LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Size: px
Start display at page:

Download "LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY"

Transcription

1 LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T W 2007/05/17 Validation of the S5 V3 LHO calibrations for GRB Evan Goetz, Eiichi Hirose, Michael Landry Distribution of this draft: LIGO Scientific Collaboration California Institute of Technology Massachusetts Institute of Technology LIGO Project - MC LIGO Project - NW E California Blvd 175 Albany Street Pasadena CA Cambridge, MA Phone (626) Phone (617) Fax (626) Fax (617) info@ligo.caltech.edu info@ligo.mit.edu WWW: Processed with L A TEX on 2007/05/17

2 Abstract We describe validation of the S5 V3 calibration of the LIGO Hanford interferometers during the epoch including GRB As of this writing, the current S5 calibration version is V3. Final V3 epochs for both H1 and H2 were expected to still be representative of the H1 and H2 instruments on the date of GRB (gps time ). Through a series of cross checks of the state of the machines, and comparisons with the quasi-independent calibration procedure autocalibrator, this is shown to be the case. 1 Introduction Both H1 and H2 were locked and in science mode during GRB We have plotted strainequivalent noise curves for H1 and H2, using roughly 55s of DARM ERR data centered on gps time (GRB070201). These curves correspond to binary neutron star inspiral ranges of 15.6Mpc (H1) and 6.8Mpc (H2), respectively. The calibration employed here for both H1 and H2 is S5 V3. Strain equivalent noise (Hz 1/2 ) GRB Noise curves H2 H Figure 1: Strain equivalent noise curves for H1 and H2 for 55s around the gps event time of GRB H2 Calibration Validation of the H2 calibration for GRB is slightly more complicated than H1, owing to a filter modification prior to the Feb 1 event. We thus deal with H2 first in this document, and then follow with H1. The S5 H2 V3 calibration comprises three distinct calibration epochs, listed in Table 1. The duration of the third epoch is given as nine 9 s, or indefinite. This indicates the calibration is expected then to apply to GRB However, there was an H2 filter modification made on 22 January 2007, necessitating a check on this epoch to ensure its validity at the time of the GRB. page 2 of 7

3 epoch start (gps) epoch duration (s) OLG measurement (gps) V3 and V4 model comparisons Table 1: S5 H2 V3 epoch parameters. An official calibration run was performed for H2 on 23 January 2007 during the commissioning break. We made a V4 model from the results of this calibration run and compare it to the V3 model to understand any changes in the DARM loop that were made during the commissioning break period. Figure 2 shows the comparison of V3 and V4 versions of the DARM model. The differences between V3 and V4 versions of the H2 calibration are less than 1 percent in magnitude and less than 1 degree in phase between 10 Hz and 7 khz, a good indication that the filter module change has not significantly impacted the calibration and the V3 calibration is still valid at the time of the Feb 1 GRB. Figure 2: Comparison of the V3 and V4 versions of the DARM model for H Autocalibrator comparisons As an additional cross-check, we compare autocalibrations (typically made weekly to bi-weekly) against propogated V3 calibration, in order to look for systematic shifts that suggest the V3 calibration is out of date. Autocalibrations rely on the same DC calibrations that are employed by page 3 of 7

