scattering experiments are used extensively to probe the properties of atoms, nuclei and elementary particles. As described in Chapter 1, these experiments

More information

Telescope Mechanical Design

Telescope Mechanical Design Telescope Mechanical Design Albert Lin The Aerospace Corporation (310) 336-1023 albert.y.lin@aero.org 6/27/06 6/27/06 Telescope Mechanical Design 1 Overview Design Overview Instrument Requirements Mechanical

More information

Fragmentation and space radioprotection

Fragmentation and space radioprotection Fragmentation and space radioprotection C. La Tessa 1,2, E. Tracino 3, C. Schuy 2, M. Rovituso 2, C. Lobascio 3, A. Menicucci 4, E. Daly 4, M. Sivertz 1, A. Rusek 1, M. Durante 2 1 BNL (USA) 2 GSI (Germany)

More information

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Andreas Zoglauer University of California at Berkeley, Space Sciences Laboratory, Berkeley, USA Georg Weidenspointner

More information

NGRM Next Generation Radiation Monitor new standard instrument for ESA

NGRM Next Generation Radiation Monitor new standard instrument for ESA For NGRM Team: Wojtek Hajdas (PSI) NGRM Next Generation Radiation Monitor new standard instrument for ESA 13 th European Space Weather Week, 14-18 Nov 2016, Oostende, Belgium Outline 1. NGRM requirements

More information

Lunar Reconnaissance Orbiter Project. Radiation Requirements. September 14, 2006

Lunar Reconnaissance Orbiter Project. Radiation Requirements. September 14, 2006 Effective Date: 10/04/2006 Expiration Date: 10/04/2011 Lunar Reconnaissance Orbiter Project Radiation Requirements September 14, 2006 LRO GSFC CMO October 4, 2006 RELEASED Goddard Space Flight Center Greenbelt,

More information

Neutron Metrology Activities at CIAE (2009~2010)

Neutron Metrology Activities at CIAE (2009~2010) Neutron Metrology Activities at CIAE (2009~2010) Ionizing Radiation Metrology Division China Institute of Atomic Energy (P.O.Box 275(20), Beijing 102413, China) 1. Neutron calibration fields So far the

More information

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor

Characteristics of Filtered Neutron Beam Energy Spectra at Dalat Reactor World Journal of Nuclear Science and Technology, 2014, 4, 96-102 Published Online April 2014 in SciRes. http://www.scirp.org/journal/wjnst http://dx.doi.org/10.4236/wjnst.2014.42015 Characteristics of

More information

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray

More information

The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations SPACE WEATHER, VOL. 11, 142 152, doi:10.1002/swe.20034, 2013 The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations M. D. Looper, 1 J. E. Mazur, 2 J. B. Blake, 1 H.

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

Requirements for Space Radiation Dosimetry Walter Schimmerling, Francis A. Cucinotta, and John W. Wilson

Requirements for Space Radiation Dosimetry Walter Schimmerling, Francis A. Cucinotta, and John W. Wilson Requirements for Space Radiation Dosimetry Walter Schimmerling, Francis A. Cucinotta, and John W. Wilson Workshop on Radiation Monitoring for the International Space Station Farnborough, UK 3-5 November

More information

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS)

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) K. Garrow 1, B.J. Lewis 2, L.G.I. Bennett 2, M.B. Smith, 1 H. Ing, 1 R. Nolte, 3 S. Röttger, R 3 R. Smit 4

More information

User Documentation and Examples (II) in GEANT p01

User Documentation and Examples (II) in GEANT p01 User Documentation and Examples (II) in GEANT 4.9.3-p01 Michael H. Kelsey SLAC National Accelerator Laboratory GEANT4 Tutorial, BUAF Puebla, Mexico 14 Jun 2010 Advanced User Documentation Toolkit developers

More information

CRaTER Project Monthly Technical Progress and Schedule Status Report (NNG05EB92C DRD 20 & 21) May 2005

