GLAST Large Area Telescope:

Size: px
Start display at page:

Download "GLAST Large Area Telescope:"

Transcription

1 Gamma-ray Large Area Space Telescope GLAST Large Area Telescope: Balloon Flight Results WBS 4.1.E Tune Kamae Stanford Linear Accelerator Center Stanford University LAT Instrument Technical Manager On behalf of LAT Balloon Flight Team GSFC, SU-SLAC, SU-HEPL, Hiroshima, NRL, UCSC, Pisa led by D. Thompson, G. Godfrey, S. Williams Document: LAT-PR Section 4.0 Balloon Flight Results 1

2 Balloon Flight Results Outline Rationale and Goals Preparation Balloon Flight and Operations Instrument Performance Results vs. Simulation Conclusions Document: LAT-PR Section 4.0 Balloon Flight Results 2

3 Rationale: Why a Balloon Flight? NASA Announcement of Opportunity: "The LAT proposer must also demonstrate by a balloon flight of a representative model of the flight instrument or by some other effective means the ability of the proposed instrument to reject adequately the harsh background of a realistic space environment. A software simulation is not deemed adequate for this purpose. Planning the balloon flight: Identify specific goals that were practical to achieve with limited resources (time, money, and people), using the previously-tested Beam Test Engineering Model (BTEM) as a starting point. Fig.1: Beam Test Engineering Model ( 99) (BTEM), a prototype GLAST/LAT tower. The black box to the right is the anticoincidence detector (ACD), which surrounds the tracker (TKR). The aluminum-covered block in the middle is the calorimeter (CAL). Readout electronics were housed in the crates to the left. Document: LAT-PR Section 4.0 Balloon Flight Results 3

4 Goals of the Balloon Flight Validate the basic LAT design at the single tower level. Show the ability to take data in the high isotropic background flux of energetic particles in the balloon environment. Record all or partial particle incidences in an unbiased way that can be used as a background event data base. Find an efficient data analysis chain that meets the requirement for the future LAT Instrument Operations Center. Document: LAT-PR Section 4.0 Balloon Flight Results 4

5 Preparation:What Was Needed for this Balloon Flight? A detector similar and functionally equivalent to one LAT tower. BTEM Rework on Tower Electronics Module. Stanford U Rework on Tracker. UCSC Rework on Calorimeter. NRL Rework on ACD. GSFC External Gamma Target (XGT). Hiroshima, SLAC On-board software. SLAC, SU, NRL Pressure vessel to keep ~1 atm air for cooling, high voltage, and hard drives. SLAC, GSFC Mechanical structure to support the instrument through launch, flight, and recovery. GSFC, SLAC Power, commanding, and telemetry. NSBF, SU, SLAC, NRL Real-time commanding and data displays. SU, SLAC, NRL Data analysis tools. SLAC, GSFC, UW, Pisa Modeling of the instrument response. Hiroshima, SLAC, KTH Document: LAT-PR Section 4.0 Balloon Flight Results 5

6 Preparation: BFEM Integration New Cooler View of XGT Installing the BFEM in Pressure Vessel Document: LAT-PR Section 4.0 Balloon Flight Results 6

7 Preparation: Pre-Launch Review X side: Y coordinate Run nsbf , xgtcosmic cut, L1t=11410 X Side: Tem/Biu 2010.c4p c4p Y 1000.c0p Y 2011.c4p c4p X Side: Acd/Disks Xgt hit Y side: X coordinate Y side: X coordinate Run nsbf , xgtcosmic cut, L1t=11410 Y X Side: Tem/Biu 000.c2p c2p c1p c1p X Side: Acd/Disks +Y X Side: Y coordinate Z coordinate Run nsbf , xgtcosmic cut, L1t= c2p c2p TF: xangle=8.41, xerr=0.59 xgtplane x=132.2 xgtsum: 1017 >= c4p c4p acdsum: 0 <= 3307 <= Inf 1000.c0p c2p c1p hits: 16<=12x+16y=28<=Inf topz lyr: 0 <= 9 <= Inf botz lyr: 0 <= 1 <= Inf vopenx: 0 <= 0 <= Inf wall margin: 0 <= 0 <= Inf calsum: <= <= Inf calhits>ped+20: 0 <= 19 <= Inf max tot: 130 cable=5 cntlr=1 Xgt hit 310.c3p c1p Y Side: X coordinate Run nsbf , xgtcosmic cut, L1t=11410 xgtsum: 1017 >= c4p c4p0.4 Xgt hit 210.c3p c3p TF: yangle= 6.04, yerr=0.34 xgtplane y= acdsum: 0 <= 3307 <= Inf 1000.c0p c1p c1p hits: 16<=12x+16y=28<=Inf topz lyr: 0 <= 9 <= Inf botz lyr: 0 <= 1 <= Inf vopeny: 0 <= 0 <= Inf wall margin: 0 <= 0 <= Inf calsum: <= <= Inf calhits>ped+20: 0 <= 19 <= Inf max tot: 130 cable=5 cntlr=1 410.c0p c0p X Side: Y coordinate Real-time event display. A penetrating cosmic ray is seen in all the detectors Pre-launch testing at National Scientific Balloon Facility, Palestine, Texas. August, Document: LAT-PR Section 4.0 Balloon Flight Results 7