4 the official method, but use a physical transfer function (as opposed to a model), and thus all other components of the calibration are independent. Two autocalibrations bracket the Feb 1 GRB: that of Jan 29, 2007, and Feb 6, 2007 (this for both H2 and H1). Shown in Figures 3 and 5 below are strain curves from the two autocalibration measurements, and the strains produced from the V3 calibration for the same AS Q data use by the autocalibrator. Agreement is more readily judged in the linear ratios Figures 4 and 6. Both ratios show a slight (about 4-5) percent systematic to more sensitive autocalibrations. As this i) is within calibration error, ii) is conservative with respect to the V3 calibration, iii) may demonstrate some problem with the autocalibration sweep templates, we believe the systematic to be small enough such that the offical calibration is acceptable. We have begun testing the autocalibrator procedure in effort to identify the nature of the systematic, and will shortly prove whether or not it resides in the autocalibrator as suspected H2 Official and Acal strains official V3 cal autocal new f r es srd Strain (1/ Hz) Figure 3: Comparison of H2 29 Jan 07 autocalibrator spectrum with official calibration method. 2.3 Factors check 2.4 Conlog check We checked the Conlog differences for LSC, ASC, SUS, PSL and IO subsystems between the V3 model time for H2 (gps= ) and the time of GRB (gps= ). The state of the instrument shows nothing out of the ordinary at the time of the GRB (i.e. there were no gain changes in the DARM loop or filters not in place). The Conlog differences are mostly due to alignment differences and servo offsets (SUS and ASC). A few example of channels that had changes are H2:SUS RM LLYAW GAIN and H2:LSC-AS3 I OFFSET. The input matrix element (AS Q to DARM ERR) is slightly different between the fiducial calibration time and the time of the GRB, but this is a dynamical parameter in the LSC loop to cancel changes in optical gain over time. page 4 of 7

5 Ratio of H2 Off. cal/autocal, w0=.764 propogated V3 cal/reformed autocal Figure 4: Ratio of H2 29 Jan 07 official calibration to autocalibrator output. 3 H1 Calibration There were no changes in filters or gains between the V3 calibration measurement and the time of GRB A new model is not implicitly necessary because the state of the instrument is essentially the same as during the V3 official calibration measurements. Thus the validation is considered simpler and did not necessitate a separate V4 measurement specifically for GRB The four H1 V3 calibration epochs are noted in Table 1 below. epoch start (gps) epoch duration (s) OLG measurement (gps) Table 2: S5 H1 V3 epoch parameters. 3.1 Autocalibrator comparisons Autocalibrator comparisons for Jan 29 and Feb 6 were made for H1, in a similar fashion to that described above for H2. While no significant mean systematic is observed, one as a function of frequency (about ±5%) is indeed present. This may or may not reside within the 4km autocalibrator setup - investigations are also underway. The error is however within the error of the two calibrations, and thus again we claim the V3 calibration sufficient for current analyses of the GRB event. page 5 of 7

6 H2 Official and Acal strains official V3 cal autocal new f r es srd Strain (1/ Hz) Figure 5: Comparison of H2 6 Feb 07 autocalibrator spectrum with official calibration method. 3.2 Factors check 3.3 Conlog check We checked the Conlog differences between the V3 model time for H1 (gps= ) and the time of GRB (gps= ). The state of the instrument shows nothing out of the ordinary at the time of the GRB (i.e. there were no gain changes or filters not in place). As for H2, nearly all the Conlog differences are due to alignment changes and offsets. Examples of channels with different settings are H1:ASC-QPDX 1 OFFSET and H1:SUS-ETMX LRYAW GAIN. Also, as with H2, the intput matrix element for AS Q to DARM ERR is slightly different due to changing optical gain. 4 Response functions For completeness, we plot here the V3 DARM ERR response functions, and the compare them to their V2 counterparts. Figure 11 is a plot of the H1 V3 response function (fourth and final epoch), while Figure 12 compares this function with the V2 response function from its (second and) final epoch. Figure 13 is a plot of the H2 V3 response function (third and final epoch), while Figure 14 compares this function with the V2 response function from its (second and) final epoch. 5 Conclusions The H1 and H2 V3 calibrations (final epochs) are sufficiently representative of the working state of the machines on Feb 1, 2007 to be employed in data analyses of GRB Some sytematics were noted in comparisons with autocalibrator output: we will continue to investigate these effects page 6 of 7

7 Ratio of H2 Off. cal/autocal, w0=.764 propogated V3 cal/reformed autocal Figure 6: Ratio of H2 6 Feb 07 official calibration to autocalibrator output H1 Official and Acal strains official V3 cal reformed autocal, w0=.767 srd Strain (1/ Hz) Figure 7: Comparison of H1 29 Jan 07 autocalibrator spectrum with official calibration method. The dip at 60Hz is an artifact of the autocalibrator measurement. and they are suspected to reside in the existing LHO autocal setup (such as swept sine template amplitudes which may be saturating the actuation chain). page 7 of 7