CRaTER Project Monthly Technical Progress and Schedule Status Report (NNG05EB92C DRD 20 & 21) May 2005 CRaTER Project Monthly Technical Progress and Schedule Status Report (NNG05EB92C DRD 20 & 21) May 2005 Page 1 of 6 Table of Contents Project Scientist s Report... 3 Project Engineer s Report... 3 Mission

More information

Screens for low current beams

Screens for low current beams Screens for low current beams P.Finocchiaro, L.Cosentino, A.Pappalardo INFN - Laboratori Nazionali del Sud Catania, Italy Status Workshop on 29-Apr-2010 on Scintillating - Preliminary Screen Applications

More information

Chapter 3: Neutron Activation and Isotope Analysis

Chapter 3: Neutron Activation and Isotope Analysis Chapter 3: Neutron Activation and Isotope Analysis 3.1. Neutron Activation Techniques 3.2. Neutron Activation of Paintings 3.3. From Qumran to Napoleon 3.4. Neutron Activation with Accelerators 3.5. Isotope

More information

Simulations of Advanced Compton Telescopes in a Space Radiation Environment

Simulations of Advanced Compton Telescopes in a Space Radiation Environment Simulations of Advanced Compton Telescopes in a Space Radiation Environment Andreas Zoglauer, C.B. Wunderer, S.E. Boggs, UC Berkeley Space Sciences Laboratory G. Weidenspointner CESR, France The Advanced

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

Determination of the boron content in polyethylene samples using the reactor Orphée

Determination of the boron content in polyethylene samples using the reactor Orphée Determination of the boron content in polyethylene samples using the reactor Orphée F. Gunsing, A. Menelle CEA Saclay, F-91191 Gif-sur-Yvette, France O. Aberle European Organization for Nuclear Research

More information

1. Motivation & Detector concept 2. Performance 3. Applications 4. Summary

1. Motivation & Detector concept 2. Performance 3. Applications 4. Summary A. Takada, T. Tanimori, H. Kubo, K. Miuchi, J. D. Parker, T. Mizumoto, Y. Mizumura, T. Sawano, Y. Matsuoka, S. Komura, S. Nakamura, M. Oda, S. Iwaki, K. Nakamura, S. Sonoda, D. Tomono (Kyoto Univ.) 1.

More information

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici AGATA preamplifier performance on large signals from a 241 Am+Be source F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici AGATA Week - LNL (PD), Italy, 12-15 November 2007 Outline Recalls : Fast reset device

More information

RESPONSE FUNCTION STUDY FOR ENERGY TO LIGHT CONVERSION IN ORGANIC LIQUID SCINTILLATORS

RESPONSE FUNCTION STUDY FOR ENERGY TO LIGHT CONVERSION IN ORGANIC LIQUID SCINTILLATORS RESPONSE FUNCTION STUDY FOR ENERGY TO LIGHT CONVERSION IN ORGANIC LIQUID SCINTILLATORS S. Prasad *, A. Enqvist, S. D. Clarke, S. A. Pozzi, E. W. Larsen 1 Department of Nuclear Engineering and Radiological

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

Analyzing the Sensitivity of a Hard X Ray Detector Using Monte Carlo Methods

Analyzing the Sensitivity of a Hard X Ray Detector Using Monte Carlo Methods 1 Analyzing the Sensitivity of a Hard X Ray Detector Using Monte Carlo Methods Junhong Sam Zhou Victor Senior High School LLE Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester

More information

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor University of Bristol E-mail: dan.saunders@bristol.ac.uk The disappearance of reactor antineutrinos into a new neutral

More information

Radiation Transport Tools for Space Applications: A Review

Radiation Transport Tools for Space Applications: A Review Radiation Transport Tools for Space Applications: A Review Insoo Jun, Shawn Kang, Robin Evans, Michael Cherng, and Randall Swimm Mission Environments Group, February 16, 2008 5 th Geant4 Space Users Workshop