8 Balloon Flight Operations Team at Palestine, Texas Balloon Team at Palestine Texas Document: LAT-PR Section 4.0 Balloon Flight Results 8

9 Flight and Operation: Launch on August 4, 2001 The balloon reached an altitude of 38 km and gave a float time of 3 hours. First results (real-time data): trigger rate as a function of atmospheric depth. The trigger rate never exceeded 1.5 KHz, well below the BFEM capability of 6 KHz. Document: LAT-PR Section 4.0 Balloon Flight Results 9

10 Flight and Operation: Onboard DAQ and Ground Electronics Worked Realtime event display Document: LAT-PR LAT-PR Section 4.0 Balloon Flight Results 10 10

11 Instrument Performance: All Subsystems Performed Properly External Targets (4 plastic scint) to test direction determination and measure interaction rate. 4.5 million L1T recorded on-board and 345k events down linked. ACD (13 scint. tiles) to detect charged particles and heavy ions (Z>=2). CAL (CsI logs) To image EM energy deposition. Tracker (26 layers of SSD) to measure charged tracks 200um and reconstruct gamma ray direction. Document: LAT-PR Section 4.0 Balloon Flight Results 11

12 Instrument Performance: All Subsystems Performed Properly Level-1 Trigger Rate (L1T) Level Flight Data Simulation (Geant4) (Cosmic-Ray Fluxes Model) All 500/sec 504/sec Charged 444/sec 447/sec Neutral 56/sec 57/sec Number of Events Recorded Events through Downlink Before Launch 30.5k - Ascending 109k 1.4M Level Flight 105k - Events in Hard Disk Document: LAT-PR Section 4.0 Balloon Flight Results 12

13 Instrument Performance: ACD Threshold and Efficiency Nevents Tile MIP PHA Anti-Coincidence Detector Pulse height distr. for stiff charged particles shows clean separation of the peak from noise. Scinti. Eff. ~ 99.95% or better* (* One track passed thru the bent part of a tile.) Document: LAT-PR Section 4.0 Balloon Flight Results 13

14 Instrument Performance: CAL s Energy Measurement & Imaging Interaction in XGT alpha proton Calorimeter Pulse height distr. for stiff charged particles shows a single-charge peak and a peak due to alpha particles. Alpha particles are seen. Z-X Plane Z-Y Plane Imaging capability demonstrated Document: LAT-PR Section 4.0 Balloon Flight Results 14

15 Instrument Performance: Tracker & XGT Association Cosmic ray interaction in 4 External Targets (plastic scintilators) Gamma ray produced in XGT (20 identified) Hadrons produced in XGT (416 recorded) Document: LAT-PR Section 4.0 Balloon Flight Results 15

16 Instrument Performance: Mechanical Stability Demonstrated Launch ) Landing Recovery ) 2) 4) 5) Time [min] Document: LAT-PR Section 4.0 Balloon Flight Results 16

17 Results: Reconstruction of Events Charged particle event: The track passes through the ACD (top), the tracker, and the calorimeter. Note: Tracker has no Si strips in the upper right corner Gamma-ray event: Two tracks are seen in the tracker and calorimeter. Pattern recognition of an inverted V will allow us to selected gamma-rays from cosmic-ray background. Interaction event: Particle and gamma ray splashes deposit energy in ACD, Tracker, and Calorimeter. Document: LAT-PR Section 4.0 Balloon Flight Results 17

18 Simulation: Background and Instrument Model Proton spectrum e-/e+ spectra atmospheric gamma spectrum Primary and secondary e-/e+ Primary protons passing into the Earth s magnetic field and secondary protons produced by hadronic int. in the atmosphere Gammas prod. by cosmic-rays interacting in the atmosphere Document: LAT-PR Section 4.0 Balloon Flight Results 18

19 Results vs Simulation: Charged Particles Flux & Angular Distribution Model fluxes and angular distributions: protons, muons, and electrons Data γ e-/e+ muons Simulation prediction protons 90 deg. Cosine of cosmic-ray direction Downward Document: LAT-PR Section 4.0 Balloon Flight Results 19

20 Results vs Simulation: Charged Particle Distribution Charged particle hit distribution: model fluxes and angular distributions Data Simulation prediction Calorimeter side Tracker layer number Top of Tracker Document: LAT-PR Section 4.0 Balloon Flight Results 20

21 Results vs Simulation: Neutral Particle Distribution Neutral particle hit distribution: gammas and under-the-acd electrons Simulation prediction Data Calorimeter side Tracker layer number Top of Tracker Document: LAT-PR Section 4.0 Balloon Flight Results 21