8 Ratio of H1 Off. cal/autocal, w0=.761 propogated V3 cal/reformed autocal Figure 8: Ratio of H1 29 Jan 07 official calibration to autocalibrator output H1 Official and Acal strains official V3 cal reformed autocal, w0=.767 srd Strain (1/ Hz) Figure 9: Comparison of H1 6 Feb 07 autocalibrator spectrum with official calibration method. The dip at 60Hz is an artifact of the autocalibrator measurement. page 8 of 7

9 Ratio of H1 Off. cal/autocal, w0=.761 propogated V3 cal/reformed autocal Figure 10: Ratio of H1 6 Feb 07 official calibration to autocalibrator output. Resp. mag. (m/ct) Resp. phase (deg) H1 Reference response function Figure 11: V3 response function for H1 DARM ERR. page 9 of 7

10 Figure 12: Comparison of DARM ERR V3 reference response function to the V2 reference response function for H1. Resp. mag. (m/ct) Resp. phase (deg) H2 Reference response function Figure 13: V3 response functions for H2 DARM ERR. page 10 of 7

11 Figure 14: Comparison of DARM ERR V3 reference response function to the V2 reference response function for H2. page 11 of 7

S5 V3 h(t) review and validation

S5 V3 h(t) review and validation LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T080242-00-R 2008/09/23 S5 V3 h(t) review and validation

More information

Implementing an Alignment Sensing and Control (ASC) System for the 40m Prototype Interferometer

Implementing an Alignment Sensing and Control (ASC) System for the 40m Prototype Interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T1300555-v1-2013/06/17 Implementing an Alignment

More information

LIGO Laboratory / LIGO Scientific Collaboration LIGO. aligo BSC-ISI, Pre-integration Testing report, Phase II (before cartridge install) E V6

LIGO Laboratory / LIGO Scientific Collaboration LIGO. aligo BSC-ISI, Pre-integration Testing report, Phase II (before cartridge install) E V6 LIGO Laboratory / LIGO Scientific Collaboration LIGO LIGO- E1100848 Oct 3, 2013 aligo BSC-ISI, Pre-integration Testing report, Phase II (before cartridge install) E1100848 V6 Hugo Paris, Jim Warner for

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T960148-01- D Sep / 9 / 96 Maximum Current of the

More information

Installation and testing of L1 PSL table legs

Installation and testing of L1 PSL table legs LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO April 15, 2012 Installation and testing of L1 PSL table legs R. DeSalvo, M. Rodruck, R. Savage,

More information

Searching for Gravitational Waves from Binary Inspirals with LIGO

Searching for Gravitational Waves from Binary Inspirals with LIGO Searching for Gravitational Waves from Binary Inspirals with LIGO Duncan Brown University of Wisconsin-Milwaukee for the LIGO Scientific Collaboration Inspiral Working Group LIGO-G030671-00-Z S1 Binary

More information

The LIGO Observatory Environment

The LIGO Observatory Environment LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO-T010074-00-D 06/28/2001 The LIGO Observatory Environment LIGO Systems Distribution of this document:

More information

Validation of the Source-Detector Simulation Formulation

Validation of the Source-Detector Simulation Formulation LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T00152-00- E 7/1/0 Validation of the Source-Detector

More information

Beam Splitter Optical Surface Deformation due to Gravity

Beam Splitter Optical Surface Deformation due to Gravity LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO-T080233-01-D Advanced LIGO 22 Sep 2008 Beam Splitter Optical Surface Deformation due to Gravity

More information

ANALYSIS OF BURST SIGNALS IN LIGO DATA. Irena Zivkovic, Alan Weinstein

ANALYSIS OF BURST SIGNALS IN LIGO DATA. Irena Zivkovic, Alan Weinstein LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T010157-00-R 10/15/01 ANALYSIS OF BURST SIGNALS IN LIGO

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-P030066-00 December 2, 2003 First upper limits from

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

LIGO: The Laser Interferometer Gravitational Wave Observatory

LIGO: The Laser Interferometer Gravitational Wave Observatory LIGO: The Laser Interferometer Gravitational Wave Observatory Credit: Werner Benger/ZIB/AEI/CCT-LSU Michael Landry LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org