More information

Hands on LUNA: Detector Simulations with Geant4

Hands on LUNA: Detector Simulations with Geant4 : Detector Simulations with Geant4 Gran Sasso Science Institute E-mail: axel.boeltzig@gssi.infn.it Andreas Best Laboratori Nazionali del Gran Sasso E-mail: andreas.best@lngs.infn.it For the evaluation

More information

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Pion Physics in the Meson Factory Era R. P. Redwine Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Bates Symposium 1 Meson Factories

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

Compton suppression spectrometry

Compton suppression spectrometry Compton suppression spectrometry In gamma ray spectrometry performed with High-purity Germanium detectors (HpGe), the detection of low intensity gamma ray lines is complicated by the presence of Compton

More information

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using:

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using: Christopher Cassell Research Physicist Field of Nuclear physics and Detector physics Developing detector for radiation fields around particle accelerators using: Experimental data Geant4 Monte Carlo Simulations

More information

Introduction to neutron sources

Introduction to neutron sources LA-UR-15-28281 Introduction to neutron sources Tom McLean, LANL CSU neutron class Fort Collins, CO Oct. 27-29 2015 Introduction: talk outline Preamble Discussion (brief) of neutron source types: Spontaneous

More information

Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry

Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry Fast-Neutron Production via Break-Up of Deuterons and Fast-Neutron Dosimetry F. Gutermuth *, S. Beceiro, H. Emling, G. Fehrenbacher, E. Kozlova, T. Radon, T. Aumann, T. Le Bleis, K. Boretzky, H. Johansson,

More information

RDCH 702 Lecture 8: Accelerators and Isotope Production

RDCH 702 Lecture 8: Accelerators and Isotope Production RDCH 702 Lecture 8: Accelerators and Isotope Production Particle generation Accelerator Direct Voltage Linear Cyclotrons Synchrotrons Photons * XAFS * Photonuclear Heavy Ions Neutrons sources Fission products

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions Interactions of Particulate Radiation with Matter George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To describe the various mechanisms by which particulate

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive?

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive? Unit 6 Nuclear Radiation Parent Guide What is radioactivity and why are things radioactive? The nucleus of an atom is comprised of subatomic particles called protons and neutrons. Protons have a positive

More information

Present Status of the Payload Development for Chang e-1

Present Status of the Payload Development for Chang e-1 September.19,2005 Huixian Sun 1, Ji Wu 1, Baochang Zhao 2, Rong Shu 3, Nan Zhang 4, Huanyu Wang 5, Qingying Ren 1, Xiaohui Zhang1, Xiaomin Chen1 1 Center for Space Science and Applied Research, 2 Xi'an

More information

Waves & Radiation exam questions

Waves & Radiation exam questions National 5 Physics Waves & Radiation exam questions these questions have been collated from previous Standard Grade (Credit) and Intermediate 2 exams Thurso High School 1. A mountain climber carries a

More information

Lunar Reconnaissance Orbiter Project. Radiation Requirements. August 5, 2005

Lunar Reconnaissance Orbiter Project. Radiation Requirements. August 5, 2005 Effective Date: November 7, 2005 Expiration Date: November 7, 2010 Lunar Reconnaissance Orbiter Project Radiation Requirements August 5, 2005 LRO GSFC CMO November 7, 2005 RELEASED Goddard Space Flight

More information

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud -

Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging. Giada Petringa - Laboratori Nazionali del Sud - Gamma-ray emission by proton beam interaction with injected Boron atoms for medical imaging Giada Petringa - Laboratori Nazionali del Sud - Giada Petringa Topical Seminar on Innovative Particle and Radiation

More information

California Institute of Technology Pasadena, California Dl, D2, and D3. The low energy electron sensitivity of this

California Institute of Technology Pasadena, California Dl, D2, and D3. The low energy electron sensitivity of this Abstract Laboratory measurements have been made of the response of two typical cosmic ray detector systems to electrons between.2 and 2.. The detector systems investigated were included in the Caltech

More information

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector Measurement of the n_tof beam profile in the second experimental area (EAR) using a silicon detector Fidan Suljik Supervisors: Dr. Massimo Barbagallo & Dr. Federica Mingrone September 8, 7 Abstract A new