22 Conclusions Goals of the balloon flight were achieved. BFEM successfully collected data using a simple three-in-a-row trigger at a rate that causes little concern when extrapolated to the full flight unit LAT. Mechanical robustness of the Tracker design around Silicon Strip Detectors has been verified. Power of segmented Calorimeter design has been demonstrated in identifying gamma rays in charged cosmic ray background. Efficiency of ~99.97% for ACD is shown to be achievable. Through the data analysis, we gained confidence in our ability to simulate the instrument and the cosmic ray background. Balloon flight offered a first opportunity for the LAT team to go through procedures and to face issues typical to a flight program. Lessons learned drawn from BFEM experiences will be fed back to the LAT team. The data are being used to try out the background filter algorithms and reconstruction programs Balloon Experiment has served many purposes and was a success. Document: LAT-PR Section 4.0 Balloon Flight Results 22

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract SLAC-PUB-10261 December 2003 STATUS OF THE GLAST LARGE AREA TELESCOPE Richard Dubois Stanford Linear Accelerator Center, Stanford University, PO Box 20750, Stanford, CA, USA Abstract The GLAST Large Area

More information

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray

More information

Experimental Particle

Experimental Particle Experimental Particle Astrophysics @ Eduardo do Couto e Silva SLUO Annual Meeting July 12, 2002 OUTLINE Introduction X rays g rays Summary 1 There are two groups @ Leader: E. Bloom Leader: T. Kamae 2 Why

More information

arxiv: v1 [astro-ph.he] 2 Jul 2009

arxiv: v1 [astro-ph.he] 2 Jul 2009 PROCEEDINGS OF THE 31 st ICRC, ŁÓDŹ 2009 1 First results on Cosmic Ray electron spectrum below 20 GeV from the Fermi LAT. M.Pesce-Rollins on behalf of the Fermi LAT Collaboration Istituto Nazionale di

More information

Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model

Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model T. Mizuno, T. Kamae, G. Godfrey and T. Handa 1 Stanford Linear Accelerator Center, 2575

More information

GLAST Large Area Telescope:

GLAST Large Area Telescope: GLAST Large Area Telescope: Gamma-ray Large Area Space Telescope Integration and Test Two Tower Integration Readiness Review Particle Test Elliott Bloom I&T Manager I&T Two Tower IRR 1 Status of Docs Doc

More information

GLAST Large Area Telescope

GLAST Large Area Telescope Gamma-ray Large Area Space Telescope GLAST Large Area Telescope Lowell A. Klaisner Stanford Linear Accelerator Center LAT Instrument Project Manager Klaisner@slac.stanford.edu 650-926-2726 rev. 2 1 Status

More information

GLAST Large Area Telescope:

GLAST Large Area Telescope: Gamma-ray Large Area Space Telescope GLAST Large Area Telescope: Science Requirements and Instrument Design Steven Ritz Goddard Space Flight Center LAT Instrument Scientist ritz@milkyway.gsfc.nasa.gov

More information

GLAST Large Area Telescope:

GLAST Large Area Telescope: Gamma-ray Large Area Space Telescope GLAST Large Area Telescope: Project Overview Robert P. Johnson Santa Cruz Institute for Particle Physics Physics Department University of California at Santa Cruz LAT

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

A New Look at the Galactic Diffuse GeV Excess

A New Look at the Galactic Diffuse GeV Excess A New Look at the Galactic Diffuse GeV Excess Brian Baughman Santa Cruz Institute for Particle Physics 1 Overview Diffuse gamma-ray emission The Galactic diffuse gamma-ray GeV excess Discussion of the

More information

GLAST LAT Overview and Status

GLAST LAT Overview and Status GLAST LAT Overview and Status INPAC Meeting, Berkeley May 5, 2007 Robert Johnson LAT Tracker Subsystem Manager Physics Department and Santa Cruz Institute for Particle Physics University of California

More information

GLAST. Gamma Ray Large Area Space Telescope. Hartmut F.-W. Sadrozinski. Science Design Performance. Santa Cruz Institute for Particle Physics (SCIPP)

GLAST. Gamma Ray Large Area Space Telescope. Hartmut F.-W. Sadrozinski. Science Design Performance. Santa Cruz Institute for Particle Physics (SCIPP) GLAST Gamma Ray Large Area Space Telescope Science Design Performance Hartmut F.-W. Sadrozinski Santa Cruz Institute for Particle Physics (SCIPP) GLAST Gamma-Ray Large Area Space Telescope An Astro-Particle

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

Issues with Albedo Gammas in LAT T. Kamae September 2, 2002

Issues with Albedo Gammas in LAT T. Kamae September 2, 2002 Issues with Albedo Gammas in LAT T. Kamae September 2, 2002 History) The prototype tracker tray went through 2 vibration tests (one in Feb. 02 and the other in June 02). In the June test, the bottom tray

More information

The Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope Abstract The Fermi Gamma-ray Space Telescope Tova Yoast-Hull May 2011 The primary instrument on the Fermi Gamma-ray Space Telescope is the Large Area Telescope (LAT) which detects gamma-rays in the energy

More information

Radiation Issues in GLAST Si

Radiation Issues in GLAST Si Radiation Issues in GLAST Si Science Design of Challenges Radiation Issues Hartmut F.-W. Sadrozinski Santa Cruz Institute for Particle Physics (SCIPP) GLAST Gamma-Ray Large Area Space Telescope An Astro-Particle