More information

Case Study: Faraday Rotators in LIGO

Case Study: Faraday Rotators in LIGO Case Study: Faraday Rotators in LIGO Physics 208, Electro-optics Peter Beyersdorf Document info 1 Input Optics Overview Requirements for LIGO faraday isolator LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

More information

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02 LIGO Status and Plans Barry Barish / Gary Sanders 13-May-02 LIGO overall strategy! Strategy presented to NSB by Thorne / Barish in 1994! Search with a first generation interferometer where detection of

More information

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T980005-01- D 10/28/97 Non-Linear Response of Test

More information

Losless compression of LIGO data.

Losless compression of LIGO data. LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T000076-00- D 08/7/2000 Losless compression of LIGO

More information

The Status of Enhanced LIGO.

The Status of Enhanced LIGO. The Status of Enhanced LIGO. Aidan Brooks. December 2008 AIP Congress 2008, Adelaide, Australia 1 Outline Gravitational Waves» Potential sources» Initial LIGO interferometer Enhanced LIGO upgrades» Increased

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

The LIGO Project: a Status Report

The LIGO Project: a Status Report The LIGO Project: a Status Report LIGO Hanford Observatory LIGO Livingston Observatory Laura Cadonati LIGO Laboratory, MIT for the LIGO Scientific Collaboration Conference on Gravitational Wave Sources

More information

PO Beam Waist Size and Location on the ISC Table

PO Beam Waist Size and Location on the ISC Table LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T980054-0- D 8/4/98 PO Beam Waist Sie and Location

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

arxiv:gr-qc/ v1 4 Dec 2003

arxiv:gr-qc/ v1 4 Dec 2003 Testing the LIGO Inspiral Analysis with Hardware Injections arxiv:gr-qc/0312031 v1 4 Dec 2003 Duncan A. Brown 1 for the LIGO Scientific Collaboration 1 Department of Physics, University of Wisconsin Milwaukee,

More information

Drag Wiping with Methanol vs First Contact

Drag Wiping with Methanol vs First Contact LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO- T1000137_v3 LIGO Date: 08/08/2010 Drag Wiping with Methanol vs First Contact Margot Phelps, Liyuan

More information

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO 4//4 Heating Beam Pattern Optical Design CO Laser Thermal Compensation Bench Michael Smith, David

More information

LIGO On-line Documents July 1997

LIGO On-line Documents July 1997 LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T970089-05- P 7/22/97 LIGO On-line Documents July

More information

ISC In-vacuum Gouy phase telescopes

ISC In-vacuum Gouy phase telescopes LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T1247-v3 211/3/5 ISC In-vacuum Gouy phase telescopes

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T010126-00-E October 24th, 2001 Integration of mechanical

More information

Searching for gravitational waves. with LIGO detectors

Searching for gravitational waves. with LIGO detectors Werner Berger, ZIB, AEI, CCT Searching for gravitational waves LIGO Hanford with LIGO detectors Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration KITP Colloquium,

More information

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D 6WDWXVRI/,*2 Laser Interferometer Gravitational-wave Observatory Hanford, WA Livingston, LA Nergis Mavalvala MIT IAU214, August 2002 *UDYLWDWLRQDOZDYH,QWHUIHURPHWHUVWKHSULQ LSOH General Relativity (Einstein

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

LIGO I mirror scattering loss by non smooth surface structure

LIGO I mirror scattering loss by non smooth surface structure LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO-T070170-00-E LIGO July 26, 2007 LIGO I mirror scattering loss by non smooth surface structure Hiro

More information

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory LIGO Present and Future Barry Barish Directory of the LIGO Laboratory LIGO I Schedule and Plan LIGO I has been built by LIGO Lab (Caltech & MIT) 1996 Construction Underway (mostly civil) 1997 Facility

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

Status of the International Second-generation Gravitational-wave Detector Network

Status of the International Second-generation Gravitational-wave Detector Network Status of the International Second-generation Gravitational-wave Detector Network Albert Lazzarini Deputy Director, LIGO Laboratory California Institute of Technology On behalf of the LIGO Scientific Collaboration