More information

SPACE DOSIMETRY WITH A 3D SILICON DETECTOR TELESCOPE

SPACE DOSIMETRY WITH A 3D SILICON DETECTOR TELESCOPE SPACE DOSIMETRY WITH A 3D SILICON DETECTOR TELESCOPE THE ISS VERSIONS OF TRITEL Attila Hirn, Tamás Pázmándi, Sándor Deme, István Apáthy, Antal Csőke, László Bodnár* Hungarian Academy of Sciences KFKI Atomic

More information

ICALEPCS Oct. 6-11, 2013

ICALEPCS Oct. 6-11, 2013 Outline 2 SOHO (ESA & NASA) 3 SOHO (ESA & NASA) 4 SOHO (ESA & NASA) EGRET Team 5 Heavy Ions Charged Ionizing Radiation Outer-Space is full of them Figures reproduced from: 1.Mewaldt, R.A., "Elemental Composition

More information

Shielding Design Considerations for Proton Therapy Facilities

Shielding Design Considerations for Proton Therapy Facilities Shielding Design Considerations for Proton Therapy Facilities p p n π ± INC π 0 Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos, CA, U.S.A. Email:

More information

Capabilities and Performance of the High-Energy Energetic-Particles Instrument for the Parker Solar Probe Mission

Capabilities and Performance of the High-Energy Energetic-Particles Instrument for the Parker Solar Probe Mission Capabilities and Performance of the High-Energy Energetic-Particles Instrument for the Parker Solar Probe Mission a, N. G. Angold b, B. Birdwell b, J. A. Burnham c, E. R. Christian d, C. M. S. Cohen c,

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space SPACE SCIENCE ACTIVITIES IN CHINA Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space AUTHORS CHANG Jin Key Laboratory of Dark Matter and Space Astronomy, Purple

More information

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 3, JUNE 2002 1547 A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate Wanno Lee, Gyuseong Cho, and Ho

More information

Geant4 in JAXA. Masanobu Ozaki (JAXA/ISAS)

Geant4 in JAXA. Masanobu Ozaki (JAXA/ISAS) Geant4 in JAXA Masanobu Ozaki (JAXA/ISAS) Japanese Space Science Missions In Japan, most of fundamental researches relating to the on-orbit radiation environment are carried out for non-commercial (i.e.,

More information

An Interdigitated Pixel PIN Detector for Energetic Particle Spectroscopy in Space

An Interdigitated Pixel PIN Detector for Energetic Particle Spectroscopy in Space An Interdigitated Pixel PIN Detector for Energetic Particle Spectroscopy in Space R. A. Mewaldt, W. R. Cook, and A. C. Cummings California Institute of Technology Pasadena, CA 91125 T. J. Cunningham, M.

More information

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear Radioactive Decay Radioactivity is the spontaneous disintegration of atomic nuclei. This phenomenon was first reported in 1896 by the French physicist Henri Becquerel. Marie Curie and her husband Pierre

More information

Queen s University PHYS 352

Queen s University PHYS 352 Page 1 of 5 Queen s University Faculty of Applied Science; Faculty of Arts and Science Department of Physics, Engineering Physics and Astronomy PHYS 352 Measurement, Instrumentation and Experiment Design

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

A MONTE CARLO SIMULATION OF COMPTON SUPPRESSION FOR NEUTRON ACTIVATION ANALYSIS. Joshua Frye Adviser Chris Grant 8/24/2012 ABSTRACT

A MONTE CARLO SIMULATION OF COMPTON SUPPRESSION FOR NEUTRON ACTIVATION ANALYSIS. Joshua Frye Adviser Chris Grant 8/24/2012 ABSTRACT A MONTE CARLO SIMULATION OF COMPTON SUPPRESSION FOR NEUTRON ACTIVATION ANALYSIS Joshua Frye Adviser Chris Grant 8/24/2012 ABSTRACT A Monte Carlo simulation has been developed using the Geant4 software

More information