More information

Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN

Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN Gamma Ray Physics in the Fermi era F.Longo University of Trieste and INFN Vulcano, May 22, 2018 F.Longo et al. -- 1 Gamma-ray astrophysics above 100 MeV AGILE Fermi 2 Picture of the day, Feb. 28, 2011,

More information

CALICE scintillator HCAL

CALICE scintillator HCAL CALICE scintillator HCAL Erika Garutti DESY (on behalf of the CALICE collaboration) OUTLINE: electromagnetic and hadronic shower analysis shower separation The test beam prototypes 10 GeV pion shower @

More information

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics Chapter 6.2: space based cosmic ray experiments 1 A bit of history... space based experiments 1912-1950: first observations of the cosmic ray flux with detectors onboard balloons and air-planes. 1950s/60s:

More information

COSMIC-RAY BACKGROUND FLUX MODEL BASED ON A GAMMA-RAY LARGgE AREA SPACE TELESCOPE BALLOON FLIGHT ENGINEERING MODEL

COSMIC-RAY BACKGROUND FLUX MODEL BASED ON A GAMMA-RAY LARGgE AREA SPACE TELESCOPE BALLOON FLIGHT ENGINEERING MODEL The Astrophysical Journal, 614:1113 1123, 2004 October 20 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. COSMIC-RAY BACKGROUND FLUX MODEL BASED ON A GAMMA-RAY LARGgE

More information

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space SPACE SCIENCE ACTIVITIES IN CHINA Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space AUTHORS CHANG Jin Key Laboratory of Dark Matter and Space Astronomy, Purple

More information

Liquid Argon TPC for Next Generation of MeV Gamma-ray Satellite

Liquid Argon TPC for Next Generation of MeV Gamma-ray Satellite Liquid Argon TPC for Next Generation of MeV Gamma-ray Satellite Hiroyasu Tajima for LArGO team Institute for Space Earth Environmental Research Nagoya University April 22, 2017 Active medium TPC Workshop

More information

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Y.Asaoka for the CALET Collaboration RISE, Waseda University 2016/12/15 CTA-Japan Workshop The extreme

More information

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update

CRaTER Pre-Environmental Review (I-PER) Science Requirements Update CRaTER Pre-Environmental Review (I-PER) Science Requirements Update Justin C Kasper Smithsonian Astrophysical Observatory September 10-11, 2007 Outline Instrument Overview Verification Methods Science

More information

The new event analysis of the Fermi Large Area Telescope

The new event analysis of the Fermi Large Area Telescope The new event analysis of the Fermi Large Area Telescope LUPM (Laboratoire Univers et Particule de Montpellier) E-mail: thibaut.desgardin@univ-montp2.fr Since its launch on June 11, 2008 the Large Area

More information

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope Walter Hopkins Physics Department, Cornell University. The Fermi Large Area Telescope is a particle detector in space with an effective collecting

More information

Calibration of the AGILE Gamma Ray Imaging Detector

Calibration of the AGILE Gamma Ray Imaging Detector Calibration of the AGILE Gamma Ray Imaging Detector Andrew Chen on behalf of the AGILE Team April 11, 2011 AGILE Astrorivelatore Gamma ad Immagini LEggero Italian Space Agency (ASI) small mission Participation

More information

Digital Hadron Calorimetry for the Linear Collider using GEM Technology

Digital Hadron Calorimetry for the Linear Collider using GEM Technology Digital Hadron Calorimetry for the Linear Collider using GEM Technology University of Texas at Arlington Andrew Brandt, Kaushik De, Shahnoor Habib, Venkat Kaushik, Jia Li, Mark Sosebee, Andy White* 1,

More information

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Greg Madejski Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Outline:

More information

Instrumentation Issues

Instrumentation Issues Gamma-Ray Large Area Space Telescope GLAST Instrumentation Issues Hartmut F.-W. Sadrozinski SCIPP, Univ. of California Santa Cruz Through most of history, the cosmos has been viewed as eternally tranquil

More information

GLAST, a Gamma-Ray Large Area Space Telescope

GLAST, a Gamma-Ray Large Area Space Telescope GLAST, a Gamma-Ray Large Area Space Telescope Hartmut F.-W. Sadrozinski SCIPP, Univ. of California Santa Cruz, CA 95064 (Representing the GLAST Collaboration) Abstract The GLAST LAT instrument has been

More information

PoS(ICRC2017)775. The performance of DAMPE for γ-ray detection

PoS(ICRC2017)775. The performance of DAMPE for γ-ray detection ab, Yun-Feng Liang ab, Zhao-Qiang Shen ab, Zun-Lei Xu ab and Chuan Yue ab on behalf of the DAMPE Collaboration a Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese

More information

GLAST ACD Segmentation Trade Study March 6, 2001 Analysis by Alex Moiseev and J. F. Ormes

GLAST ACD Segmentation Trade Study March 6, 2001 Analysis by Alex Moiseev and J. F. Ormes GLAST ACD Segmentation Trade Study March 6, 2001 Analysis by Alex Moiseev and J. F. Ormes ACD Subsystem ACD segmentation and the efficiency requirement at 300 GeV March 13, 2001 IDT phone call Jonathan