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T990088-01- D 10/14/99 COS IFO Alignment Procedure

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T050059-00-D 2005/06/09 Calibration of the LIGO

More information

S4 hardware injections

S4 hardware injections S4 hardware injections Gabriela González, Michael Landry, Vuk Mandic, Brian O Reilly September 16, 2005 Abstract We show that hardware injections in ETMX EXC produce a desired strain h 0 if EXC = h 0 A

More information

Results from LIGO Searches for Binary Inspiral Gravitational Waves

Results from LIGO Searches for Binary Inspiral Gravitational Waves Results from LIGO Searches for Binary Inspiral Gravitational Waves Peter Shawhan (LIGO Laboratory / Caltech) For the LIGO Scientific Collaboration American Physical Society April Meeting May 4, 2004 Denver,

More information

The search for continuous gravitational waves: analyses from LIGO s second science run

The search for continuous gravitational waves: analyses from LIGO s second science run The search for continuous gravitational waves: analyses from LIGO s second science run Michael Landry LIGO Hanford Observatory on behalf of the LIGO Scientific Collaboration http://www.ligo.org April APS

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 LIGO-G030523-00-M

More information

Search for inspiralling neutron stars in LIGO S1 data

Search for inspiralling neutron stars in LIGO S1 data INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S691 S696 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)68883-6 Search for inspiralling neutron stars in LIGO S1 data Gabriela González

More information

The Laser Interferometer Gravitational-Wave Observatory In Operation

The Laser Interferometer Gravitational-Wave Observatory In Operation The Laser Interferometer Gravitational-Wave Observatory In Operation "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Reported on behalf of LIGO colleagues by Fred

More information

Long-term strategy on gravitational wave detection from European groups

Long-term strategy on gravitational wave detection from European groups Longterm strategy on gravitational wave detection from European groups Barry Barish APPEC Meeting London, UK 29Jan04 International Interferometer Network Simultaneously detect signal (within msec) LIGO

More information

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M S1 sensitivities -- GEO -- L 2km -- H 4km -- L 4km State of h 0 LIGO Barry Barish LSC Meeting LLO Hanford, WA 10-Nov-03 Goals and Priorities LSC -Aug 02 Interferometer performance» Integrate commissioning

More information

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M Laser Interferometer Gravitationalwave Observatory LIGO 2000 Industrial Physics Forum Barry Barish 7 November 2000 Sir Isaac Newton Perhaps the most important scientist of all time! Invented the scientific

More information

Search for the gravity wave signature of GRB030329/SN2003dh

Search for the gravity wave signature of GRB030329/SN2003dh Laser Interferometer Gravitational-Wave Observatory (LIGO) Search for the gravity wave signature of GRB030329/SN2003dh ABSTRACT Optimal Integration length Well detectable Sine- Gaussian simulation One

More information

Hardware Burst Injections in Pre-S2 S2

Hardware Burst Injections in Pre-S2 S2 Alan Weinstein, Caltech Laura Cadonati, MIT Shourov Chatterjee, MIT And WaveBurst results from Sergei Klimenko, UFla Igor Yakushin, LIGO-LLO LSC meeting, 3/18/03 Hardware Burst Injections in Pre-S2 S2

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY. LIGO Scientific Collaboration. Enhanced LIGO. R Adhikari. Distribution of this draft:

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY. LIGO Scientific Collaboration. Enhanced LIGO. R Adhikari. Distribution of this draft: LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO LIGO Scientific Collaboration LIGO T06009-00-I May 006 Enhanced LIGO R Adhikari Distribution of this draft: LIGO Scientific Collaboration This is

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar Georgia Tech 26-April-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property of space

More information

Comparison of band-limited RMS of error channel and calibrated strain in LIGO S5 data

Comparison of band-limited RMS of error channel and calibrated strain in LIGO S5 data LIGO-P7116-P Journal of Physics: Conference Series 122 (28) 1234 doi:188/1742-6596/122/1/1234 Comparison of band-limited RMS of error channel and calibrated strain in LIGO S5 data P R Charlton for the

More information

Gary Sanders LIGO/Caltech LSC Meeting, LLO March 16, 2004 LIGO-G M

Gary Sanders LIGO/Caltech LSC Meeting, LLO March 16, 2004 LIGO-G M State of State the LIGO of LIGO Laboratory Gary Sanders LIGO/Caltech LSC Meeting, LLO March 16, 2004 A 10 Year Anniversary LIGO s near death experience of early 1994» LIGO s second chance What was our

More information

Probing for Gravitational Waves

Probing for Gravitational Waves Probing for Gravitational Waves LIGO Reach with LIGO AdLIGO Initial LIGO Barry C. Barish Caltech YKIS2005 Kyoto University 1-July-05 Einstein s Theory of Gravitation a necessary consequence of Special

More information

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration LIGO Hanford, WA LIGO Livingston, LA Virgo (Cascina, Italy) What

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

The LIGO Experiment Present and Future

The LIGO Experiment Present and Future The LIGO Experiment Present and Future Keith Riles University of Michigan For the LIGO Scientific Collaboration APS Meeting Denver May 1 4, 2004 LIGO-G040239-00-Z What are Gravitational Waves? Gravitational

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

Search for compact binary systems in LIGO data

Search for compact binary systems in LIGO data Search for compact binary systems in LIGO data Thomas Cokelaer On behalf of the LIGO Scientific Collaboration Cardiff University, U.K. LIGO-G060630-00-Z Plan 1) Overview What kind of gravitational waves

More information

arxiv: v1 [gr-qc] 31 Aug 2009

arxiv: v1 [gr-qc] 31 Aug 2009 Angular instability due to radiation pressure in the LIGO gravitational wave detector E. Hirose, 1,4, K. Kawabe, 2 D. Sigg, 2 R. Adhikari, 3 and P.R. Saulson 1 1 Department of Physics, Syracuse University,

More information

LIGO s continuing search for gravitational waves

LIGO s continuing search for gravitational waves LIGO s continuing search for gravitational waves Patrick Brady University of Wisconsin-Milwaukee LIGO Scientific Collaboration LIGO Interferometers LIGO is an interferometric detector» A laser is used

More information

What have we learned from coalescing Black Hole binary GW150914

What have we learned from coalescing Black Hole binary GW150914 Stas Babak ( for LIGO and VIRGO collaboration). Albert Einstein Institute (Potsdam-Golm) What have we learned from coalescing Black Hole binary GW150914 LIGO_DCC:G1600346 PRL 116, 061102 (2016) Principles

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

LIGO and the Quest for Gravitational Waves

LIGO and the Quest for Gravitational Waves LIGO and the Quest for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) LIGO-G030523-00-M Barry C. Barish Caltech UT Austin 24-Sept-03 1 A Conceptual

More information

LIGO I status and advanced LIGO proposal

LIGO I status and advanced LIGO proposal LIGO I status and advanced LIGO proposal Hiro Yamamoto LIGO Lab / Caltech LIGO I» basic design» current status advanced LIGO» outline of the proposal» technical issues GW signals and data analysis ICRR

More information

Status of the LIGO Project

Status of the LIGO Project Status of the LIGO Project Gary Sanders California Institute of Technology LSC Meeting University of Florida - March 4, 1999 1 LIGO-G990012-00-M LIGO-G990022-02-M LIGO Schedule at Very Top Level 1996 Construction

More information

First upper limits from LIGO on gravitational wave bursts

First upper limits from LIGO on gravitational wave bursts INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S677 S684 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)68358-4 First upper limits from LIGO on gravitational wave bursts Alan J Weinstein

More information

Searching for gravitational waves from neutron stars

Searching for gravitational waves from neutron stars Searching for gravitational waves from neutron stars Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Ian Jones Searching for gravitational waves from neutron stars 1/23

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar University of Illinois 16-Feb-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property

More information

LIGO s Detection of Gravitational Waves from Two Black Holes

LIGO s Detection of Gravitational Waves from Two Black Holes LIGO s Detection of Gravitational Waves from Two Black Holes Gregory Harry Department of Physics, American University February 17,2016 LIGO-G1600274 GW150914 Early History of Gravity Aristotle Kepler Laplace