More information

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT First results on the high energy cosmic ray electron spectrum with the Fermi-LAT Johan Bregeon INFN Pisa johan.bregeon@pi.infn.it on behalf of the Fermi LAT collaboration TANGO in Paris - May 4 th, 009

More information

CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance

CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance CRaTER Pre-Ship Review (PSR) Instrument Calibration Science Requirements Compliance Justin C Kasper Smithsonian Astrophysical Observatory January 3, 2008 Outline Calibration Relate the ADU of the Pulse

More information

Simulation study of scintillatorbased

Simulation study of scintillatorbased Simulation study of scintillatorbased calorimeter Hiroyuki Matsunaga (Tsukuba) For GLD-CAL & ACFA-SIM-J groups Main contributors: M. C. Chang, K. Fujii, T. Takeshita, S. Yamauchi, A. Nagano, S. Kim Simulation

More information

Preliminary Results From The First Flight of Atic: The Silicon Matrix

Preliminary Results From The First Flight of Atic: The Silicon Matrix Preliminary Results From The First Flight of Atic: The Silicon Matrix J. H. Adams, Jr. (1) for the ATIC Collaboration (1) NASA Marshall Space Flight Center, Huntsville, AL 35812, USA james.h.adams@msfc.nasa.gov,

More information

Studies of Hadron Calorimeter

Studies of Hadron Calorimeter Studies of Hadron Calorimeter Zhigang Wang Institute of High Energy Physics 2012.10.17 in IHEP Outline 1,The Dark Matter Calorimeter 2,The Hadron Calorimeter(HCAL) 3, Summary 1,Dark Matter Calorimeter

More information

GLAST Tracker. Hiroyasu Tajima On behalf of GLAST Tracker Team. Stanford Linear Accelerator Center, Stanford, CA , USA

GLAST Tracker. Hiroyasu Tajima On behalf of GLAST Tracker Team. Stanford Linear Accelerator Center, Stanford, CA , USA SLAC PUB 833 May, 26 GLAST Tracker Hiroyasu Tajima On behalf of GLAST Tracker Team Stanford Linear Accelerator Center, Stanford, CA 9439-4349, USA Abstract The Large Area Telescope (LAT) on board the Gamma-ray

More information

GAMMA-RAY BURST PHYSICS WITH GLAST

GAMMA-RAY BURST PHYSICS WITH GLAST SLAC-PUB-110 October 006 GAMMA-RAY BURST PHYSICS WITH GLAST N. OMODEI INFN sez. Pisa, Edificio C - Polo Fibonacci - Largo B. Pontecorvo, PISA, E-mail: nicola.omodei@pi.infn.it The Gamma-ray Large Area

More information

Status of the physics validation studies using Geant4 in ATLAS

Status of the physics validation studies using Geant4 in ATLAS Status of the physics validation studies using Geant4 in ATLAS On behalf of the ATLAS Geant4 Validation Team A.Dell Acqua CERN EP/SFT, Geneva, CH dellacqu@mail.cern.ch The new simulation for the ATLAS

More information

The GILDA mission: a new technique for a gamma-ray telescope in the energy range 20 MeV GeV

The GILDA mission: a new technique for a gamma-ray telescope in the energy range 20 MeV GeV 1 Nuclear Instruments and Methods, A354,547,(1995) The GILDA mission: a new technique for a gamma-ray telescope in the energy range 20 MeV - 100 GeV G. Barbiellini 1, M. Boezio 1, M. Casolino 2, M. Candusso

More information

Abstract: J. Urbar [1], J. Scheirich [2], J. Jakubek [3] MEDIPIX CR tracking device flown on ESA BEXUS-7 stratospheric balloon flight

Abstract: J. Urbar [1], J. Scheirich [2], J. Jakubek [3] MEDIPIX CR tracking device flown on ESA BEXUS-7 stratospheric balloon flight [1] Department of Space Science, LTU, Kiruna, Sweden [2] Faculty of Electrical Engineering, Czech Technical University in Prague [3] Institute of Experimental and Applied Physics, CTU Prague, Czech Rep.

More information

Motivation Electron-Tracking Compton Telescope 1 st Flight of SMILE Preparation for next step summary

Motivation Electron-Tracking Compton Telescope 1 st Flight of SMILE Preparation for next step summary A. Takada (ISAS/JAXA), T. Tanimori, H. Kubo, K. Miuchi, S. Kabuki, H. Nishimura, K. Hattori, K. Ueno, S. Kurosawa, C. Ida, S. Iwaki, M. Takahashi (Kyoto Univ.) Motivation Electron-Tracking Compton Telescope

More information

Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Integration & Test Subsystem. Particle Test Plan

Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Integration & Test Subsystem. Particle Test Plan Page 1 of 21 Document # LAT-TD-00440-04 Author(s) Gary Godfrey Date 14-Mar-2003 GLAST LAT SYSTEM SPECIFICATION Document Title Particle Beam Test Plan Subsystem/Office Integration and Test Gamma-ray Large

More information

Motivation Electron-Tracking Compton Telescope 1 st Flight of SMILE Preparation for next step summary

Motivation Electron-Tracking Compton Telescope 1 st Flight of SMILE Preparation for next step summary A. Takada (ISAS/JAXA), T. Tanimori, H. Kubo, K. Miuchi, S. Kabuki, Y. Kishimoto, J. Parker, H. Nishimura, K. Hattori, K. Ueno, S. Kurosawa, S. Iwaki, C. Ida, M. Takahashi, T. Sawano, K. Taniue, K. Nakamura,

More information

Gamma-ray Large Area Space Telescope. the Science, the LAT, and its Silicon-Strip Tracking System. R.P. Johnson

Gamma-ray Large Area Space Telescope. the Science, the LAT, and its Silicon-Strip Tracking System. R.P. Johnson Gamma-ray Large Area Space Telescope the Science, the LAT, and its Silicon-Strip Tracking System R.P. Johnson Santa-Cruz Institute for Particle Physics University of California at Santa Cruz Outline Introduction:

More information

Introduction. Technical and Production Status L. Klaisner. Instrument Science Operations Center Plans. Project Status, Cost and Schedule L.

Introduction. Technical and Production Status L. Klaisner. Instrument Science Operations Center Plans. Project Status, Cost and Schedule L. Gamma-ray Large Area Space Telescope Introduction S. Ritz Technical and Production Status L. Klaisner Instrument Science Operations Center Plans R. Cameron Project Status, Cost and Schedule L. Klaisner

More information

Cosmic Rays and the need for heavy payloads

Cosmic Rays and the need for heavy payloads Cosmic Rays and the need for heavy payloads T. Gregory Guzik Department of Physics and Astronomy Louisiana State University Baton Rouge, LA LSU 04/19/07 LCANS 2007 - April 27, 2007 1 Ballooning leads the

More information

A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope

A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope, Justin Vandenbroucke on behalf of the Fermi-LAT Collaboration Department of Physics and Wisconsin IceCube Particle Astrophysics

More information

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere Richard WIGMANS Department of Physics, Texas Tech University, Lubbock TX 79409-1051, USA (wigmans@ttu.edu) Abstract Cosmic ray experiments

More information

GLAST Mission: Status and Science Opportunities

GLAST Mission: Status and Science Opportunities Gamma-ray Large Area Space Telescope GLAST Mission: Status and Science Opportunities Bill Atwood SCIPP / UCSC atwood@scipp.ucsc.edu Outline GLAST: An International Science Mission Large Area Telescope

More information

Commissioning of the ATLAS LAr Calorimeter

Commissioning of the ATLAS LAr Calorimeter Commissioning of the ATLAS LAr Calorimeter S. Laplace (CNRS/LAPP) on behalf of the ATLAS Liquid Argon Calorimeter Group Outline: ATLAS in-situ commissioning steps Introduction to the ATLAS LAr Calorimeter

More information

Examples for experiments that can be done at the T9 beam line

Examples for experiments that can be done at the T9 beam line Examples for experiments that can be done at the T9 beam line Example 1: Use muon tomography to look for hidden chambers in pyramids (2016 winning proposal, Pyramid hunters) You may know computer tomography

More information

Trigger Scheduler, Engines, and Rates. Trigger Scheduler, Engines, and Rates. A proposal for flight configuration

Trigger Scheduler, Engines, and Rates. Trigger Scheduler, Engines, and Rates. A proposal for flight configuration A proposal for flight configuration Purpose Intent: Want to run LAT at SLAC with trigger config as much like flight as possible What is flight trigger config? What rate is acceptable? See Confluence page

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1 The PAMELA apparatus. The PAMELA apparatus is inserted inside a pressurized container (2 mm aluminum window) attached to the Russian Resurs-DK1 satellite. The apparatus, approximately 13 cm tall and

More information

Study of the HARPO TPC for a high angular resolution g-ray polarimeter in the MeV-GeV energy range. David Attié (CEA/Irfu)

Study of the HARPO TPC for a high angular resolution g-ray polarimeter in the MeV-GeV energy range. David Attié (CEA/Irfu) Study of the HARPO TPC for a high angular resolution g-ray polarimeter in the MeV-GeV energy range David Attié (CEA/Irfu) Outline Motivation of an MeV-GeV polarimeter Scientific case and expected performance

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Construction and Test of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment

Construction and Test of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment Construction and Test of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment (for the ISS-CREAM Collaboration ) Dept. of Physics, Kyungpook National University, Daegu 702-701, Republic of

More information

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group Introduction Construction, Integration and Commissioning on the Surface Installation

More information

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond MINOS Physics Program and Construction Status Karol Lang The University of Texas at Austin YITP: Neutrinos and Implications for Physics Beyond YITP Conference: Neutrinos and Implications The Standard for

More information

Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO) Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO) DOE Review (June 3, 2004) Tune Kamae for the PoGO collaboration (SLAC-Goddard-Princeton-Japan-Sweden-France) 1. Introduction 2. of PoGO 3. Beam

More information

GLAST - Exploring the high- energy gamma-ray Universe

GLAST - Exploring the high- energy gamma-ray Universe GLAST - Exploring the high- energy gamma-ray Universe Julie McEnery NASA/GSFC (many thanks to the members of the LAT DM&NP working group for figures and suggestions for this talk) Julie McEnery 1 Outline