More information

Plans for the LIGO TAMA joint search for gravitational wave bursts

Plans for the LIGO TAMA joint search for gravitational wave bursts INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S1801 S1807 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)79467-8 Plans for the LIGO TAMA joint search for gravitational wave bursts Patrick

More information

Spatial Dependence of Force in the Initial LIGO OSEMs

Spatial Dependence of Force in the Initial LIGO OSEMs LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO - LIGO Scientific Collaboration LIGO - T75 - - I June Spatial Dependence of Force in the Initial LIGO OSEMs O d'arcy, P Fritschel Distribution of

More information

The Quest to Detect Gravitational Waves

The Quest to Detect Gravitational Waves The Quest to Detect Gravitational Waves Peter Shawhan California Institute of Technology / LIGO Laboratory What Physicists Do lecture Sonoma State University March 8, 2004 LIGO-G040055-00-E Outline Different

More information

Faraday Isolator Performance at High Laser Power

Faraday Isolator Performance at High Laser Power Faraday Isolator Performance at High Laser Power R. M. Martin, V. Quetschke, A. Lucianetti, L. Williams, G. Mueller, D. H. Reitze, D. B. Tanner University of Florida Research supported by The National

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type 2002/11/13 S1 Burst Search Report Distribution of this

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

Enhancing Long Transient Power Spectra with Filters

Enhancing Long Transient Power Spectra with Filters Enhancing Long Transient Power Spectra with Filters Avi Vajpeyi The College of Wooster Pia Astone and Andrew Miller The Sapienza University of Rome (Dated: August 5, 2017) A challenge with gravitational

More information

Search for Gravitational Wave Transients. Florent Robinet On behalf of the LSC and Virgo Collaborations

Search for Gravitational Wave Transients. Florent Robinet On behalf of the LSC and Virgo Collaborations Search for Gravitational Wave Transients On behalf of the LSC and Virgo Collaborations 1 Gravitational Waves Gravitational waves = "ripples" in space time Weak field approximation : g = h h 1 Wave equation,

More information

Gearing up for Gravitational Waves: the Status of Building LIGO

Gearing up for Gravitational Waves: the Status of Building LIGO Gearing up for Gravitational Waves: the Status of Building LIGO Frederick J. Raab, LIGO Hanford Observatory LIGO s Mission is to Open a New Portal on the Universe In 1609 Galileo viewed the sky through

More information

Gravitational Waves: From Einstein to a New Science

Gravitational Waves: From Einstein to a New Science Gravitational Waves: From Einstein to a New Science LIGO-G1602199 Barry C Barish Caltech - LIGO 1.3 Billion Years Ago 2 Black Holes Regions of space created by super dense matter from where nothing can

More information

The Present Gravitational Wave Detection Effort

The Present Gravitational Wave Detection Effort The Present Gravitational Wave Detection Effort Keith Riles University of Michigan LIGO Scientific Collaboration International Conference on Topics in Astroparticle and Underground Physics Rome July 1,

More information

Gravitational waves. Markus Pössel. What they are, how to detect them, and what they re good for. MPIA, March 11, 2016.

Gravitational waves. Markus Pössel. What they are, how to detect them, and what they re good for. MPIA, March 11, 2016. What they are, how to detect them, and what they re good for AstroTechTalk MPIA, March 11, 2016 General relativity Interferometric detectors First direct detection What s next? Einstein s general theory

More information

Cosmography and Black Hole Spectroscopy by Coherent Synthesis of the Terrestrial and Space GW Antennae Network: Orbit Optimization

Cosmography and Black Hole Spectroscopy by Coherent Synthesis of the Terrestrial and Space GW Antennae Network: Orbit Optimization LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIGO-F1500005 v1 2015/08/04 Cosmography and Black Hole Spectroscopy

More information

Strategy for signal classification to improve data quality for Advanced Detectors gravitational-wave searches

Strategy for signal classification to improve data quality for Advanced Detectors gravitational-wave searches Strategy for signal classification to improve data quality for Advanced Detectors gravitational-wave searches E. Cuoco 1, A.Torres-Forné 2,J.A. Font 2,7, J.Powell 3, R.Lynch 4, D.Trifiró 5 2 Universitat

More information

Laser Interferometer Gravitational-Wave Observatory (LIGO)! A Brief Overview!