More information

Balloon-borne experiment for observation of sub-mev/mev gamma-rays from Crab Nebula using an Electron Tracking Compton Camera

Balloon-borne experiment for observation of sub-mev/mev gamma-rays from Crab Nebula using an Electron Tracking Compton Camera Balloon-borne experiment for observation of sub-mev/mev gamma-rays from Crab Nebula using an Electron Tracking Compton Camera S. Komura, T. Tanimori, H. Kubo, A.Takada, S. Iwaki, S. Kurosawa, Y. Matsuoka,

More information

Validation of Geant4 Physics Models Using Collision Data from the LHC

Validation of Geant4 Physics Models Using Collision Data from the LHC Journal of Physics: Conference Series Validation of Geant4 Physics Models Using Collision from the LHC To cite this article: S Banerjee and CMS Experiment 20 J. Phys.: Conf. Ser. 33 032003 Related content

More information

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 Results from HARP Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 The HAdRon Production Experiment 124 physicists 24 institutes2 Physics Goals Input for precise calculation

More information

L esperimento di Astrofisica GLAST il Large Area Telescope

L esperimento di Astrofisica GLAST il Large Area Telescope Gamma-ray Large Area Space Telescope Riccardo Rando L esperimento di Astrofisica GLAST il Large Area Telescope Scuola Nazionale "Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica e Applicazioni

More information

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program b Primary goal of the LHCb Experiment Search for New Physics contributions

More information

Initial Studies in Proton Computed Tomography

Initial Studies in Proton Computed Tomography SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz,

More information

The Anti-Coincidence Detector for the GLAST Large Area Telescope

The Anti-Coincidence Detector for the GLAST Large Area Telescope The Anti-Coincidence Detector for the GLAST Large Area Telescope A. A. Moiseev 1, 2, *, R. C. Hartman 1, J. F. Ormes 1, D. J. Thompson 1, M. J. Amato 1, T. E. Johnson 1, K. N. Segal 1, and D. A. Sheppard

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

The Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope The Fermi Gamma-ray Space Telescope Hiromitsu Takahashi ( 高橋弘充 ) Hiroshima University ( 広島大学 ) hirotaka@hep01.hepl.hiroshima-u.ac.jp for the LAT Collaboration 2008 June 11th Contents Gamma-ray observation

More information

The simulation of the Electron Tracking Compton Camera with a gaseous time projection chamber and a scintillator

The simulation of the Electron Tracking Compton Camera with a gaseous time projection chamber and a scintillator The simulation of the Electron Tracking Compton Camera with a gaseous time projection chamber and a scintillator A. Takada 1, T. Tanimori 1, H. Kubo 1, H. Nishimura 1, K. Ueno 1, K. Miuchi 1, K. Tsuchiya

More information

Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS Jessica Leonard On behalf of CMS BRIL EPS 2015, Vienna July 24, 2015 1 CMS BRIL: Beam Radiation Instrumentation

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Measurements of Heavy Nuclei with the CALET Experiment

Measurements of Heavy Nuclei with the CALET Experiment Measurements of Heavy Nuclei with the CALET Experiment for the CALET Collaboration University of Maryland, Baltimore County and NASA Goddard Space Flight Center 8 Greenbelt Rd. Greenbelt, MD 771, USA E-mail:

More information

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Taka Tanaka (SLAC/KIPAC) 9/19/2007 SLAC Advanced Instrumentation Seminar Outline Introduction CdTe Diode

More information

PARTICLES REVELATION THROUGH SCINTILLATION COUNTER

PARTICLES REVELATION THROUGH SCINTILLATION COUNTER 14-25 JUNE 2004 SUMMER STAGE PARTICLES REVELATION THROUGH SCINTILLATION COUNTER by Flavio Cavalli and Marcello De Vitis Liceo Scientifico Statale Farnesina Tutor: Marco Mirazita 1) COSMIC RAYS - The Muons

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

The NUCLEON Space Experiment Preliminary Results. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, , Russia

The NUCLEON Space Experiment Preliminary Results. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, , Russia The NUCLEON Space Experiment Preliminary Results A. Turundaevskiy a1, E.Atkin a, V.Bulatov c, V.Dorokhov c, N.Gorbunov d, S.Filippov c, V.Grebenyuk d, D.Karmanov a, I.Kovalev a, I.Kudryashov a, M.Merkin

More information

Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY

Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY S. Arab, S. Choudhury, G. Dolinska, K. Hansen, I. Korol, H. Perrey, D. Pitzl, S. Spannagel ( DESY Hamburg ) E. Garutti, M. Hoffmann,

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

GLAST Silicon Tracker Vertex 98, Santorini (Greece), Sep 29-Oct The Silicon Strip Tracker for the Gamma-ray Large Area Space Telescope

GLAST Silicon Tracker Vertex 98, Santorini (Greece), Sep 29-Oct The Silicon Strip Tracker for the Gamma-ray Large Area Space Telescope Vertex 98, Santorini (Greece), Sep 29-Oct 4 1998 The Silicon Strip Tracker for the Gamma-ray Large Area Space Telescope University of California, Santa Cruz Bill Atwood (SLAC) Jose A. Hernando Masaharu

More information

First Year Fermi Gamma ray Space Telescope Observations of Centaurus A

First Year Fermi Gamma ray Space Telescope Observations of Centaurus A First Year Fermi Gamma ray Space Telescope Observations of Centaurus A C.C. Teddy Cheung (NASA GSFC) Yasushi Fukazawa (Hiroshima Univ) on behalf of the Fermi LAT collaboration The Many Faces of Centaurus

More information

Dark matter searches with GLAST

Dark matter searches with GLAST Dark matter searches with GLAST Larry Wai SLAC Representing the GLAST LAT Collaboration Dark Matter and New Physics working group GLAST Large Area Telescope (LAT) 20 MeV 300 GeV 1.8 m γ Anti-Coincidence

More information

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations T. Gregory Guzik, Louisiana Space Grant Consortium Department of Physics & Astronomy Louisiana State University v030316 1 Primary

More information

Collider Physics Analysis Procedures

Collider Physics Analysis Procedures Collider Physics Analysis Procedures Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Aim Overview of analysis techniques at CMS Contrast with Tevatron (see DØ lecture)

More information

Timing calibration of the LHAASO-KM2A electromagnetic particle detectors

Timing calibration of the LHAASO-KM2A electromagnetic particle detectors Timing calibration of the LHAASO-KMA electromagnetic particle detectors Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 149, China E-mail: lvhk@ihep.ac.cn Huihai He Institute of

More information

The LHCf experiment at LHC

The LHCf experiment at LHC The LHCf experiment at LHC CALOR 2006 Chicago, 5-9 June 2006 University and INFN Firenze On behalf of the LHCf Collaboration The LHCf collaboration O. Adriani,, L. Bonechi, M. Bongi, P. Papini,, R. D AlessandroD

More information

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary A. Takada, T. Tanimori, H. Kubo, J. D. Parker, T. Mizumoto, Y. Mizumura, T. Sawano, K. Nakamura, Y. Matsuoka, S. Komura, S. Nakamura, T. Kishimoto, M. Oda, T. Takemura, S. Miyamoto, K. Miuchi, S. Kurosawa

More information

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS LC Workshop, CERN, 15 Nov 2001 Dario Barberis Genova University/INFN 1 The ATLAS detector LC Workshop, CERN, 15 Nov 2001

More information

Near detector tracker concepts. D. Karlen / U. Vic. & TRIUMF T2K ND280m meeting August 22, 2004

Near detector tracker concepts. D. Karlen / U. Vic. & TRIUMF T2K ND280m meeting August 22, 2004 Near detector tracker concepts D. Karlen / U. Vic. & TRIUMF T2K ND280m meeting August 22, 2004 Longitudinal extent of tracker modules Consensus has developed that the near detector should consist of a

More information

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Identifying Particle Trajectories in CMS using the Long Barrel Geometry Identifying Particle Trajectories in CMS using the Long Barrel Geometry Angela Galvez 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Kevin Lannon Abstract The Compact Muon Solenoid

More information

EM Energy Spectrum from 17.6 MeV photons. Eduardo do Couto e Silva and Xin Chen Feb 13, 2002

EM Energy Spectrum from 17.6 MeV photons. Eduardo do Couto e Silva and Xin Chen Feb 13, 2002 EM Energy Spectrum from 17.6 MeV photons Eduardo do Couto e Silva and Xin Chen Feb 13, 2002 Event display of a muon passing through EM Using GLEAM V3 the official version for EM Mechanical support structure

More information

Tevatron Detector Upgrades

Tevatron Detector Upgrades Tevatron Detector Upgrades Contents Upgrade History The Detectors in Run IIa Tevatron Scenarios and Running Conditions CDF and D0 Upgrades Maximizing Physics Conclusions This will not have WBS numbers/l1,2,3

More information

CRaTER Science Requirements

CRaTER Science Requirements CRaTER Science Requirements Lunar Reconnaissance Orbiter CRaTER Preliminary Design Review Justin Kasper (CRaTER Proj. Sci.) Outline Energy deposition Classical ionizing radiation Nuclear fragmentation

More information

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays PAMELA scientific objectives Detector s overview Subsystems description PAMELA status Massimo Bongi Universita degli Studi di

More information

GAPS: A Dedicated Search for

GAPS: A Dedicated Search for GAPS: A Dedicated Search for Anti-Deuterons in the Cosmic Rays anti-deuterons t? CDM positrons? BESS dark matter LSP 100 GeV secondary/tertiary background pgaps GAPS Rene A. Ong (UCLA), Snowmass 2013 SLAC

More information

Fermi-LAT improved Pass 8 event selection

Fermi-LAT improved Pass 8 event selection Fermi-LAT improved Pass 8 event selection P. Bruel 1, T. H. Burnett, S. W. Digel 3, G. Jóhannesson, N. Omodei 3, and M. Wood 3 on behalf of the Fermi-LAT Collaboration 1 Laboratoire Leprince-Ringuet, École

More information