Laser Interferometer Gravitational-Wave Observatory (LIGO)! A Brief Overview! Laser Interferometer Gravitational-Wave Observatory (LIGO) A Brief Overview Sharon Brunett California Institute of Technology Pacific Research Platform Workshop October 15, 2015 Credit: AEI, CCT, LSU LIGO

More information

Advanced LIGO, LIGO-Australia and the International Network

Advanced LIGO, LIGO-Australia and the International Network Advanced LIGO, LIGO-Australia and the International Network Stan Whitcomb LIGO/Caltech IndIGO - ACIGA meeting on LIGO-Australia 8 February 2011 Gravitational Waves Einstein in 1916 and 1918 recognized

More information

Advanced LIGO Status Report

Advanced LIGO Status Report Advanced LIGO Status Report Gregory Harry LIGO/MIT On behalf of the LIGO Science Collaboration 22 September 2005 ESF PESC Exploratory Workshop Perugia Italy LIGO-G050477 G050477-00-R Advanced LIGO Overview

More information

Ayaka Shoda University of Tokyo. M. Ando A, K. Okada, K. Ishidoshiro B, Y. Aso, K. Tsubono Kyoto University A, KEK B

Ayaka Shoda University of Tokyo. M. Ando A, K. Okada, K. Ishidoshiro B, Y. Aso, K. Tsubono Kyoto University A, KEK B Ayaka Shoda University of Tokyo M. Ando A, K. Okada, K. Ishidoshiro B, Y. Aso, K. Tsubono Kyoto University A, KEK B Table of contents 1. Introduction 2. Torsion-bar Antenna 3. Simultaneous observational

More information

All-sky LIGO Search for Periodic Gravitational Waves in the Fourth Science Run (S4)

All-sky LIGO Search for Periodic Gravitational Waves in the Fourth Science Run (S4) All-sky LIGO Search for Periodic Gravitational Waves in the Fourth Science Run (S4) Keith Riles University of Michigan For the LIGO Scientific Collaboration APS Meeting, Jacksonville, Florida April 14-17,

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

Work of the LSC Pulsar Upper Limits Group (PULG) Graham Woan, University of Glasgow on behalf of the LIGO Scientific Collaboration

Work of the LSC Pulsar Upper Limits Group (PULG) Graham Woan, University of Glasgow on behalf of the LIGO Scientific Collaboration Work of the LSC Pulsar Upper Limits Group (PULG) Graham Woan, University of Glasgow on behalf of the LIGO Scientific Collaboration GWDAW 2003 1 Pulsar Upper Limits Group (PULG) Community of LSC members

More information

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Jan Harms INFN, Sezione di Firenze On behalf of LIGO and Virgo 1 Global Network of Detectors LIGO GEO VIRGO KAGRA LIGO 2 Commissioning

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

LIGOʼs first detection of gravitational waves and the development of KAGRA

LIGOʼs first detection of gravitational waves and the development of KAGRA LIGOʼs first detection of gravitational waves and the development of KAGRA KMI2017 Jan. 2017 Tokyo Institute of Technology Kentaro Somiya Self Introduction Applied Physics (U Tokyo) NAOJ 2000-04 Albert-Einstein

More information

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information carried by gravitational

More information

Searching for gravitational waves from binary inspirals with LIGO

Searching for gravitational waves from binary inspirals with LIGO INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S1625 S1633 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)79876-7 Searching for gravitational waves from binary inspirals with LIGO Duncan

More information

Gravitational Waves & Precision Measurements

Gravitational Waves & Precision Measurements Gravitational Waves & Precision Measurements Mike Smith 1 -20 2 HOW SMALL IS THAT? Einstein 1 meter 1/1,000,000 3 1,000,000 smaller Wavelength of light 10-6 meters 1/10,000 4 10,000 smaller Atom 10-10

More information